
HIT-OMAHIT-OMA

User'sUser's GuideGuide
Document Version 3.4.00

Standard Object MAnagerStandard Object MAnager
of theof the

Hierarchical Evaluation ToolHierarchical Evaluation Tool

HITHIT
Version 3.4.000

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

HIT-OMA USER'S GUIDE

Norbert Weißenberg (Editor)
Achim Wilde (Editor)

Written and typed by the editor, based upon the German predecessor, the "HIT-OMA
Benutzerhandbuch".

Copyright © 1990-99.: Universität Dortmund, Informatik IV.
ALL RIGHTS RESERVED.

Abstract:

OMA is the standard object manager of the hierachical evaluation tool, HIT, when the
graphical HIT user interface HITGRAPHIC and its related data base are not used. This
guide describes how to use OMA.

This document is released for internal and external use. Corrections, comments, criticism
and suggestions for improvement of this document are welcome.

Address:

Universität Dortmund
Informatik IV
Prof. Dr.-Ing. H. Beilner

D-44221 Dortmund

Telefon: (Germany)-(231) 755-2570
Telefax: (Germany)-(231) 755-2386
E-Mail: hit@jojo.informatik.uni-dortmund.de

The HIT - OMA User's Guide - 1 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Contents:

0. Introduction 2

1. Arguments of OMA Commands 3

2. OMA Commands 5
2.0. General Remarks...5
2.1 Object Sets..7

2.1.1. Command +. Object Set Union...7
2.1.2. Command -. Object Set Difference.....................................7
2.1.3. Command *. Object Set Intersection...................................8

2.2. Display Commands..9
2.2.1. DIR. Display Mobase Contents..............................9
2.2.2. SHOW. Display Object Contents..............................10
2.2.3. HELP. Display Help Text..11

2.3. Object Management..12
2.3.1. ADD. Add File as Object.......................................12
2.3.2. SELECT. Select Object on File....................................12
2.3.3. COPY. Copy Objects...13
2.3.4. ERASE. Erase Objects...13
2.3.5. CHANGE. Change Object Attribute Values...................14
2.3.6. NEWOBJECT. Type a New Object......................................14

2.4. Mobase Management..15
2.4.1. COMPRESS. Move Gaps to the End.................................15
2.4.2. COPYMOBASE. Copy a Mobase..15
2.4.3. NEWMOBASE. Create an Empty Mobase.............................15
2.4.4. CONVERTMF. Convert Mobase to File................................16
2.4.5. CONVERTFM. Convert File to Mobase................................16
2.4.6. CONVERTMM. Copy Mobase to Mobase.............................16

2.5. OMA as HIT User Interface..17
2.5.1. CMD and /. Operating System Access............................17
2.5.2. EDxx. Edit Objects...17
2.5.3. HIT. Compile and Analyze Objects......................18
2.5.4. PRINT. Print Objects..18

2.6. Other Commands..19
2.6.1. BIND. Define Session Alias for Objects.................19
2.6.2. CONTROL. Interpret a Control File.................................19
2.6.3. CP. Common Copy..20
2.6.4. END. Quit OMA...20
2.6.5. MOBASE. Define a Default Mobase.............................21
2.6.6. READ. OMA Commands from File.........................21
2.6.7. SET. The OMA State..22

3. Literature 23

Appendix A. A Sample Session...24
Appendix B. Experiences Made With OMA..30
Appendix C. The HIT Standard Mobase..31
Appendix D. Special Hints..32
Appendix E. The OMA Help Text...34

The HIT - OMA User's Guide - 2 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

0. Introduction

The program OMA is the standard object manager of the hierachical evaluation tool, HIT,
when the graphical HIT user interface HITGRAPHIC and its related data base are not
used. This guide describes how to use OMA.

All objects used or produced in the modelling and performance evaluation process except
object modules can be stored in a modelling base (shortly called mobase), which is
administered by OMA. Even more than one mobases can simultaneously be accessed.

Currently a mobase is implemented as a SIMULA directfile (a file type with random
access) having a special format. This format is an extension of that used by the modelling
base HITFMS of the HIT predecessor COPE.

The HIT system (i.e. the HI-SLANG compiler and all analyzers generated) can directly
access and store objects within mobases. This is automatically done if the HIT control or
source file is itself stored in a mobase, otherwise the mobase usage can be specified in the
control file as described in the HI-SLANG Reference Manual.

For all kinds of object manipulation, which cannot be performed by the HIT system (and
for those which can) the interactive OMA program can be used. Moreover OMA is a
simple HIT user interface, since editors, the HIT system and a printer can normally be
activated via OMA commands.

This guide first presents the unique format of OMA command arguments, followed by
explaining all OMA commands. The commands are grouped logically and for every
command some examples are presented. The first appendix even contains a total sample
session. The next appendix presents a standard control (configuration) file format,
stemming from experiences made with OMA. A listing of the contents of the HIT
standard mobase and some special hints follow. Instead of an index the OMA help text
concludes this guide.

Note that OMA is the German word for grandma. The current version of OMA is titled
OMA-SAFE (OMA - Stabilized And Further Extended). This title is a little bit mis-
leading, since the efforts for implementing and testing OMA were small compared with
that of HIT. So the Universität Dortmund shall not be liable for errors contained in OMA
or for incidental consequential damages of mobases.

The HIT - OMA User's Guide - 3 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

1. Arguments of OMA Commands

All work with OMA is done interactively by entering OMA commands. All OMA
commands may be abbreviated and have two, one or no arguments. The use of upper-case
or lower-case letters in OMA commands and arguments is the same. The commands are
explained in the next chapter. As a preparation this chapter introduces the format of
command arguments. Arguments denote objects or object set, files or mobases or
command modifiers.

An object is denoted by at least specifying some of its attribute values, given in
parentheses (see below) and possibly prefixed by a mobase name. If there are more that
one objects having the given attribute value combination, then this combination defines an
object set. If on the other hand only a single identifier is given, this identifier is interpreted
as object name, and thus it means all objects having this name. Moreover objects can be
denoted by their link name, if the latter has been defined in a control file (see commands
CONTROL, BIND). Finally an object set can be referred by '+', denoting the current
constructed object set (see 2.1 below). Thus the syntax for arguments denoting objects is
similar to that used in HIT control files:

obj := [object]
 | [mobase] attributes
 | "link"
 | +
 |

The attributes are defined below. Some commands accept arguments which are either
objects or files (referred as file_obj). Here the same syntax applies, but a single identifier
is interpreted as a file name (which may be SYSIN or SYSOUT), not as a object name.
Object names can always be denoted by typing (,,object):

file_obj ::= obj | SYSIN | SYSOUT

Other commands accept file names or names of mobases as arguments. The syntax of
these names is identical to that of the operating system used, but there must not be a '('-
symbol contained, to be able to distinguish file names from mobase names:

file ::= <name of a (sequential) file outside OMA>
mobase ::= <name of an index sequential file containing objects>,

For mobases a default actual mobase can be set with command MOBASE, and thus the
mobase name can be omitted. The initial default is the HIT standard mobase which is write
protected. A mobase is an index-sequential file in a special format. Do not specify normal
files as mobases to avoid OMA crashes.

Command modifiers are of type text:

text ::= <an arbitrary quoted text, e.g. "OMA">

Now we treat the object attributes in detail: There are four attribute values to exactly
specify objects. The syntax is that of positional parameters, since the position within the
brackets denotes the semantics of the attribute. Each may be missing, but leading commas
must appear to denote the position. For the meaning of missing attribute values see the
next chapter:

The HIT - OMA User's Guide - 4 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

attributes::= ([module], [type], [object], [protection])

The first attribute module denotes the kind of representation. There are six alternatives:
CONTROL files, HI-SLANG sources, PRECOMpiled elements, PREANAlyzed compo-
nents (aggregates), SIMULA-written component control procedures (for historical
reasons) and any kind of input or output DATA. Each representation name may be
abbreviated:

module ::= CONTROL | HISLANG | PRECOM | PREANA | SIMULA | DATA

The second attribute denotes the type or kind of the object. There are 20 self-explaining
possibilities, which may be abbreviated:

type ::= MODEL | COMPONENT| SERVICE | PROCEDURE
 | CONTROL | EXPERIMENT
 | ACCEPT | SCHEDULE | OFFER | DISPATCH
 | FILE | DUMPFILE | TABLE | GRAPH| HISTOGRAM
 | TRACE | LISTING | MATRIX | STATES| OTHERS

Module and type have to be consistent according to the following table:

module allowed types
CONTROL CONTROL, OTHERS
HISLANG MODEL, COMPONENT, SERVICE, PROCEDURE,

EXPERIMENT, OTHERS
PRECOM MODEL, COMPONENT, SERVICE, PROCEDURE,

EXPERIMENT, OTHERS
PREANA COMPONENT, OTHERS
SIMULA ACCEPT, SCHEDULE, DISPATCH, OFFER, OTHERS
DATA FILE, DUMPFILE, TABLE, GRAPH, HISTOGRAM, TRACE,

LISTING, MATRIX, STATES, OTHERS

Each object has an individual name object consisting of letters, digits and the characters '.'
and '_'. It has to start with a letter or a '#'-character, and 12 characters are significant for
OMA. Object names cannot simply be abbreviated, but asterisks can be used within as
wild cards. Object names are always stored using upper-case letters.

object ::= <name of an object within a mobase>

There are two protection modes for objects:

protection::= P | U

The default is U. Protected objects can only be manipulated (overwritten, changed, erased)
after a special confirmation. The same holds for objects added by another owner (see
DIR). Generally you have to confirm manipulations on existing objects or files.

