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Abstract. This note includes some additional details as an extension to the paper
“Transformation of Acyclic Phase Type Distributions for Correlation Fitting” [1].

1 Introduction

This online companion adds information and details that could not be included in the
paper due to space restrictions. In this respect it is only fully understandable with the
knowledge of the original paper [1]. In Sect. 2 we prove that the hyperexponential
representation is the representation that allows for a maximal first joint moment when
expanding the Phase-type distribution into a MAP. Sect. 3 deals with the expansion of
the state space of PH distributions. In particular, we show that the state space expansion
proposed in [1] results in a representation with a first joint moment which is not smaller
than the one of the original PH distribution.

2 The General Case

In [1] we defined the following transformation which modifies the representation but
not the distribution and still results in an APH. The following equations apply the trans-
formation to two states i < j and we assume that for i < j λi ≤ λ j. pδ and Dδ

0 are the
vector and matrix after the transformation with parameter δ has been applied.

pδ(k) =


p(i) + δ for k = i
p( j) − δ for k = j
p(k) otherwise

λk,l =



λi, j
p(i)

p(i)+δ −
(λ j−λi)δ
p(i)+δ for k = i and l = j

λi,l
p(i)

p(i)+δ for k = i and l > i ∧ l < j
λi,l

p(i)
p(i)+δ + λ j,l

δ
p(i)+δ for k = i and l > j

λk,i
p(i)+δ

p(i) for k < i and l = i
λk, j − λk,i

δ
p(i) for k < i and l = j

λk,l otherwise
(1)

The diagonal entries λk are not modified by the transformation. For the exit vector d1,
dδ1(k) = d1(k) for k , i and

dδ1(i) =
p(i)d1(i) + δd1( j)

p(i) + δ
= d1(i) + δ

d1( j) − d1(i)
p(i) + δ

. (2)



To compute a valid APH, parameter δ has to be chosen from the following interval to
assure that the rates and probabilities remain non-negative.[

max
(
−p(i), min

l> j,λ j,l>0

(
−

p(i)λi,l

λ j,l

)
,−

p(i)d1(i)
d1( j)

)
, min

(
p( j), min

k<i,λk,i>0

(
p(i)λk, j

λk,i

)
,

p(i)λi, j

λ j − λi

)]
(3)

If d1( j) = 0, then the last term for the lower bound becomes −∞ and is not used. If
λ j = λi, then the last term in the upper bound evaluates to∞. Furthermore, if δ is set to
−p(i), then the rates of the new APH become infinite.

Using this transformation we proposed the following theorem that will be proved in
the remainder of this section.

Theorem 1. If an APH can be transformed into an hyperexponential representation
with p(i) > 0 using similarity transformations (1)-(2), then this representation results
in the maximal value µ∗1,1.

Proof. We first consider µ1,1 for the hyperexponential representation. Let Λ be the vec-
tor of phase rates, Λ−1 a column vector with λ−1

i in position i and p the initial vector of
the hyperexponential representation. Then D0 = diag(−Λ), d1 = Λ and M = (−D0)−1 =

diag(Λ−1). Let B be a stochastic matrix such that D1 = diag(d1)B = diag(Λ)B, pB = p
and µ1,1 is maximal. µ1,1 can be represented as

µ1,1 = pM2D1M I1 = pdiag(Λ−1)BΛ−1.

Matrix B that maximizes µ1,1 can be computed from the linear optimization problem
with variables B(i, j) (i, j = 1, . . . , n), 2n linear constraints

p(i) =
n∑

j=1

p( j)B( j, i),
n∑

j=1

B(i, j) = 1 and goal function
n∑

i=1

p(i)
λi

n∑
j=1

B(i, j)
λ j

.

The maximum is achieved for B = I in this case.
Now consider some APH with representation (p̃, D̃0, d̃1) which results from the

hyperexponential distribution (p,D0,d1) using the similarity transformation defined in
(1)-(2). These transformations can be collected in a non-singular transformation matrix
C with C I1 = I1 such that

p̃ = pC, D̃0 = C−1D0C and d̃1 = C−1d1

where D0 = diag(−Λ) and d1 = Λ. Furthermore, M̃ = (−D̃0)−1 =

C−1(−D0)−1C = C−1MC = C−1diag(Λ−1)C. Now consider the first joint moment of
the transformed representation which equals

µ̃1,1 = p̃M̃2diag(d̃1)BM̃ I1
= pCC−1MCC−1MCdiag(C−1d1)BC−1MC I1
= pdiag(Λ−1)2 Cdiag(C−1Λ)BC−1︸                  ︷︷                  ︸

G

Λ−1.



We have

G I1 = Cdiag(C−1Λ)BC−1 I1 = Cdiag(C−1Λ) I1 = Λ

and

pM̃D̃1 = pdiag(Λ−1)G = p.

Again we can formulate a linear program. However, we cannot assume that matrix G
is non-negative. To obtain a linear program in augmented form we introduce variables
G−(i, j) which represent the negative part and G+(i, j) which represent the positive part.
Then we assume G−(i, j),G+(i, j) ≥ 0 and define linear constraints for i = 1, . . . , n

n∑
j=1

(
G+(i, j) −G−(i, j)

)
= λi and

n∑
j=1

p( j)
λ j

(G+( j, i) −G−( j, i)) = p(i)

and the goal function
n∑

i=1

p(i)
λ2

i

n∑
j=1

(G+(i, j) −G−(i, j))
λ j

.

Since this is a linear programming problem, the solution is an extremal point of the
feasible region [2]. The extremal points are those points where for each i exactly one
value G+(i, j) is equal to λi (or G−(i, j) is equal to −λi which does not result in a valid
APH). To maximize the goal function, we have to choose G+(i, i) = λi such that G =
diag(Λ) and µ1,1 equals the value for the hyperexponential distribution.

