
HITGRAPHIC

User's Guide
Document Version 3.6.00

for the

Hierarchical Evaluation Tool

HIT
Version 3.6.000

and

HITGRAPHIC
Version 3.6.00

April 1996

HITGRAPHIC User's Guide

Michael Sczittnick (Editor)

Martin B�uttner
Elke Heck
Rainer Lange
Michael Str�uwer
Monika Verwohlt
Christel Wysocki

Copyright c 1991, 1993-1996: Universit�at Dortmund, Informatik IV.
ALL RIGHTS RESERVED.

Abstract:

HITGRAPHIC provides a graphical user interface for the performance evaluation
tool, HIT. In addition to the hierarchical model speci�cation language HI-SLANG it
allows for the graphical speci�cation of HIT models by composing separate graphical
presentations of model elements to a graphical representation of a complete model.
The same holds for experiments. Subsequently, the graphical representation of the
model is transformed automatically into its HI-SLANG representation.

HITGRAPHIC has been developed at the chair of Prof. Dr.-Ing. H. Beilner, Infor-
matik IV, Universit�at Dortmund partly in cooperation with Nixdorf Computer AG
and with the support of the BMFT (German Federal Ministry of Research and Tech-
nology).

This document is released for internal and external use. Corrections, comments,
criticism and suggestions for improvement of this document are welcome.

Address:
Universit�at Dortmund
Informatik IV
Prof. Dr.-Ing. H. Beilner
D-44221 Dortmund

Telefon:
Telefax:
E-Mail:
Telex:

+49 231 755 2704
+49 231 755 4730
hit@ls4.informatik.uni-dortmund.de
822465 unido d

Contents

1 Introduction 1
1.1 What is HIT and What is HITGRAPHIC? 1
1.2 Documents on HIT . 2
1.3 Conventions Used in this Manual . 2
1.4 Structure of the Manual . 3

I Reference Guide 4

2 First Steps 7

3 Elements of Usage 11
3.1 HITGRAPHIC User Interface Conventions 11

3.1.1 Mouse Handling . 11
3.1.2 Where to Find Menus? . 11
3.1.3 Dialog Boxes . 12

3.2 Window Types in HITGRAPHIC . 13
3.2.1 Environment Window . 14
3.2.2 Survey Window . 14
3.2.3 Component Type Graphic Window 15
3.2.4 Control Procedure Window 16
3.2.5 Editor Window . 17
3.2.6 Aggregation Description Window 18
3.2.7 Evaluation Window . 18
3.2.8 Evaluation Object Window 19
3.2.9 Start/Stop Window . 20
3.2.10 Hierarchy Survey Window . 20
3.2.11 Hierarchy Window . 21
3.2.12 Experiment Window . 22

4 Functional Description 23
4.1 The Environment Window . 24

4.1.1 Global Functions . 25
4.1.2 Functions on Kinds of Modelling Objects 28
4.1.3 Functions on Modelling Objects 31

4.2 The Survey Window . 46
4.2.1 Global Functions . 49
4.2.2 Popup Menu in the Survey Window 49

v

4.2.3 Function on Line in the Type Structure 50
4.3 The Component Type Graphic Window 50

4.3.1 Global Functions on Model Types 52
4.3.2 Global Functions on Component Types 54
4.3.3 Popup Menus in the Graphic Region 56

4.4 The Control Procedure Window . 70
4.4.1 Global Functions . 70
4.4.2 Functions on Control Procedures for Component Types 71
4.4.3 Functions on Control Procedures for Components 72

4.5 The Editor Windows . 76
4.5.1 HI-SLANG in Editor Windows 78
4.5.2 Structure of the Editor Window 83
4.5.3 Global Functions on the Head Label Area 85
4.5.4 Global Functions on the Editor's Pane 86
4.5.5 Text Selection . 86
4.5.6 Global Functions on the Editor Label Area 87
4.5.7 Functions on the Editing Area 90

4.6 The Aggregation Description Window 92
4.6.1 Global Functions . 93
4.6.2 Speci�cation of Population . 94

4.7 The Evaluation Window . 95
4.7.1 Global Functions . 96
4.7.2 Speci�cation of the Evaluation 97

4.8 The Evaluation Object Window . 102
4.8.1 Global Functions . 103
4.8.2 Speci�cation of the Evaluation Object 104

4.9 The Start/Stop Window . 108
4.9.1 Global Functions . 109
4.9.2 Speci�cation of Start respectively Stop Conditions 110
4.9.3 Speci�cation of Values . 111

4.10 The Hierarchy Survey Window . 114
4.10.1 Global Functions . 114
4.10.2 Functions on Hierarchies . 115

4.11 The Hierarchy Window . 117
4.11.1 Global Functions . 119
4.11.2 Functions Referring to Load Path Selection 119
4.11.3 Functions Referring to the Selection of Views 120
4.11.4 Functions Referring to the Current Load Path 120

4.12 The Experiment Window . 122
4.12.1 Global Functions . 123
4.12.2 Operations in the Method Area 125
4.12.3 Functions on Evaluations . 126
4.12.4 Output Area . 127