The HIT - OMA User's Guide - 5 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2. OMA Commands

2.0. General Remarks

Most OMA commands have a unique structure: They have none or one argument
following the command name, or two arguments separated by TO:

command_name [argument1 [TO argument2]]

If the second arguments only denotes a command modifier it is separated by WITH
instead of TO. All commands may be abbreviated if the abbreviation is unique, i.e. no
other OMA command starts with that abbreviation.

In the case that the first argument argument1 is an incompletely specified attribute
(attribute value combination) the operation command_name will be executed sequentially
for any object matching that attribute values. Note: If no attribute values are given (i.e. no
argument is specified), all objects are denoted.

The number of matches will be given after finishing all such operations, e.g.

> DIR : 25 Objects.

In general such informations start with a '>'-character. If severe errors occur during
execution or if a command sequence is stopped by the user by answering a standard query
(see below) with "EXIT", the command name in the above output is surrounded by
"Aborted ... after".

In the case that the second argument argument2 is an incompletely specified attribute the
missing attribute values are taken from the first argument before every single operation.

Example:

CHANGE (HISLANG) TO (,,,P)

This command protects all HI-SLANG objects within the actual mobase. If e.g. there are
only the three objects

(HISLANG, COMPONENT, cpu, U),
(HISLANG, MODEL, pc386, P),
(PREANA, COMPONENT, cpu, U),

in the actual mobase, then the following two operations will subsequently be executed:

CHANGE (HISLANG, COMPONENT, cpu, U)
 TO (HISLANG, COMPONENT, cpu, P)

CHANGE (HISLANG, MODEL, pc386, P)
 TO (HISLANG, MODEL, pc386, P)

The missing attribute values of the specification (HISLANG) are filled from the actual
matching object and the same is true for (,,,P).

The HIT - OMA User's Guide - 6 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

If the command SET VERBOSE is given, which is the default, any single operation is
protocolled un-abbreviated and with the actual parameters used before execution. If SET
CONFIRM is given (not by default) every single operation has to be confirmed. For this
purpose queries are generated having the following standard format:

? question [obj] ? (YES, NO, EXIT)

e.g. ? More ? (YES, NO, EXIT)
or ? Erase mob(DATA, TABLE, pc368, U) ? (YES, NO, EXIT)

There are always three possibilities for the answer, which can be abbreviated (y,n,e):

YES : The command is performed.
NO : This command is not performed, but the same operation will be applied to

the next object , if the first argument of the command denotes a set of
objects, and thus the command implied a command sequence.

EXIT : The total command sequence is terminated

All commands of a session are listed on a protocol file (see appendix D.). Moreover for
most installations the terminal output will be protocolled, too.

We now present all OMA commands in a logical ordering. For every command first the
syntax is given in bold style, followed by an informal explanation of the semantics and
some examples. For more examples see appendix A.

The HIT - OMA User's Guide - 7 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.1 Object Sets

Object sets allow to perform an operation (OMA command) with a group of object
sequentially by entering only one command, with the object set occuring as a first
parameter. There are two possibilities for specifying object sets:

- Implicite object sets are defined by using incompletely specified object attribute
values as defined above. Every missing attribute value means the set of objects
having any value for this attribute. With this mechanism only special kinds of object
sets can be built.

- Explicite object sets allow assembling an arbitrary set of objects.

There are three commands for the manipulation of explicite object sets, which are denoted
by the operator symbols '+' (union), '-' (difference) and '*' (intersection). The current
object set itself is also denoted by '+'. Thus '+' can be the first argument of most OMA
commands.

Note that implicite object sets are often used to build the explicite set (the current object
set), but the latter can only be used implicitely for that purpose.

All of the following three commands have an optional text parameter. If it is provided, the
corresponding set operation is only performed for those objects which contain the given
text, either in original writing or upper-case. The first occurance found is displayed on the
terminal. The text argument allows for simple data base queries. For examples see
command '*'.

2.1.1.Command +. Object Set Union

+ obj [WITH text]

Add all objects denoted by obj and containing text (lowcase or upcase) to the current
object set, not to the mobase. This set can be used within every command having a first
obj-argument by writing '+' for that argument, e.g. 'DIR +'. For examples see command
'*'.

2.1.2.Command -. Object Set Difference

- obj [WITH text]

Substract all objects denoted by obj and containing text (lowcase or upcase) from the
current object set. This set can be used within every command having a first obj-argument
by writing '+' for that argument, e.g. 'DIR +'. Note: '-' alone makes the current object set
empty. For examples see command '*'.

The HIT - OMA User's Guide - 8 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.1.3.Command *. Object Set Intersection

* obj [WITH text]

Leaves all objects denoted by obj and containing text (lowcase or upcase) within the
current object set. This set can be used within every command having a first obj-argument
by writing '+' for that argument, e.g. 'DIR +'.

Examples:

- The actual object set becomes empty (no argument given, i.e.
all objects are denoted).

+ (HI) Add all HI-SLANG objects to it.
- (,MODEL) Eliminate models from the actual set.
- (,,,P) Eliminate protected objects.
* () WITH request Which of these objects use a service named request?
* S* Intersection with objects, which name start with 'S'.
DIR + Display the actual object set after all these modifications.
SH + Show the contents of these objects.
- Delete the actual object set again.
+ mob () WITH get In which objects of mobase mob does the identifier get

occur?

The HIT - OMA User's Guide - 9 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.2. Display Commands

The display commands inform about the state of a mobase respectively the commands
possible.

2.2.1.DIR. Display Mobase Contents

DIR obj

Displays the directory contents (module, type, object, protection, size, version, last update,
owner) for those objects denoted by obj. The directory output is sorted alfabetically and
affected by SET LINES/LENGTH. It has the following format:

No Module Type Object P Size Ver Last Update Owner
n (module, type, object ,P) 256 1 19 APR 1989 15:59 HIT

The n is a running number for the set of objects denoted by obj. All attribute values of the
object follow within the brackets. Next the size of the object is given in Lines of Code, and
the version number is increased whenever an object is modified. Moreover the date, time
and the performer/new owner of the last update is given.

If more than LINES objects are to be displayed a query in a standard format is submitted
whether and when to continue the output.

Examples:
Display ...

DIR mob (HISLANG) all HISLANG objects within mob
D (,COMPO) all available component types within actual mobase
D (,,,P) all protected objects
DIR (,SCHED,,P) all protected schedule procedures
DIR (,,S*) all objects with names starting with S
DIR S* short form of DIR (,,S*)
DIR mob () all objects in mobase mob
D short form for DIR ()

Hint:

Some terminals allow to use the DIR output to enter a new command, e.g. by
substituting the number by a new command or by a cut and paste technique.

The HIT - OMA User's Guide - 10 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.2.2.SHOW. Display Object Contents

SHOW obj [WITH text]

Displays the contents of all objects denoted by obj. The first line on screen is the actual
line (AL). If text is given the AL is set to the first line containing that text. Within SHOW
the following sub-commands can be given (the last line displayed summarizes this
command list):

END : Quit SHOW, the next object specified by obj is shown.
EXIT : Quit SHOW totally.
+ [n] : Set AL forward n lines or one screen, if n is omitted.
- [n] : Same backwards
++ : Set AL to one screen before end of object
-- : Set AL to 1.
SET n : Set AL to n..
FIND t : Set AL to next line containing text t
LINES n : Number of displayed line becomes n.
LENGTH n : Number of displayed columnes becomes n.
NUMBERS : Switching on/off line numbering.
EDIT : AL and following lines (until only '.' entered) may be overwritten
CHANGE t TO u : Change all occurences of t to u, each change has to be

confirmed.