3 State Space Expansion

For cases where a desired autocorrelation cannot be achieved for a given APH distri-
bution we proposed a method to enlarge the state space by adding additional phases to
increase the flexibility in [1].

Let (p,D0) be the original n-dimensional APH. We define a n+ 1 dimensional APH
(p′,D′0) with

p′(i) =


p(i) if i < n
0 if i = n
p(n) if i = n + 1

and D′0(i, j) =


D0(i, j) if i < n and j < n
a(i)D0(i, n) if i < n and j = n
(1 − a(i))D0(i, n) if i < n and j = n + 1
D0(n, n) if i, j ∈ {n, n + 1} and i = j
0 if i = n and j = n + 1

(4)
for some vector a of length n with elements out of [0, 1]. It is easy to show that the re-
quired relation between the two APHs holds. Although the above transformation works
for all vectors a with elements from [0, 1] we assume in the sequel that a = I1.



Let (D0,D1) be a MAP expanded from (p,D0) with a maximal first joined moments
µ∗1,1. We define a MAP (D′0,D

′
1) with matrix D′0 as in (4) with vector a = I1 and

D′1(i, j) =



D1(i, j) + D1(n, j)
n−1∑
k=1

D1(n,k)
D1(i, n) if i < n and j < n

0 if i < n and j ≥ n
n∑

k=1
D1(n,k)

n−1∑
l=1

D1(n,l)
D1(n, j) if i = n and j < n

0 if i = j = n
0 if i ≤ n and j = n + 1
λn if i = j = n + 1

In the following we will show that (D′0,D
′
1) describes a valid MAP and that µ∗1,1 ≤

µ′1,1, i.e. the transformation results in a representation with a first joint moment which
is not smaller than the first joint moment of the original APH.

Let M′ = (−D′0)−1. We show that p′M′D′1 = p′ such that D′1 is a valid matrix for a
MAP expanded from APH (p′,D′0) and that µ∗1,1 = pM2D1M I1 ≤ µ′1,1 = p′(M′)2D′1M′ I1.
We use the notations m = M I1, m′ = M′ I1 and n = pM2, n′ = p′(M′)2. The following
relations can be shown by simple calculations.

m′(i) =
{

m(i) if i ≤ n
m(n) if i = n + 1 and n′(i) =


n(i) if i < n
n(n) − p(n)

λ2
n

if i = n
p(n)
λ2

n
if i = n + 1

This implies

µ∗1,1 =
n∑

i=1
n(i)

n∑
j=1

D1(i, j)m( j)

=
n−1∑
i=n

n(i)
n−1∑
j=1

D1(i, j)m( j) + n(n)
n∑

j=1
D1(n, j)m( j) +

n−1∑
i=1

n(i)D1(i, n)m(n)

≤
n−1∑
i=n

n(i)
n−1∑
j=1

D1(i, j)m( j) +
(
n(n) − p(n)

λ2
n

) n∑
j=1

n∑
k=1

D1(n,k)

n−1∑
l=1

D1(n,l)
D1(n, j)m( j) + p(n)

λ2
n

+
n−1∑
i=1

n(i)D1(i, n)
n−1∑
j=1

D1(n, j)
n−1∑
k=1

D1(n,k)
m( j)

=
n+1∑
i=1

n′(i)
n+1∑
j=1

D′1(i, j)m′( j) = µ′1,1

The transformation from the second to the third line holds because
∑n−1

j=1 D1(n, j)m( j) =
1 such that

n(n)
n−1∑
j=1

D1(n, j)m( j) = n(n) ≤
(
n(n) −

p(n)
λ2

n

) n−1∑
j=1

n∑
k=1

D1(n, k)

n−1∑
l=1

D1(n, l)
D1(n, j)m( j) +

p(n)
λ2

n



and m( j) ≥ m(n) since λn ≥ λ j for j < n) such that

n−1∑
j=1

D1(n, j)
n−1∑
k=1

D1(n, k)
m( j) ≥ m(n)

n−1∑
j=1

D1(n, j)
n−1∑
k=1

D1(n, k)
= m(n).

To show that p′M′D′1 = p′ let r = pM and r′ = p′M which implies

r′(i) =


r(i) if i < n
r(n) − p(n)

λn
if i = n

p(n)
λn

if i = n + 1

Since p = rD1 and p′ = r′D′1 we have for i < n

p′(i) =
n∑

j=1
r′( j)D′1( j, i)

=
n−1∑
j=1

r( j)

D1(i, j) + D1(n,i)
n−1∑
k=1

D1(n,k)
D1( j, n)

 + (
r(n) − p(n)

λn

) n∑
k=1

D1(n,k)

n−1∑
l=1

D1(n,l)
D1(n, i)

=
n−1∑
j=1

r( j)D1( j, i) + D1(n,i)
n−1∑
l=1

D1(n,l)

(
n−1∑
j=1

r( j)D1( j, n) +
(
r(n) − p(n)

λn

) n∑
k=1

D1(n, k)
)

=
n−1∑
j=1

r( j)D1( j, i) + D1(n,i)
n−1∑
l=1

D1(n,l)
r(n)

n−1∑
k=1

D1(n, k) = p(i).

The transformation form the second last to the last row holds since
∑n

j=1 D1(n, i) = λn

and
∑n−1

j=1 r(i)D1(i, n) = p(n) − r(n)D1(n, n). p′(n) = 0 because column n of D′1 = 0 and
p′(n + 1) = r′(n + 1)D′1(n + 1, n + 1) = p(n).
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