
A HTD Data Structure for the Analysis of

Structured Markov Chains

Peter Buchholz
Informatik IV, TU Dortmund
D-44221 Dortmund, Germany

peter.buchholz@cs.tu-dortmund.de

Tuǧrul Dayar
Department of Computer Engineering, Bilkent University,

TR-06800 Bilkent, Ankara, Turkey
tugrul@cs.bilkent.edu.tr

July 12, 2017

Abstract

This short report describes the basic C data structure to represent
HTD in the Nsolve package. Furthermore it explains by means of a
short example the data structure.

1 Theoretical Basic

The Hierarchical Tucker Decomposition (HTD) [3] became recently popular
for the space efficient analysis of certain classes of partial differential equa-
tions with a multi-dimensional tensor structure. Basic algorithms for the
data structure are available in Matlab [4, 5].

More recently the data structure has also been applied for the numerical
analysis of Markov chains with a hierarchical Kronecker structure [1]. In this
work, the HTD data structure has been integrated in numerical algorithms
from the Nsolve package [2]. Since the algorithm in this package are written
in C, appropriate C data structures have to available for the HTD format.
The data structure is described here and explained by means of a short
example.

In the HTD structure a vector x is represented as

x = (U1 ⊗ · · · ⊗Ud)) (B1,2 ⊗ · · · ⊗Bd−1,d) · · · (B1,...,d/2 ⊗Bd/2+1,...,d)B1,...,d

This representation defines a hierarchical structure as shown in Fig. 1 taken
from [1]. The dimensions of the involved matrices are written near the

1

matrices. Overall the data structure defines a vector of length
∏d

h=1md and
requires only memory in O(dmmaxrmax) where mmax = maxh=1,...,dmh and
rmax = maxt rt where t ranges over all nodes in the tree.

Figure 1: Matrices forming x in HTD format for d = 8.

2 The C Data Structure

For a compact representation it is preferable to use arrays rather than point-
ers. Furthermore, one has to decide whether to use sparse or dense format
for the different matrices. Since our first experience with several examples
was that matrices to represent iteration vectors are not really sparse, we
decided to use dense matrices and to store the matrices in a vector column-
wise which allows us to call relevant LAPACK routines without copying or
transposing matrices.

The basic tree structure, which is valid for all vectors used for a concrete
model, and the structure containing the matrices are kept in two different
data structures. We begin with the tree structure which is stored in the
following data structure.

typedef struct tree structure t

{ int node count ;

short *is leaf ;

int *parent index ;

int *left child index ;

int *right child index ;

int *dim start ;

int *dim end ;

int *dim index mapping ;

} tree structure ;

The first variable node counts describes the number of nodes in the tree
and the dimension of the following arrays, apart from the last one which has

2

a dimension equal to the number of components in the model. Nodes of the
tree are stored in breadth first order. The array is leaf contains Boolean
values, where a 1 indicates a leave node. According to the ordering of
nodes, the leaves of the tree are the final elements in the array. The arrays
ending with index include the indices of the parent and left and right child
of a node. If a node has no parent or child, this is indicated by −1. The
arrays dim start and dim stop show which dimensions are described by the
corresponding node. A leaf node describes exactly one dimension, namely
the component it belongs to. On the other hand, the root node describes
all dimensions. The last array dim index mapping has a dimension equal
to the number of components and contains for each component the index of
the corresponding leaf node.

The second data structure is used to store the matrices in the tree. Thus
the tree structure is required to interpret the data structure.

typedef struct compact vector t

{
int *rank ;

int *ni ;

double **U mat ;

double **B mat ;

} compact vector ;

The arrays in the data structure are all of length node count from the
tree structure. Array rank contains the ranks (i.e. number of columns) of
the different matrices. Array ni includes the dimensions (i.e., number of
rows) of the different nodes. U mat and B mat include the corresponding
matrices, one of both array is zero in each node because a node contains a
matrix B or U but not both. As already explained matrices are stored as
vectors and the vector consists of the columns of the corresponding matrix
put together.

3 A Simple Example

We consider a very simple SPN example to clarify the HTD representation.
The SPN consists of 3 components and is shown in Figure 2. A component
is characterized by the places pi1 and pi2 (i = 1, 2, 3). Place pi1 contains
two tokens such that each component has 3 states. Transitions ti1 have a
rate λi = 2i and transitions ti2 rate µi = i. The components synchronize
via transition t0 with rate ω = 1.

For this simple example all states in the product space are reachable and
the generator matrix can be represented as a sum of Kronecker products
which implies that the hierarchical representation has only one macro state
which contains 27 states.