All sub-command names may be abbreviated. Here n is a natural number and t is a string,
which must be quoted if it contains blanks. SHOW output is affected by SET
LINES/LENGTH/NUMBERS, defining the defaults for the corresponding local
commands.

After every correct command the screen is refreshed, and up to LINES lines of the object
are displayed, beginning with the new AL. Then the command summary is given again,
indicating a wait for input.

SHOW can be terminated by END or EXIT. Navigation is supported by means of the +n
and -n commands, stepping n lines forward or backwards.The commands ++ and -- can
be used to reach a border of the object, and SET n absolutely addresses line n of the
object. With LINES and LENGTH the number of lines and columns to be displayed can
be set, i.e. the terminal or window size. With NUMBERS the line numbering of the output
can be toggled.

SHOW can also be used for simple object editing in the case that the line structure of the
object is not concerned: by EDIT the next keybord input lines overwrite the object's lines
starting with the actual line until a single dot is entered, and CHANGE serves to replace
some next occurances of the firrst text argument by the second, if no line gets too long.

Examples:

SHOW (DATA, TABLE) Display result tables.
FIND evaobj Search for the results concerning evaobj.
F Search for next occurance of evaobj.
+ See the next page.
NUM Set line numbering.
END Display the next table object, if there are more.

The HIT - OMA User's Guide - 11 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.2.3.HELP. Display Help Text

HELP [text]

Appendix D. is contained in the HIT standard mobase. This text is displayed by the
command 'SHOW <standard mobase> (,,help) [WITH text]', i.e. the first line shown is the
first line containing text. If text is not given the help text is displayed from the beginning.

HELP must be terminated with END, and all SHOW sub-commands are available to
navigate in the OMA help text.

Examples:

HELP file_obj What is a file_obj?
+10 Read the next 10 lines.
F copy How to copy objects?
END Quit HELP.

The HIT - OMA User's Guide - 12 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.3. Object Management

The main task of OMA is to manage objects, i.e. to add, select, copy, modify and delete
objects. The following commands serve for this purpose.

2.3.1.ADD. Add File as Object

ADD file [TO obj]

Insert a copy of the given file into the mobase and with the attribute values given by obj.
Some attribute values may be left out. OMA can determine them: object is set to file, and
the modules PREANA, PRECOM, CONTROL and HISLANG as well as the types
MODEL, COMPONENT, SERVICE and EXPERIMENT may be set from the first line
of the file contents. If the filename contains wild card symbols ('*'), all files corresponding
to the pattern are added, but this facility is installation dependent. Moreover the attribute
defaults described in the HI-SLANG Reference Manual, chapter 8.2.3., apply.

If an object with the same attribute values is already contained in the mobase (an older
version), a standard query is submitted whether to overwrite it (note that there is currently
no version management). Other queries appear for protected objects and for objects
created by someone else but the current user.

Examples:

ADD pc386 TO mob (HI,MOD) Add file pc386 as HI-SLANG model
with the same name.

ADD pc386 Add it to the actual mobase, attribute
values determined automatically.

ADD sysin TO (CON, , exp1) Create a new object via keyboard.

2.3.2.SELECT. Select Object on File

SELECT obj [TO [EXTEND] file]

Select the object denoted by obj to the given file. If obj specifies more than one mobase
object, all those objects are selected. If file is omitted it is set to the object name. If file is '#'
the filenames are generated due to a fixed pattern (see appendix D.).The argument file can
be prefixed by EXTEND to extend an existing file by the object's contents.

Examples:

SEL S* Select all objects starting with letter 'S' to files with the
same name. If there are more than one with the same
name the last one overwrites the previous after a
query.

SEL * TO # Select all objects to unique file names being
generated.

SEL * TO EXTEND all Concatenate all objects on file all.
SEL cpu TO nws.cpu The cpu is written to the named file.
SEL cpu TO sysout The cpu is displayed on terminal, but better use

SHOW.

The HIT - OMA User's Guide - 13 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.3.3.COPY. Copy Objects

COPY obj1 TO obj2

Copy all objects denoted by obj1 to destinations denoted by obj2. Free positions in obj2
are filled from obj1, while free positions in obj1 mean FOR ALL those objects, as
explained in chapter 2.0.

Examples:

COPY mob1 (,,,P) TO mob2 () Copy all protected object to another mobase, all
objects get the former attributes.

COPY * TO mob2 (DATA,OTH) Copy all objects of the actual mobase to mob2,
but as data objects.

COPY cpu TO (,COMPO) A model cpu is copied to transform it to a
component.

2.3.4.ERASE. Erase Objects

ERASE obj [!]

Erase all objects denoted by obj. If '!' is not given, every single object deletion has to be
confirmed after a standard query. Protected objects can only be erased after another
confirmation. The same holds for objects created by another user.

Examples:

ER Delete all objects within the actual mobase after
separate confirmations.

ER (DATA) ! Delete all data objects without confirmation.
ER + Erase the objects assembled as object set '+'.
ER cpu Erase object cpu.

The HIT - OMA User's Guide - 14 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.3.5.CHANGE.Change Object Attribute Values

CHANGE obj1 TO obj2

The attribute values of object obj1 are changed to those specified by obj2. Free positions
in obj2 are filled from obj1, while free positions in obj1 mean FOR ALL those objects.
Both arguments have to refer to the same mobase, and the consistency of the new attribute
value combination is tested.

The main application is to change either the object name or the protection mode. A
modification of module and type of an object is seldomly useful.

Note that the user is responsible that the attribute values of the object fit to the contents of
the object. Only the command ADD can determine attribute values from the contents of
the object to initially set the attribute values.

Examples:

CHANGE + TO (,,,P) Protect all objects of the object set '+'.
CH random TO rand Change name of object(s) random.
CH (,MODEL, cpu) TO (,COMPO) Change type of cpu.

2.3.6.NEWOBJECT. Type a New Object.

NEWOBJECT obj

The next lines read from terminal (until a line only containing a single '.' is entered) are
added as a new object with attribute values denoted by obj. So an editor call is not
necessary. If obj already exists it will be overwritten after a standard query. Similar to
ADD this command can obtain type and module of the new object in most cases,
otherwise an error message is generated.

Examples:

NEWO cpu Enter a new object called cpu
TYPE cpu COMPONENT; ... line by line (the first line contains the
... words TYPE and COMPONENT, so the
END TYPE; missing attribute values can be set),
. until a single dot is entered.

The HIT - OMA User's Guide - 15 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.4. Mobase Management

This group of commands does not concern single objects, but a mobase in total. It is
advisable to compress a mobase after having performed some write or delete operations to
minimize the gaps in the mobase. To copy a mobase completely COPYMOBASE can be
used. The copy is implicitely compressed, since unused blocks are not copied. By NEW-
MOBASE a new empty mobase can be created. Moreover there exist some CONVERT
commands to convert a mobase into a sequential file and vice versa.

2.4.1.COMPRESS. Move Gaps to the End

COMPRESS [mobase]

Moves gaps within the index sequential file mobase to the end and reserves new space for
at least 50 entries in the directory. Thus if the directory is full COMPRESS has to be
called before a new object can be added. If mobase is omitted, the actual mobase is
compressed. The mobase must exist and be in HIT mobase format.

Examples:

COMPRESS Compress the actual mobase.
COM my.mobase Compress a named mobase.

2.4.2.COPYMOBASE. Copy a Mobase

COPYMOBASE [mobase1 TO] mobase2

The mobase1 (or the actual mobase) is copied to a file named mobase2. Unused blocks
are not copied, so mobase2 becomes smaller in most cases. This command is identical to
CONVERTMM (convert mobase to mobase) below. If mobase1 is omitted the actual
mobase is copied to mobase2. A file named mobase2 must not exist before, while
mobase1 must exist, otherwise error messages are generated.

Examples:

COPYM my.mob TO his.mob Make a compressed copy.
MOBASE my.mob These two commands ...
COPYM his.mob ... have the same effect.

2.4.3.NEWMOBASE.Create an Empty Mobase

NEWMOBASE mobase

A new empty mobase with name mobase is generated. The file mobase must not exist
before. Note: mobase does not become the actual mobase automatically.

Examples:

NEWM empty.mob Create a new named mobase.

The HIT - OMA User's Guide - 16 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.4.4.CONVERTMF. Convert Mobase to File

CONVERTMF [mobase TO] file

The suffix MF means Mobase to File. The index sequential file mobase is converted to a
sequential and therefore portable and smaller file named file. Only in this format a mobase
can be transferred to a computer of another type. If omitted, mobase is the actual mobase.
The file must not exist before.

