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Abstract. This note includes some additional details as an extension to
the paper “Traffic Modeling with Phase-Type Distributions and VARMA
Processes” [1].

1 Introduction

This online companion adds some technical details for the ideas presented in the
paper that could not be included due to space restrictions. In this respect it is
only fully understandable with the knowledge of the original paper [1].
In Sect. 2 we summarize the steps to obtain an equivalent V AR(1) represen-
tation for a V ARMA(p, q) process. The approach presented in [1] required the
V ARMA(p, q) process to have some specific properties, e.g. to have standard
normal marginal distributions. In Sect. 3 we explain how we can obtain this
property by adjusting the covariance matrix of the innovations when construct-
ing a V ARMA(p, q) process. Finally, in Sect. 4 we describe the initialization of
V ARMA(p, q) processes for random number generation.

2 V AR(1) Representation of V ARMA(p, q) Processes

A V ARMA(p, q) process

Zt = α1Zt−1 +α2Zt−2 + . . .+αpZt−p +β1εt−1 +β2εt−2 + . . .+βqεt−q + εt

can be transformed into an equivalent V AR(1) process Z̃t = α̃Z̃t−1 + ε̃t by
setting [2]

Z̃t =



Zt
...

Zt−p+1

εt
...

εt−q+1


(k(p+q)×1)

ε̃t =



εt
0
...
0
εt
0
...
0


(kp+kq×1)

α̃ =

[
α̃11 α̃12

α̃21 α̃22

]
(k(p+q)×k(p+q))

(1)
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where

α̃11 =


α1 · · · αp−1 αp
Ik 0 0

. . .
...

0 · · · Ik 0


(kp×kp)

α̃12 =


β1 · · · βq−1 βq
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


(kp×kq)

(2)

α̃21 =

0 · · · 0
...

. . .
...

0 · · · 0


(kq×kp)

α̃22 =


0 · · · 0 0
Ik 0 0

. . .
...

0 · · · Ik 0


(kq×kq)

and Ik is the (k×k) identity matrix. For the special case p = 0 we set p = 1 and
introduce an artificial matrix α1 = 0. If q = 0 we have that α̃ = α̃11. Finally,
the covariance matrix of the innovations is set to

Σ̃ε =



Σε 0 · · · 0 Σε

0 0
... 0 0

...
...

. . .
...

...

0 0
... 0 0

Σε 0 · · · 0 Σε


(k(p+q)×k(p+q))

. (3)

The covariance matrix at lag 0 of the V AR(1) process Σ̃Z̃(0) then contains the
covariance matrices of the original V ARMA(p, q) process and can be obtained
by the relation [2]

vec(Σ̃Z̃(0))

= vec



ΣZ(0) ΣZ(1) · · · ΣZ(p− 1) E[Ztε
′
t] E[Ztε

′
t−1] · · · E[Ztε

′
t−q+1]

ΣZ(−1) ΣZ(0) · · · ΣZ(p− 2) 0 E[Zt−1ε
′
t−1] · · · E[Zt−1ε

′
t−q+1]

...
...

. . .
...

...
...

ΣZ(−p+ 1) ΣZ(−p+ 2) · · · ΣZ(0) 0 0 E[Zt−p+1ε
′
t−q+1]

Σε 0 · · · 0
· 0 Σε 0

...
. . .

...

0
... Σε


= (Ik2(p+q)2 − α̃⊗ α̃)−1vec(Σ̃ε).

3 Adjusting the Covariance Matrix of the Innovations for
V ARMA(p, q) Fitting

When minimizing [1, Eq. 16] using the Nelder-Mead algorithm one obtains ma-
trices α1,α2, . . . ,αp and β1,β2, . . . ,βq of dimension k × k with AR and MA
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coefficients, respectively, in each step of the algorithm. To compute the value of
the goal function from [1, Eq. 16] the autocorrelations of the V ARMA(p, q) pro-
cess determined by those matrices have to be computed. For this the covariance
matrix of the innovationsΣε is needed. Additionally, we want the V ARMA(p, q)
process to have standard normal marginal distributions, i.e. its autocovariance
matrix ΣZ(0) at lag 0 should have ones in the diagonal. In the following we
construct Σε such that this requirement is fulfilled. Recall, that we restricted
Σε to be a diagonal matrix.
In Sect. 2 we have seen that we can construct an equivalent V AR(1) repre-
sentation with coefficient matrix α̃ for the V ARMA(p, q) process and then we
have