3

Figure 2: Simple example SPN

4

Using the notation from [1] we have for each transition of the net a single
matrix. However, local transitions (i.e., the transition ti1 and ti2) can be
combined in a single matrix Qi,j where j is the number of the component.
We omit the upper macro state index used in [1] because we have only a
single macro states. For i 6= j Qi,j = I3, the identity matrix of order 3. For
i = j we have

Qi,i =

 0 λi 0
µi 0 λi
0 µi 0

and αi = 1. The synchronized transition is described by matrices

Q4,j =

 0 0 0
1 0 0
0 1 0

with α4 = ω = 1. Then the generator matrix of the Markov chain is given
by

Q =
4∑

k=1

αk

3⊗
h=1

Qk,h −
4∑

k=1

αk

3⊗
h=1

diag
(
Qk,h I1

)
.

Q is a 27×27 matrix represented by the sum of Kronecker products of 3×3
matrices. We examine the Power method, i.e., iterations of the form

x(k+1) = x(k) +
1

β
x(k)Q

where β = maxi |Q(i, i)|/0.999. The iteration starts with x(0) = 1
27 I1T and

5

results in the following vectors after 1 , 10 and 310 iterations.

x(1) =

4.68e− 2
4.09e− 2
3.70e− 2
4.29e− 2
3.70e− 2
3.31e− 2
4.09e− 2
3.51e− 2
2.92e− 2
4.48e− 2
3.90e− 2
3.51e− 2
4.09e− 2
3.70e− 2
3.31e− 2
3.90e− 2
3.51e− 2
2.92e− 2
4.48e− 2
3.90e− 2
3.31e− 2
4.09e− 2
3.70e− 2
3.12e− 2
3.70e− 2
3.31e− 2
2.73e− 2

, x(10) =

9.81e− 2
5.47e− 2
3.37e− 2
6.08e− 2
3.44e− 2
2.10e− 2
4.30e− 2
2.40e− 2
1.36e− 2
7.65e− 2
4.43e− 2
2.75e− 2
5.04e− 2
3.51e− 2
2.23e− 2
3.57e− 2
2.48e− 2
1.51e− 2
6.95e− 2
3.92e− 2
2.22e− 2
4.45e− 2
3.04e− 2
1.83e− 2
2.83e− 2
2.01e− 2
1.26e− 2

, x(310) =

1.09e− 1
5.90e− 2
3.49e− 2
6.28e− 2
3.48e− 2
2.07e− 2
4.09e− 2
2.25e− 2
1.25e− 2
7.97e− 2
4.53e− 2
2.74e− 2
5.02e− 2
3.53e− 2
2.22e− 2
3.34e− 2
2.37e− 2
1.43e− 2
6.78e− 2
3.78e− 2
2.11e− 2
4.21e− 2
2.92e− 2
1.74e− 2
2.54e− 2
1.86e− 2
1.17e− 2

The two norm of the residual after 310 iterations equals 1.65853e−15 which
is in the range of the smallest value that can be reached using double preci-
sion in C.

We now consider the iteration with the HTD. Figure 3 shows the basic
tree structure. We add an upper index to indicate the iteration number as
done for vector x(k). The initial vector is given by

U
(0)
1 = U

(0)
2 = U

(0)
3 =

1√
3

 1
1
1

 ,B
(0)
12 = (1) ,B

(0)
1,2,3 =

(
3
√

3

27

)

which corresponds to the flat initial vector. For the solver using the HTD
data structure for the solution vector, the truncation is done by setting a
truncation bound [1] or by defining a maximal rank [4]. We consider first the
truncation due to a truncation bound which determines the singular values

6

Figure 3: Matrices forming x in HTD format for d = 3.

that are neglected during the addition of vectors in HTD format. Usually,
the truncation bound is selected according to the required stopping tolerance
and may be changed adaptively during the iteration. For comparison we
consider here a fixed truncation bound of 1.0e − 2 which is a fairly large
bound. In this case, the vector after one iteration is represented by

U
(1)
1 =

 6.50e− 1
5.71e− 1
5.02e− 1

 , U
(1)
2 =

 5.78e− 1
5.77e− 1
5.77e− 1

 , U
(1)
3 =

 6.16e− 1
5.77e− 1
5.36e− 1

 ,

B
(1)
12 =

(
1
)
, B

(1)
12 =

(
1.94e− 1

)
Observe that for the iteration only the matricx products QT

ijU
(0)
j have to be

computed and the vectors resulting from each Kronecker product are then
added and truncated. After 10 iterations we obtain

U
(10)
1 =

 7.88e− 1
5.19e− 1
3.33e− 1

 , U
(10)
2 =

 5.82e− 1
5.54e− 1
5.96e− 1

 , U
(10)
3 =

 7.08e− 1
5.49e− 1
4.44e− 1

 ,

B
(10)
12 =

(
1
)
, B

(10)
123 =

(
2.07e− 1

)
.