Examples:

CONVERTMF mob TO mob.init The mobase mob is copied in sequential
format to file mob.init.

MOBASE mob These two commands ...
CONVERTMF mob.init ... have the same effect.

2.4.5.CONVERTFM. Convert File to Mobase

CONVERTFM file TO mobase

The suffix FM means File to Mobase. The sequential file file is assumed to be in a format
to convert it to a mobase named mobase, i.e file has been generated by CONVERTMF
before. Otherwise OMA may fail.

Examples:

CONVERTFM mob.init TO mob Make mob.init a mobase named mob
again.

2.4.6.CONVERTMM. Copy Mobase to Mobase

CONVERTMM [mobase1 TO] mobase2

The suffix MM means Mobase to Mobase. The modelling base mobase1 (or the actual
mobase) is copied to a mobase file named mobase2. Unused blocks are not copied, so
mobase2 becomes smaller in most cases. This command is identical to COPYMOBASE
above. If mobase1 is omitted the actual mobase is copied to mobase2. A file named
mobase2 must not exist before.

Examples:

CONVERTMM my.mob TO his.mob Mobase my.mob is totally (but without
gaps) copied to his.mob.

MOBASE my.mob These two commands ...
CONVERTMM his.mob ... have the same effect.

The HIT - OMA User's Guide - 17 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.5. OMA as HIT User Interface

The program OMA is not only an object management system, but a simple HIT user
interface as well. Via OMA you can call some editors of the underlying operating system
to create or modify HI-SLANG sources and other texts comfortably, and you can activate
the HIT system to compile and analyze such models. Moreover the results and sources
can be printed, and most other existing operating system commands can be executed via
OMA. Note however that the extend to which all this is possible is installation defined,
with BS2000 and UNIX installations supporting all facilities.

2.5.1.CMD and /. Operating System Access

CMD text and / rest_of_line

For activating an arbitrary operating system command there are two formats due to
historical reasons: The CMD command takes a text argument, while the / command
submits the rest of the line to the operating system. The last format is preferable.

Examples:

CMD "fstat dat.*" For UNIX write ls instead of fstat.
/fstat dat.* This is the same.

2.5.2.EDxx. Edit Objects

EDxx obj

All objects denoted by obj can sequentially be edited by the editor denoted by xx. The
command ED always invokes the standard editor. The list of available editors is given by
the command SET without parameters. For BS2000 and UNIX the following EDxx
commands are available:

UNIX: BS2000:
EDT: textedit EDOR, ED: EDOR
EDV, ED: vi EDT: EDT (supported by an erroneous
EDJ: jove assembly procedure)

Before rewriting a changed object to the mobase (denoted by obj) OMA submits a
standard query and asks for a confirmation.

Examples:

EDOR S* Edit all objects with names starting by 'S' sequentially
... enter arbitrary EDOR commands.
HR!H Leave EDOR for this object.
... Possibly a next object is loaded.
HR!H Leave EDOR again.

The HIT - OMA User's Guide - 18 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.5.3.HIT. Compile and Analyze Objects

HIT obj [WITH text]

Call HIT for (the first) object denoted by obj and with additional arguments text. The
object must have module CONTROL or HISLANG. It is not selected, but the HIT-system
reads it directly from the mobase. All standard link names of the HIT system have a
default binding to the mobase denoted by obj, i.e. listing and results are automatically
written to this mobase if they are not explicitely bound. The call given is displayed by
entering command SET. After the call OMA is activated again.

Examples:

HIT mymodel WITH "SYMBDUMP=4" Transmit a BS2000 HIT parameter.
HIT office.lib (CON,CON, experiment1) HIT call for another mobase.

After the second command e.g. the listing is contained in the office.lib as (DATA,
LISTING, experiment1, U) and the table output is (DATA, TABLE, experiment1, U).

2.5.4.PRINT. Print Objects

PRINT obj [WITH text]

All objects denoted by obj are printed with arguments given by text. The print command
can be displayed by command SET. If text is not given the arguments are "optimally"
selected (concerning paper size and print control characters) dependent on module and
type of every objects. This can be affected by SET P3/P4/PP.

Examples:

PR *2 Print all object with ending '2' (version number).
PR (,LI) Print all listings.

The HIT - OMA User's Guide - 19 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.6. Other Commands

The rest of commands provided by OMA cannot be grouped again. They in general ease
OMA handling. By entering the command END the program OMA is terminated.

2.6.1.BIND. Define Session Alias for Objects

BIND [link TO file_obj]

With no arguments all active bindings are displayed. Otherwise link is bound to the given
file or object and can be used for that in commands with obj-arguments. For the normal
user this command is of no interest.

Examples:

BIND Displays the bindings of all standard link
names and user link names.

BIND "EDIT" TO #edit Defines a new OMA help file, which has
link name "EDIT".

BIND "X" TO mob2(HI,MO,cpu) Define an alias for that object.
SHOW "X" Use the alias in OMA commands.

2.6.2.CONTROL. Interpret a Control File

CONTROL file_obj

The denoted files or objects (having module CONTROL) are interpreted as HIT control
files, and all segments of that control file are interpreted (%COMMON, %COMPILER
and %ANALYZER). All mentioned bindings can then be used, e.g. SHOW "TABLE".
You must not remind the object names in this case. All actual bindings can be displayed
by command BIND. Moreover the %MOBASE commands in the control file define the
actual mobase.

Examples:

CONT control_file Interprete the named HIT control file.

The HIT - OMA User's Guide - 20 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.6.3.CP. Common Copy

CP file_obj1 TO file_obj2

Copy all files (or SYSIN/SYSOUT) or objects denoted by file_obj1 to destinations
denoted by file_obj2. The commands ADD, SELECT and COPY are special cases and use
this command internally, since CP equals

SELECT, if only file_obj2 is a file
ADD,if only file_obj1 is a file
COPY, if no argument denotes a file and a
file copy, if both arguments denote files.

Examples:

CP myfile TO yourfile File -> File
CP myfile TO (HI, SERVICE, ST) File -> Object
CP (,,cpu) TO #cpu Object -> File
CP + TO second.mobase () Object set -> Object set

Note that the brackets must be given in the last example, otherwise you copy the object set
to a normal file named second.mobase. However, OMA will ask you if you want to
overwrite that file. If you forget the brackets you can simply answer NO and nothing will
happen.

2.6.4.END. Quit OMA

END

Quits the OMA program. As usual for the HIT system the number of all errors and
warnings occured and the cputime used will be given. END cannot be abbreviated.

Examples:

END Terminate the OMA session.

The HIT - OMA User's Guide - 21 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.6.5.MOBASE.Define a Default Mobase

MOBASE [READONLY] mobase

The mobase becomes the new current mobase, to which obj arguments of other
commands refer, if they don't explicitly refer to another mobase. READONLY mobases
cannot be changed or erased, but can however be read simultaneously by different users.

The HIT standard mobase is the initial actual mobase of OMA; it has READONLY mode.
The mode can't be abbreviated and can't be changed in the same OMA session.

Examples:

MOBASE READONLY modelling.base Define a default mobase.
DIR Display directory of that mobase.
SEL cpu Select a object.
ADD newobj This yields an error, because of the

READONLY mode.

2.6.6.READ. OMA Commands from File

READ file

Interprets the file contents as OMA commands, if the file exists. This helps to adapt OMA
to different users and systems, since every user can thus have his own OMA startup file
containing e.g. a default mobase and settings possible by the command SET. Moreover by
this facility OMA can be used in batch mode. Note: all necessary confirmations should
also be in that file.

Examples:

READ oma.startup Interprete all OMA commands found in
file oma.startup.

The HIT - OMA User's Guide - 22 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

2.6.7.SET. The OMA State

SET [variable [value]]

With no arguments the setting of all variables, the list of build in editors and some other
self-explaining information is displayed (see example in appendix A.). The defaults are
installation defined, but often VERBOSE, NOCONFIRM, NOWARN, NONUMBERS,
LINES 18, LENGTH 80 is set. With arguments the variable is set to the given value, with
the following meaning:

SET [NO]VERBOSE : All commmands on objects are echoed before execution
in a non-abbreviated style.

SET [NO]CONFIRM : The execution of every single command listed by
VERBOSE must be confirmed.

SET [NO]ALL : All command are only executed for first object matching
the given attribute value combination, if NOALL is set.