(Ik2(p+q)2 − α̃⊗ α̃)−1︸ ︷︷ ︸
A

vec(Σ̃ε)︸ ︷︷ ︸
x

= vec(Σ̃Z̃(0))︸ ︷︷ ︸
b

(4)

which defines a system of linear equations Ax = b. Matrix A is known, i.e. it is
defined by the coefficients α1,α2, . . . ,αp and β1,β2, . . . ,βq (cf. Eqs. 1 and 2).
For some entries of vector b the values are known, i.e. the entries corresponding
to the k diagonal elements of ΣZ(0) should be 1. Vector x is unknown and has
to be determined, but since most of its entries are 0 it can be reduced in size. In
fact, according to Eq. 3 vector x has only k unknown elements (i.e. the diagonal
elements ofΣε), each appearing four times. Consequently, we can define a system
of k linear equations with k unknowns by using a subset of rows and columns
from Ax = b that correspond to the diagonal elements in ΣZ(0) and the non-
zero elements in x. We will denote this system Aεxε = bε. The solution vector
xε then provides the diagonal elements of Σε that result in standard normal
marginal distributions and complete our V ARMA(p, q) description.

3.1 Example:

We demonstrate the construction of Aεxε = bε by means of a small example.
Let k = 2, p = q = 1 and

α1 =

[
0.12 0.21
0.15 0.22

]
, β1 =

[
0.1 0.2
0.25 0.3

]
.

Then we have to determine

Σε =

[
σ1 0
0 σ2

]
.

According to Eqs. 1, 2 and 3 we have the following equivalent V AR(1) represen-
tation:

α̃ =


α̃11︷ ︸︸ ︷

0.12 0.21

α̃12︷ ︸︸ ︷
0.10 0.20

0.15 0.22 0.25 0.30
0.00 0.00 0.00 0.00

︸ ︷︷ ︸
α̃21

0.00 0.00 ︸ ︷︷ ︸
α̃22

0.00 0.00

 and Σ̃ε =


σ1 0 σ1 0
0 σ2 0 σ2
σ1 0 σ1 0
0 σ2 0 σ2
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The autocovariance matrix of the V AR(1) process has the form

Σ̃Z̃(0) =


1 · · ·
· 1 · ·
· · · ·
· · · ·


since we require the two elements corresponding to the diagonal of ΣZ(0) to be
1. After vectorization the elements are at positions 1 and 6. Consequently, we
take the first and sixth row of A = (Ik2(p+q)2 − α̃ ⊗ α̃)−1 as they are used for
the computation of those elements in Eq. 4, i.e.

A(1, :) = (1.0168, 0.0289, 0.0154, 0.0286, 0.0289, 0.0499, 0.0263, 0.0491, 0.0154,

0.0263, 0.0147, 0.0264, 0.0286, 0.0491, 0.0264, 0.0486)

A(6, :) = (0.0255, 0.0377, 0.0416, 0.0506, 0.0377, 1.0557, 0.0614, 0.0748, 0.0416,

0.0614, 0.0681, 0.0827, 0.0506, 0.0748, 0.0827, 0.1006) .

Then we have
A(1, :) · Σ̃ε = 1 and A(6, :) · Σ̃ε = 1.

This can be further simplified, since we have various entries equal to 0 in Σ̃ε
and because each σi appears several times in Σ̃ε. We get

(1.0168 + 0.0154 + 0.0154 + 0.0147)σ1 + (0.0499 + 0.0491 + 0.0491 + 0.0486)σ2 = 1

(0.0255 + 0.0416 + 0.0416 + 0.0681)σ1 + (1.0557 + 0.0748 + 0.0748 + 0.1006)σ2 = 1.

Finally, we have

Aεxε = bε[
1.0623 0.1967
0.1768 1.3059

] [
σ1
σ2

]
=

[
1
1

]
which yields the solution σ1 = 0.8201 and σ2 = 0.6548.

4 Initialization of V ARMA(p, q) Processes for Random
Number Generation

Since for the generation of random samples from the V ARMA(p, q) (cf. [1,
Sect. 3.5]) it is assumed that p previous observations and q previous innovations
already exist, it might be desirable to initialize the process with reasonable
values to start in a stationary state. E.g. for generating the first sample z1 we
require realizations for the (virtual) previous samples z0, z−1, . . . ,z−p+1 and the
innovations ε0, ε−1, . . . , ε−q+1. The εi are independent and can be determined
as described in [1, Sect. 3.5], i.e. by setting εi = Svi where S and vi are
defined as in [1, Sect. 3.5]. Since the zi are correlated we use matrix ΣZ from
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[1, Eq. 15] that contains the covariance values of the V ARMA(p, q) process for
the determination of the zi. Again, we apply a Cholesky decomposition to get
PZP

′
Z = ΣZ and obtain (z′0, z

′
−1, . . . ,z

′
−p+1) = PZ(v1, . . . , vkp)

′ where the vi
are again random numbers with standard normal distribution [2].
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