After 310 we have

U
(310)
1 =

 8.18e− 1
4.92e− 1
3.00e− 1

 , U
(310)
2 =

 6.44e− 1
5.48e− 1
5.33e− 1

 , U
(310)
3 =

 7.72e− 1
5.19e− 1
3.66e− 1

 ,

B
(310)
12 =

(
1
)
, B

(310)
123 =

(
2.17e− 2

)
.

This vector has a residual norm of 1.541233e − 1. Thus, it is only a rough
approximation which is very compact because it can be described by a Kro-
necker product of 3 vectors of dimension 3 each. The complete vector is

7

denoted as y
(310)
1e−2 and is shown below. If we restrict the rank at each level

to 2, we obtain the following representation of the iteration vector after 310
iterations.

U
(310)
1 =

 8.26e− 1 −5.58e− 1
4.79e− 1 7.68e− 1
2.96e− 1 3.14e− 1

 , U
(310)
2 =

 7.09e− 1 −6.66e− 1
5.31e− 1 7.21e− 1
4.64e− 1 1.92e− 1

 ,

U
(310)
3 =

 8.03e− 1 −4.79e− 1
4.93e− 1 8.68e− 1
3.34e− 1 −1.29e− 1

 ,

B
(310)
12 =

9.99e− 1 6.05e− 3
−2.93e− 4 7.06e− 1
4.44e− 4 4.76e− 1
1.23e− 2 5.25e− 1

 , B
(310)
123 =

2.24e− 1
−1.12e− 6
3.90e− 8
7.82e− 3

 .

The residual norm of the last vector is 1.059233e − 01. The resulting flat

vector is show below as y
(310)
r2 . The vector is a better approximation of the

exact vector but it is for this small example not space efficient However, if
we increase the number of components and the size of components, the rep-
resentation remains space efficient even for larger ranks of the submatrices.
Consequently, the HTD is recommended only for very large models where

8

the detailed solution vectors reaches the limit of main memory.

y
(310)
1e−2 =

8.84e− 2
5.32e− 2
3.24e− 2
5.94e− 2
3.57e− 2
2.18e− 2
4.20e− 2
2.52e− 2
1.54e− 2
7.52e− 2
4.52e− 2
2.75e− 2
5.06e− 2
3.04e− 2
1.85e− 2
3.57e− 2
2.15e− 2
1.31e− 2
7.31e− 2
4.40e− 2
2.68e− 2
4.92e− 2
2.96e− 2
1.80e− 2
3.47e− 2
2.09e− 2
1.27e− 2

, y
(310)
r2 =

1.08e− 1
5.97e− 2
3.72e− 2
6.35e− 2
3.66e− 2
2.26e− 2
4.46e− 2
2.48e− 2
1.54e− 2
7.87e− 2
4.49e− 2
2.78e− 2
4.63e− 2
3.39e− 2
1.99e− 2
3.26e− 2
1.90e− 2
1.17e− 2
6.95e− 2
3.92e− 2
2.43e− 2
4.09e− 2
2.73e− 2
1.63e− 2
2.88e− 2
1.65e− 2
1.02e− 2

If the representation has more than one macro state, a separate HTD is used
for every macro state.

References

[1] P. Buchholz, T. Dayar, J. Kriege, and M. C. Orhan. Compact repre-
sentation of solution vectors in Kronecker-based Markovian analysis. In
G. Agha and B. V. Houdt, editors, Proceedings of the 13th International
Conference on Quantitative Evaluation of Systems, volume 9826 of Lec-
ture Notes in Computer Science, pages 260–276. Springer, Heidelberg,
2016.

[2] Peter Buchholz. The nsolve program. Internal report, TU Dort-
mund, 2010. available under http://ls4-www.cs.tu-dortmund.de/

download/buchholz/nsolve_doc.pdf.

9

http://ls4-www.cs.tu-dortmund.de/download/buchholz/nsolve_doc.pdf
http://ls4-www.cs.tu-dortmund.de/download/buchholz/nsolve_doc.pdf

[3] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer,
Heidelberg, 2012.

[4] D. Kressner and C. Tobler. htucker — A Matlab toolbox for tensors
in hierarchical Tucker format. Technical Report 2012-02, Mathematics
Institute of Computational Science and Engineering, Lausanne, August
2012.

[5] D. Kressner and C. Tobler. Algorithm 941: htucker—A Matlab toolbox
for tensors in hierarchical Tucker format. ACM Trans. Math. Softw.,
40(3):Article 22, 2014.

10

	Theoretical Basic
	The C Data Structure
	A Simple Example