SET [NO]WARN : Warnings are suppressed by NOWARN.
SET [NO]NUMBERS : SHOW output is numbered by default.
SET LINES int : Default number of lines of a screen (for SHOW/ DIR).
SET LENGTH int : Default number of columns of a screen (SHOW/ DIR).
SET HIT text : Default argument for HIT call.
SET ED text : Default argument for EDitor call.
SET Px text : Print argument for DIN A3 objects (x=3) or DIN A4

objects (x=4) or PRINTFILE objects (x=P).

Examples:

SET Display all status informations of OMA.
SET LI 15 Set the number of lines for SHOW/DIR to 15.
SET NOWARN Suppress warnings.
SET NUMBERS Give line numbers in SHOW.
SET HIT ",task=exp" Only perform experiments from now on

(BS2000 style).

The HIT - OMA User's Guide - 23 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

3. Literature

/BeMW88/ Beilner, H./Mäter, J./Weißenberg, N.:
Towards a Performance Evaluation Environment: News on HIT,
in: Proc. "Modelling Techniques and Tools for Computer Performance
Evaluation", Palma de Mallorca, Spain, 1988

/Heck91/ Heck, E.:
HITGRAPHIC User's Guide,
Universität Dortmund, Informatik IV, 1991

/LeWe89/ Lengewitz, P.; Weißenberg, N.:
HIT User's Guide for UNIX Systems,
Universität Dortmund, Informatik IV, 1989

/Weis92a/ Weißenberg, N.:
HIT and HI-SLANG. An Introduction,
Universität Dortmund, Informatik IV, 1992

/Weis92b/ Weißenberg, N.:
HI-SLANG Reference Manual
Universität Dortmund, Informatik IV, 1992

The HIT - OMA User's Guide - 24 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Appendix A. A Sample Session

In this example three kinds of texts have to be distinguished: Comments start with an
empty line and are prefixed by '#'-characters. OMA inputs are written in bold style, and
OMA outputs are given in a smaller fond.

The example was executed on a SUN/4 workstation under UNIX. For OMA installations
on other machines it looks similar:

First oma has to be activated. For UNIX this is simply:
oma
> You may enter HELP [what] to get information (concerning 'what')
HIT Version 3.1.000 OMA SAFE Object MAnager of 92-03-15 13:00

Above the start message of OMA is shown. How to create a new mobase? We try

help MOBASE
> SHOW HIT/SYSTEM/MOBASE(DATA,OTHERS,HELP,P) WITH "MOBASE"

V
a default can be set with command MOBASE.

link ::= linkname of an object or a file, as defined in a HIT
control file or with command BIND

text ::= an arbitrary quoted text, e.g. "OMA"
...
> Please enter END,EXIT,+n,-n,++,--,SET n,FIND t,EDIT,LENGTH n,LINES n,NUMBERS

The 'V'-character after the VERBOSE output points to the occurence of the word
MOBASE in the help text. But this is not interesting. We search on by entering the
command FIND. Although we get the command MOBASE now, the command
NEWMOBASE is also visible. Herafter we exit HELP:

find
V
MOBASE [READONLY] mobase

'mobase' becomes the new current mobase, to which 'obj' arguments
of other commands refer, if they don't explicitly refer to another
mobase. READONLY mobases can't be changed or erased, but can
therefore be read simultaneously by different users.

NEWMOBASE mobase
A new empty mobase with name 'mobase' is generated.

 NEWOBJECT obj
...
> Please enter END,EXIT,+n,-n,++,--,SET n,FIND t,EDIT,LENGTH n,LINES n,NUMBERS
end
> HELP : Okay.

We want to create a mobase named testlib and make it the actual mobase:

newmobase testlib
> NEWMOBASE : Okay.

mobase testlib
> MOBASE : Okay.

The HIT - OMA User's Guide - 25 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Just before we have written a component type cpu on a file, which shall now be added.
Here we can see the VERBOSE output and a completion message. Type and module of #
the object was automatically determined, as the DIR output proves.

add cpu
> COPY cpu TO testlib(,,CPU,U)
> ADD : 1 Objects.

d
> Mobase 'testlib' totally contains 1 objects.

No Module Type Object P Size Ver Last Update Owner
1 (HISLANG, COMPONENT, CPU ,U) 12 1 1992-03-16 11:00 HIT

> DIR: 1 Objects.

Now we add online a control file for performing a precompilation of cpu, and submit
the control file to the HIT system:

newobj (con,,cpuprecom)
> COPY SYSIN TO testlib(CONTROL,CONTROL,CPUPRECOM,U)
Please enter lines until you only enter a '.'
%compiler
%parm=precom,nowarn
%mobase testlib
%bind "precom" to (,,cpu)
%end
%copy "cpu"
.
> NEWOBJECT : 1 Objects.

hit cpup*
> HIT testlib(CONTROL,CONTROL,CPUPRECOM,U) WITH " "
HIT Version 3.1.000 HI-SLANG Compiler of 92-03-15 13:00
Please enter name of Compiler SOURCE or CONTROL file:
testlib(CONTROL,CONTROL,CPUPRECOM,U)

> FAN : Only 2 Warnings. Cpu Time used : 0.080 Seconds.
> PASS 1 : Only 1 Warning . Cpu Time used : 1.080 Seconds.
> PASS 2 : Okay. Cpu Time used : 0.520 Seconds.
> PRE_WRITE : Okay. Cpu Time used : 0.500 Seconds.
> T O T A L : Only 3 Warnings. Cpu Time used : 2.860 Seconds.

Compile Rate : 6.690 Lines/Sec.
> HIT : 1 Objects.

One can ignore the precompilation warnings.
As a result we now have two more objects contained in the mobase: The listing of the
precompilation and the precompiled representation of the cpu. For this type the first
compiler passes will always be skipped from now on, since the compiler automatically
selects the most efficient representation available.

d
> Mobase 'testlib' totally contains 4 objects.

No Module Type Object P Size Ver Last Update Owner
1 (CONTROL, CONTROL, CPUPRECOM ,U) 5 1 1992-03-16 11:01 HIT
2 (DATA, LISTING, CPUPRECOM ,U) 34 1 1992-03-16 11:01
3 (HISLANG, COMPONENT, CPU ,U) 12 1 1992-03-16 11:00 HIT
4 (PRECOM, COMPONENT, CPU ,U) 12 1 1992-03-16 11:01

> DIR: 4 Objects.

The HIT - OMA User's Guide - 26 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Now we will do our first performance analysis. An experiment to analyze our cpu shall
be created, but we don't want to leave OMA for this purpose, but try a "buildin" editor.
Lets see which editors are available:

set
Variable settings
VERBOSE, CONFIRM, ALL, WARN, NUMBERS : T, F, T, F, F,
LINES , LENGTH : 18, 80
HIT :
ED :
P3 :
P4 :-o std4gs
PP :

> Other Informations
HIT file pattern: <S><-/><1>t.<+>.<L3>
obj->file pattern: t.<O>.<T>.<M>
HIT call command : hit '#' #
PRINT command : prt -c siemlp -b o4 -o std3gs # #

> Available EDITORs: (With ED you get the first editor)
EDV : vi
EDT : textedit
EDJ : jove
else :

The last lines contain the desired informations. We take we standard UNIX editor vi.
But first we must create the object to edit. We start with a copy of the control file,
modify it and add the experiment in the same object. Then we activate HIT again:

copy (con,,cpup*) to cpueval
> COPY testlib(CONTROL,CONTROL,CPUPRECOM,U) TO testlib(CONTROL,CONTROL,CPUEVAL,U)
> COPY : 1 Objects.

ed cpueval
> ED testlib(CONTROL,CONTROL,CPUEVAL,U)

< vi editing >
:wq

? Update testlib(CONTROL,CONTROL,CPUEVAL,U) ? (YES,NO,EXIT)
y
> ED : 1 Objects.

The HIT - OMA User's Guide - 27 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

hit cpueval
> HIT testlib(HISLANG,EXPERIMENT,CPUEVAL,U) WITH " "
HIT Version 3.1.000 HI-SLANG Compiler of 92-03-15 13:00
Please enter name of Compiler SOURCE or CONTROL file:
testlib(HISLANG,EXPERIMENT,CPUEVAL,U)

> PRE_READ : Only 1 Warning . Cpu Time used : 1.500 Seconds.
> PASS 1 : Only 1 Warning . Cpu Time used : 0.820 Seconds.
> PASS 2 : Only 2 Warnings. Cpu Time used : 0.720 Seconds.
> EXT_REF : Okay. Cpu Time used : 0.320 Seconds.
> LINKER : Okay. Cpu Time used : 0.140 Seconds.
> SCG : Okay. Cpu Time used : 1.100 Seconds.
> T O T A L : Only 4 Warnings. Cpu Time used : 5.180 Seconds.

 Compile Rate : 6.977 Lines/Sec.

compiling : t.hitcode.sim

End of pass 1 0.540 seconds
End of pass 2 1.800 seconds
End of pass 3 4.000 seconds
End of pass 4 0.000 seconds
End of pass 5 0.020 seconds
End of pass 6 3.580 seconds

No errors and no warnings.
End of Simula Compilation.

linking : t.hitcode with asimul

HIT Version 3.1.000 HIT Analyzerof 92-03-15 13:00
Please enter name of Analyzer CONTROL file:
testlib(CONTROL,CONTROL,CPUEVAL,U)

Number Line : Description of Errors or Warnings
W.0375 1 : Obj. testlib(DATA,LISTING,CPUEVAL,U) already exists. It will be extended.

> SIMULATIVE : Only 1 Warning . Cpu Time used : 1.140 Seconds.
> T O T A L : Only 1 Warning. Cpu Time used : 8.580 Seconds.

> HIT : 1 Objects.

Now we have four additional data objects generated: a listing and the results in form of
a table, dumpfile and a trace, as demanded in our experiment (not shown here):
d
> Mobase 'testlib' totally contains 9 objects.

No| Module | Type | Object |P| Size | Ver | Last Update | Owner
1 (CONTROL, CONTROL, CPUEVAL ,U) 34 1 1992-03-17 13:39 HIT
2 (CONTROL, CONTROL, CPUPRECOM ,U) 5 1 1992-03-16 11:01 HIT
3 (DATA, DUMPFILE, CPUEVAL ,U) 136 4 1992-03-17 13:24
4 (DATA, LISTING, CPUEVAL ,U) 203 2 1992-03-17 13:24
5 (DATA, LISTING, CPUPRECOM ,U) 34 1 1992-03-16 11:01
6 (DATA, TABLE, CPUEVAL ,U) 276 4 1992-03-17 13:24
7 (DATA, TRACE, CPUEVAL ,U) 112 4 1992-03-17 13:24
8 (HISLANG, COMPONENT, CPU ,U) 12 1 1992-03-16 11:00 HIT
9 (PRECOM, COMPONENT, CPU ,U) 12 1 1992-03-16 11:01

> DIR: 9 Objects.

The HIT - OMA User's Guide - 28 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Let's do some queries. First we delete the actual object set, add all data objects and
substract listings. The resulting set is then displayed, but only the attributes are given in
this case:
-
> - : No Objects.

+ (data)
> + testlib(DATA,DUMPFILE,CPUEVAL,U)
> + testlib(DATA,LISTING,CPUEVAL,U)
> + testlib(DATA,LISTING,CPUPRECOM,U)
> + testlib(DATA,TABLE,CPUEVAL,U)
> + testlib(DATA,TRACE,CPUEVAL,U)
> + : 5 Objects.

-(,lis)
> - testlib(DATA,LISTING,CPUPLOT,U)
> - testlib(DATA,LISTING,CPUPRECOM,U)
> - : 2 Objects.

dir +

No| Module | Type | Object |P| Size |Ver| Last Update | Owner
1 (DATA, DUMPFILE, CPUEVAL ,U)
2 (DATA, TABLE, CPUEVAL ,U)
3 (DATA, TRACE, CPUEVAL ,U)

> DIR: 3 Objects.

We create the intersection * with all mobase objects () containing the word population.
The corresponding object line will always be displayed before the VERBOSE outputs:

* () with population
POPULATION ALL 0.000000E00

> * testlib(DATA,DUMPFILE,CPUEVAL,U) WITH "population"
Hierarchy | Esti | POPULATION | THROUGHPUT |
> * testlib(DATA,TABLE,CPUEVAL,U) WITH "population"
> * : 2 Objects.

We now protect both objects of the set and look into them to see the produced results:

change + to (,,,p)
> CHANGE testlib(DATA,TABLE,CPUEVAL,U) TO testlib(DATA,TABLE,CPUEVAL,P)
> CHANGE testlib(DATA,TRACE,CPUEVAL,U) TO testlib(DATA,TRACE,CPUEVAL,P)
> CHANGE : 2 Objects.

show +
> SHOW testlib(DATA,DUMPFILE,CPUEVAL,P)
...
end
> SHOW testlib(DATA,TABLE,CPUEVAL,P)
...
end
> SHOW : 2 Objects.

The HIT - OMA User's Guide - 29 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

We now print and erase the listings and compress the mobase:

print (,lis)
> PRINT testlib(DATA,LISTING,CPUEVAL,U) WITH " "
> PRINT testlib(DATA,LISTING,CPUPRECOM,U) WITH " "
> PRINT : 2 Objects.

er (,li)
> ERASE testlib(DATA,LISTING,CPUEVAL,U)
? Erase testlib(DATA,LISTING,CPUEVAL,U) ? (YES,NO,EXIT)
y
> ERASE testlib(DATA,LISTING,CPUPRECOM,U)
? Erase testlib(DATA,LISTING,CPUPRECOM,U) ? (YES,NO,EXIT)
y
> ERASE : 2 Objects.

com
> COMPRESS testlib
> COMPRESS : Okay.

Finally we copy our tested cpu to an already existing project mobase in a protected
mode, make sure that it arrived and exit OMA:

copy cpu to project.lib(,,,P)
> COPY testlib(HISLANG,COMPONENT,CPU,U) TO project.lib(HISLANG,COMPONENT,CPU,P)
> COPY testlib(PRECOM,COMPONENT,CPU,U) TO project.lib(PRECOM,COMPONENT,CPU,P)
> COPY : 2 Objects.

dir project.lib (,,cpu)

> Mobase 'project.lib' totally contains 33 objects.

No| Module | Type | Object |P| Size | Ver | Last Update | Owner
1 (HISLANG, COMPONENT, CPU ,P) 12 11992-03-17 13:50 HIT
2 (PRECOM, COMPONENT, CPU ,P) 12 11992-03-17 13:50 HIT

> DIR: 2 Objects.

end
> T O T A L : Okay. Cpu Time used : 5.460 Seconds.

The HIT - OMA User's Guide - 30 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Appendix B. Experiences Made With OMA

At the Universität Dortmund OMA was used for the management of the series of
experiments described in /BeMW88/, i.e. for storing all objects resulting from that
modelling and analysis process. Thereby a "standard" control file format was developed.

One of the purposes of the control file is to define all input files or mobase objects for the
HI-SLANG compiler. Thus the control file serves to define configurations of models
without modifying the source text of the model. Depending on the version and
representation (e.g. HISLANG, PREANA, PRECOM) for instance of a component type
which is to be added to the model by %COPY "link name", i.e. depending on the
"environment" defined in the control file, a different efficiency and/or performance will be
reached when the analyzer is run.

It is advisable to use the control file as documentation for every experiment performed.
Apart from providing configuration information, such documents informally describe the
changes with respect to the previous experiment and the observations and conclusions
from performing the experiment.

Example:

%COMMON ------------------------ For both COMPILER and ANALYZER ---------
%MOBASE office.lib
%BIND "evaluation" TO (PREANA, COMPONENT, evaluation2)

%COMPILER ------------------------ Configuration Segment ----------------------------
-
%BIND "office" TO (HISLANG, MODEL, office1)
%BIND "handling" TO (HISLANG, COMPONENT, handling4)
%BIND "experiment" TO (HISLANG, EXPERIMENT, expsep2)

%ANALYZER ------------------------ Result Directing--------------------------------------
% Usage of DEFAULT-bindings to the mobase containing this control file.

%END -------------------------------- Model Structure -------------------------------------
%TITLE Office Model
%COPY "office"
%COPY "handling"
%COPY "evaluation"
%COPY "experiment"
% The source consists of 4 modules with versions and representations as described above

%EOF -------------------------------- Experiment Description ----------------------------

EXPERIMENT : exp5 AUTHOR: N. Weissenberg Date: 25.2.88

BASED ON : exp3, exp4

CHANGES : The DISPATCH strategy of server link was changed to
EQUAL (100) (exp3) and evaluation was aggregated (exp4).

OBSERVATION: The results are the same as before, except for server link.

CONCLUSION : Both steps could be performed.

All object names in this example end with a digit. This is a simple way for version
management.

The HIT - OMA User's Guide - 31 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Appendix C. The HIT Standard Mobase

The standard mobase of the HIT system is the default actual mobase. It contains all pre-
defined elements for modelling, as described in the HI-SLANG Reference Manual.

The first object is the OMA help text. Eight predefined component types and a service
type follow. Moreover all standard component control procedures of HIT are contained,
written in SIMULA for efficiency reasons.

When entering DIR after an OMA call the following display results (ignoring
intermediate queries):

> Mobase 'HIT/SYSTEM/MOBASE' totally contains 32 objects.

No| Module | Type | Object |P| Size | Ver | Last Update | Owner
1 (DATA, OTHERS, HELP ,P) 267 219 NOV 1989 17:00 HIT
2 (HISLANG, COMPONENT, COUNTER ,P) 32 119 APR 1989 15:59 HIT
3 (HISLANG, COMPONENT, FTSERVER ,P) 15 119 APR 1989 15:59 HIT
4 (HISLANG, COMPONENT, NOWAITSEND ,P) 55 214 MAR 1991 17:29 HIT
5 (HISLANG, COMPONENT, OBSERVER ,P) 56 114 MAR 1991 16:52 HIT
6 (HISLANG, COMPONENT, PRIOSERVER ,P) 14 119 APR 1989 15:59 HIT
7 (HISLANG, COMPONENT, SEMAPHOR ,P) 19 119 APR 1989 15:59 HIT
8 (HISLANG, COMPONENT, SERVER ,P) 12 119 APR 1989 15:59 HIT
9 (HISLANG, COMPONENT, SYNCHSEND ,P) 52 214 MAR 1991 17:30 HIT

10 (HISLANG, COMPONENT, TOKENPOOL ,P) 35 229 AUG 1991 11:38 HIT
11 (HISLANG, SERVICE, WATCHER ,P) 9 119 APR 1989 15:59 HIT
12 (SIMULA, ACCEPT, ALWAYS ,P) 29 119 APR 1989 15:59 HIT
13 (SIMULA, ACCEPT, LIMITED ,P) 39 119 APR 1989 15:59 HIT
14 (SIMULA, ACCEPT, RESTRICT ,P) 13 119 APR 1989 15:59 HIT
15 (SIMULA, DISPATCH, AGGRDISP ,P) 117 119 APR 1989 15:59 HIT
16 (SIMULA, DISPATCH, EQUAL ,P) 29 119 APR 1989 15:59 HIT
17 (SIMULA, DISPATCH, SDEQUAL ,P) 102 119 APR 1989 15:59 HIT
18 (SIMULA, DISPATCH, SDSHARED ,P) 102 119 APR 1989 15:59 HIT
19 (SIMULA, DISPATCH, SHARED ,P) 30 119 APR 1989 15:59 HIT
20 (SIMULA, OFFER, ALL ,P) 13 119 APR 1989 15:59 HIT
21 (SIMULA, SCHEDULE, CPRIO ,P) 103 119 APR 1989 15:59 HIT
22 (SIMULA, SCHEDULE, CRANDOM ,P) 97 119 APR 1989 15:59 HIT
23 (SIMULA, SCHEDULE, FCFS ,P) 31 119 APR 1989 15:59 HIT
24 (SIMULA, SCHEDULE, IMMEDIATE ,P) 14 119 APR 1989 15:59 HIT
25 (SIMULA, SCHEDULE, LCFS ,P) 31 119 APR 1989 16:00 HIT
26 (SIMULA, SCHEDULE, LCFSPR ,P) 20 119 APR 1989 16:00 HIT
27 (SIMULA, SCHEDULE, PRIONP ,P) 74 119 APR 1989 16:00 HIT
28 (SIMULA, SCHEDULE, PRIOPREP ,P) 107 119 APR 1989 16:00 HIT
29 (SIMULA, SCHEDULE, PRIOPRES ,P) 83 119 APR 1989 16:00 HIT
30 (SIMULA, SCHEDULE, RANDOM ,P) 33 119 APR 1989 16:00 HIT
31 (SIMULA, SCHEDULE, SEMSCHED ,P) 35 119 APR 1989 16:00 HIT
32 (SIMULA, SCHEDULE, TOKSCHED ,P) 50 229 AUG 1991 11:38 HIT

> DIR : 32 Objects.

The HIT - OMA User's Guide - 32 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Appendix D. Special Hints

The OMA system consists of the following files:

1) Load module oma, or the three SIMULA sources for mobase, fan and oma
2) Operating system procedure oma
3) HIT message library
4) HIT standard mobase
5) HIT startup file

The STARTUP file of the HIT system has a special %OMA segment. Moreover the
%COMMON segment is valid. For BS2000 it contains the following data:

%COMMON Implementation dependent filenames
%MOBASE READONLY $I4IC10.HIT.STANDARD.MOBASE
%BIND "MESSAGE" TO $I4IC10.HIT.TEXTE

% Construction of Default Filenames: <C>ControlfileName, <L>Linkname,...
%DEFAULT "#<S>.<L>"
...
%OMA
%BIND "LISTING" TO #OMA.LISTING
%BIND "EDIT" TO #OMA.EDIT
%DEFAULT "#<O>.<T>.<M>"
%DEFAULT "DO $I4IC10.HIT,CONTROL='#',OMA=Y,#"
%DEFAULT "PRINT #,LOCK=YES,#"
%END

The %DEFAULT records denote name patterns. The first one (within %COMMON)
defines default file names consisting of the control file name (without suffix) <S> and the
link name <L>, while the second is OMA specific and defines the default file name for
selected objects, consisting of object name <O>, type <T> and module <M>.

The last two %DEFAULTS denote the pattern of how to call HIT and how to print files in
the respective operating system. The '#'-characters will be substituted by OMA. In both
cases the first one is a file name (control file object name or file name constructed
according to the second %DEFAULT) and the second one may give additional
parameters.

The other records define the names of the standard mobase (default mobase for OMA),
the HIT message library, the OMA listing and a standard temporary output file of OMA.

The user interface commands of OMA are implemented as portable as possible in the
following way (if a command can't be ported its activation has no effect):

CMD: OMA uses the FAN system which already implements the CMD command if
possible.

EDxx: The procedure EDIT_OBJ of the OMA source contains external procedure
declarations and calls, if the editor can't be activated by the CMD command.

HIT: The HIT call is contained in the third %DEFAULT record (see above) and is
executed via the CMD command. After the termination of the HIT run OMA
should be activated again.

PRINT: The PRINT command is contained in the fourth %DEFAULT record (see
above) and is executed via the CMD command.

The HIT - OMA User's Guide - 33 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Currently there is no explicite version control in OMA (besides counting object updates).
The access to older versions is no more possible after updating an object. The user can
however control versions himself by adding a version number to the object name (see
appendix B.).

Due to historical reasons and implementation restrictions mobases require a hugh amount
of space, since they are implemented as SIMULA directfiles, which necessary have a fixed
record length of 133(contents)+4(index) bytes. Shorter object lines (even empty lines) are
filled up with blanks. The storing of more than one object line within one record would
remove this drawback, but would increase the access times; thus this is not implemented.

Therefore it is advisable to archive mobases in sequential representation (see command
CONVERTMF) and/or in a compressed format (UNIX compress or BS2000 FMS
libraries or the like). A compression of factor 5 can in most cases be achieved.

The HIT - OMA User's Guide - 34 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Appendix E. The OMA Help Text

Instead of an index we conclude with the text displayed by entering the HELP command
of OMA. It contains a summary of all OMA commands listed in alphabetical order, and
starts by explaining the format of OMA command arguments.

All work with OMA is done interactively by entering OMA commands as explained here.
All OMA commands may be abbreviated and have 0..2 arguments. In commands with two
arguments these arguments are separated by TO, if both denote objects or files, or by
WITH, if the second argument is a command modifier.

Arguments of OMA commands:

The following kind of arguments occur in the commands:

obj := [object]
 | [mobase] attributes
 | "link"{the object bound to link}
 | + {the current object set, see command '+'}

file_obj ::= same as obj, but a single token is interpreted as a file name (which may
be SYSIN or SYSOUT), not as object name. Objects can be denoted by
(,,object).

file ::= name of a (sequential) file outside OMA

mobase ::= name of an index sequential file containing objects, a default can be set
with command MOBASE

link ::= link name of an object or a file, as defined in a HIT control file or with
command BIND

text ::= an arbitrary quoted text, e.g. "OMA"

Object Attributes:

There are four attributes to access objects, each may be missing:

attributes::= (module, type, object, protection)

module ::= CONTROL | HISLANG | PRECOM | PREANA | SIMULA | DATA
(kind of representation, may be abbreviated)

type ::= MODEL | COMPONENT | SERVICE | PROCEDURE
 | CONTROL | EXPERIMENT
 | ACCEPT | SCHEDULE | OFFER | DISPATCH
 | FILE | DUMPFILE | TABLE | GRAPH| HISTOGRAM
 | TRACE | LISTING | MATRIX | STATES| OTHERS

(kind of object, may be abbreviated)

object ::= name of an object within a mobase, 12 significant characters, asterisks
within are treated as wild cards.

protection::= P | U

The HIT - OMA User's Guide - 35 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

Protected objects can only be manipulated (overwritten, changed, erased) after a special
confirmation. The same holds for objects added by another owner (see DIR). Generally
you have to confirm manipulations on existing objects or files.

Module and type have to be consistent according to the following table:

Module | Type
CONTROL | CONTROL, OTHERS
HISLANG | MODEL,COMPONENT,SERVICE,PROCEDURE,EXPERIMENT,

| OTHERS
PRECOM | MODEL,COMPONENT,SERVICE,PROCEDURE,EXPERIMENT,

| OTHERS
PREANA | COMPONENT,OTHERS
SIMULA | ACCEPT,SCHEDULE,DISPATCH,OFFER,OTHERS
DATA | FILE,DUMPFILE,TABLE,GRAPH,HISTOGRAM,

| TRACE,LISTING,MATRIX,STATES,OTHERS

OMA commands:

If the first argument of a command is of type obj, it can be specified incompletely: All or
some attribute values may be missing and object may contain wild card symbols '*'. The
command will then be executed for all objects matching the given attribute values within
the denoted mobase.

The second argument of such commands may also be specified incompletely. Then the
missing attribute values are filled each time from that object currently matching the first
argument. Example: CHANGE (HI) TO (,,,P) protects all HISLANG objects.

The following list of OMA commands is alfabetically sorted:

ADD file [TO obj]
Insert a copy of the given file into the mobase and with the attribute values given by
obj. Some attribute values may be left out. OMA can determine them: object is set to
file, the modules PREANA, PRECOM, CONTROL and HISLANG as well as the
types MODEL, COMPONENT, SERVICE and EXPERIMENT may be set from
the first line of the file contents. If the filename contains wild cards, all files
corresponding to the pattern are added.

BIND [link TO file_obj]
With no arguments all active bindings are displayed.Otherwise link is bound to the
given file or object and can be used for that in commands with obj-arguments.

CHANGE obj1 TO obj2
The attribute values of object obj1 are changed to those specified by obj2. Free
positions in obj2 are filled from obj1, while free positions in obj1 mean FOR ALL
those objects.

CMD text
Execute text as operating system command.

COMPRESS [mobase]
Moves gaps within the index sequential file mobase to the end and reserves new
space for the directory.

The HIT - OMA User's Guide - 36 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

CONTROL file_obj
The denoted file or objects (having module CONTROL) are interpreted as HIT
control files. All mentioned bindings can then be used, e.g. SHOW "TABLE". All
actual links can be displayed by BIND.

CONVERTMF [mobase TO] file
MF means Mobase to File. The index sequential file mobase is converted to a
sequential and therefor portable and smaller file named file. If omitted, mobase is the
actual mobase.

CONVERTFM file TO mobase
FM means File to Mobase. The sequential file file is assumed to be in a format to
convert it to a mobase named mobase, i.e file has been generated by CONVERTMF
before.

CONVERTMM [mobase1 TO] mobase2
MM means Mobase to Mobase. mobase1 (or the actual mobase) is copied to a file
named mobase2. Unused blocks are not copied, so mobase2 becomes smaller in
most cases.

COPYMOBASE [mobase1 TO] mobase2
Same as CONVERTMM.

COPY obj1 TO obj2
Copy all objects denoted by obj1 to destinations denoted by obj2. Free positions in
obj2 are filled from obj1, while free positions in obj1 mean FOR ALL those objects.

CP file_obj1 TO file_obj2
Copy all files or objects denoted by file_obj1 to destinations denoted by file_obj2.
The commands ADD, SELECT and COPY use this command internally. See there.

DIR obj
Directory contents (module, type, object, protection, size, version, last update, owner)
displayed for those objects denoted by obj. Directory output is affected by SET
LINES/LENGTH.

EDxxx obj
All objects denoted by obj can be edited by editor denoted by xxx. The list of
available editors is given by SET.

END
Quit OMA.

ERASE obj [!]
Erase all objects denoted by obj. If '!' is not given, every single object deletion has to
be confirmed. Protected objects can only be erased after a confirmation.

HELP [text]
This information is given with 'SHOW help [WITH text]', i.e. the first line shown is
the first line containing text. HELP must be terminated with END.

The HIT - OMA User's Guide - 37 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

HIT obj [WITH text]
Call HIT for (the first) object denoted by obj and with additional arguments text. The
object must have module CONTROL or HISLANG. It is not selected, but the HIT-
system reads it directly from the mobase. The call given is displayed by SET.

MOBASE [READONLY] mobase
mobase becomes the new current mobase, to which obj arguments of other
commands refer, if they don't explicitly refer to another mobase. READONLY
mobases can't be changed or erased, but can therefore be read simultaneously by
different users.

NEWMOBASE mobase
A new empty mobase with name mobase is generated.

NEWOBJECT obj
The next lines read from terminal (until a line only containing a '.' is entered) are
added as a new object with attribute values denoted by obj.

PRINT obj [WITH text]
All objects denoted by obj are printed with arguments given by text. The print
command can be displayed by SET. If text is not given the arguments are selected
dependent on module and type of the objects. This can be affected by SET
P3/P4/PP.

READ file
Interpret file contents as OMA commands, if file exists. Helps to adapt OMA to
different users and systems.

SELECT obj [TO [EXTEND] file]
Select the object denoted by obj to the given file. If obj specifies more than one
mobase object, all those objects are selected. If file is omitted it is set to object name.
If file is '#' the filenames are generated due to a pattern.

SET [variable [value]]
With no arguments the setting of all variables, the list of build in editors and some
other information is displayed. The defaults are installation defined, but often
VERBOSE, NOCONFIRM, ALL, NOWARN, NONUMBERS, LINES 18,
LENGTH 80. With arguments the variable is set to the given value, with the
following meaning:

SET [NO]VERBOSE : All commmands on objects are echoed before execute
SET [NO]CONFIRM : After VERBOSE the execution must be confirmed
SET [NO]ALL : Command only executed for first object matching
SET [NO]WARN : Warnings are suppressed
SET [NO]NUMBERS : SHOW output is numbered
SET LINES int : Number of lines of a screen (for SHOW and DIR)
SET LENGTH int : Number of columns of a screen (for SHOW and DIR)
SET HIT text : Default argument for HIT call
SET ED text : Default argument for EDitor call
SET Px text : Print argument for DIN A3 objects (x=3) or DIN A4

objects (x=4) or PRINTFILE objects (x=P)

The HIT - OMA User's Guide - 38 -

Universität Dortmund, Informatik IV Version 3.4.00, August 1999

SHOW obj [WITH text]
Displays the contents of all objects denoted by obj. The first line on screen is the
actual line (AL). If text is given the AL is set to the first line containing that text.
Within SHOW the following commands can be given (the last line displayed
summarizes this command list):

END : quit SHOW, the next object specified by obj is shown
EXIT : quit SHOW totally.
+ [n] : set AL forward n lines or one screen, if n omitted
- [n] : same backwards
++ : set AL to one screen before end of object
-- : set AL to 1.
SET n : set AL to n.
FIND t : set AL to next line containing text t
LINES n : number of displayed line becomes n
LENGTH n : number of displayed columnes becomes n
NUMBERS : switching on/off line numbering
EDIT : AL and following lines (until only '.' entered) may be overwritten
CHANGE t TO u : change all occurences of t to u, each change has to be

confirmed.

After every command the screen is refreshed. SHOW output is affected by SET
LINES/LENGTH/NUMBERS, defining the defaults for the corresponding local
commands.

+ obj [WITH text]
Add all objects denoted by obj and containing text (lowcase or upcase) to the current
object set, not to the mobase. This set can be used within every command having a
first obj-argument by writing '+' for that argument, e.g. 'DIR +'.

- obj [WITH text]
Substract all objects denoted by obj and containing text (lowcase or upcase) from the
current object set. This set can be used within every command having a first obj-
argument by writing '+' for that argument, e.g. 'DIR +'. '-' alone makes current object
set empty.

* obj [WITH text]
Leaves all objects denoted by obj and containing text (lowcase or upcase) within the
current object set. This set can be used within every command having a first obj-
argument by writing '+' for that argument, e.g. 'DIR +'.

/ rest_of_line
Execute rest_of_line as operating system command.