5 Teamwork with HITGRAPHIC 129
5.1 Modes of Modelling Objects . 129
5.2 General Hints for Teamwork Support 130
5.3 Documentation Support . 131

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

6 Questions and Answers 133
6.1 List of Questions and Problems . 133
6.2 Solutions . 134

II Tutorial 142

7 A Tutorial 145
7.1 Introducing Remarks and Perspective 145
7.2 How to Start a HITGRAPHIC Session 145
7.3 Model Speci�cation . 146

7.3.1 Model 1 . 146
7.3.2 Model 2 . 155
7.3.3 Model 2a { Aggregation . 160
7.3.4 Model 3 . 166
7.3.5 Model 4 . 170

7.4 Evaluation and Experiment Speci�cation 174
7.4.1 Evaluation 1 . 174
7.4.2 Experiment 1 . 180
7.4.3 Evaluation 2/2a . 183
7.4.4 Experiment 2/2a . 183
7.4.5 Evaluation 4 . 184
7.4.6 Experiment 4 . 200

7.5 Epilogue . 201

Index 203

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 1

Introduction

1.1 What is HIT and What is HITGRAPHIC?

This document introduces the usage of HITGRAPHIC, the high level user interface for
the performance evaluation tool, HIT. In the following we sketch very briey some
features of the underlying HIT System, for details see the \HI-SLANG Reference
Manual" or \HIT and HI-SLANG: An Introduction" (cf. Section 1.2).

HIT is a performance evaluation tool which allows the structured speci�cation and the
quantitative evaluation of computing system models. Since system design and devel-
opment are nowadays usually based on a layered model with functional abstraction,
HIT employs hierarchical modelling techniques allowing the separate speci�cation
and analysis of model components.

HIT provides for

� the speci�cation of (models of) dynamic, discrete-event, stochastic systems by a
particular model description language, HI-SLANG, for the description of model
structures;

� the (performance) analysis of correspondingly speci�ed models by a variety
of techniques of the simulative, analytical-algebraic and analytical-numerical
types.

Although originally developed with the objective of evaluating computing system
performance, HIT also lends itself to the analysis of \similar" systems such as com-
munication and o�ce systems, transport and logistic systems and other systems of the
speci�ed dynamic, discrete-event, stochastic type. The HIT model world is tailored
upon the prevailing view of computing system structures which partitions a system

� vertically, into a sequence of layers and levels, as communicating via function
calls, and jointly representing a hierarchy of virtual machines;

� horizontally, into independent, mutually well-protected, information-hiding
modules each one realizing some subset of functions to be provided at a partic-
ular level.

1

The corresponding HI-SLANG speci�cation maintains as far as possible the conven-
tional, high-level-language (HLL) approach, assumed to be well-known to and con-
venient for the envisaged user community of the tool. With the availability of the
graphical interface, HITGRAPHIC, an important step towards wider applications of
performance evaluation has been made.

Modelling and evaluation should be done by the designer, consultant, salesperson or
engineer himself without the need to be an expert in simulation, statistics, queueing
theory, numerical analysis and related techniques for quantitative system evaluation.
Therefore, it was an important requirement for the HIT system to provide for a high
level user interface.

As a consequence, in addition to the HIT system with its hierarchical model descrip-
tion language HI-SLANG, the interface HITGRAPHIC for the graphical speci�cation
of HIT models is o�ered. In HITGRAPHIC the construction of HIT models is done by
composing graphical representations of model elements to a graphical representation
of a complete model. The same holds for experiments. Subsequently the experiment
can be transformed into its HI-SLANG representation, followed by an automatical
start of the HIT system. Thus HITGRAPHIC liberates the user from writing poten-
tially lengthy model speci�cations in the HI-SLANG modelling language.

Notice: When working with HITGRAPHIC it is required that the language version
of HIT is already known by the user. So you should read the HIT Introduction
before continuing with HITGRAPHIC, and use the HI-SLANG Reference Manual as
a source of detailed information in case of practical problems beyond the graphical
scope (cf. Section 1.2).

1.2 Documents on HIT

� Wei�enberg, N. (ed.); HIT and HI-SLANG: An Introduction, Version 1.1.00;
Universit�at Dortmund, Informatik IV, 1992

� B�uttner, M. (ed.); HI-SLANG Reference Manual, Version 3.4.00; Universit�at
Dortmund, Informatik IV, 1994

1.3 Conventions Used in this Manual

This document uses the following conventions:

� Notions, which appear for the �rst time, or essential terms are printed in bold-
face types.

� Printing in italics is used to emphasize a topic or for menu items.

� \Double quotes" are used for items occurring in examples.

� The terms for the HI-SLANG Syntax refer to appendix A of the HI-SLANG
Reference Manual.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

1.4 Structure of the Manual

This manual is divided in two parts, the reference guide and a tutorial.

The novice user should start reading Chapter 1. Chapter 2 contains some technical
prerequirities to be ful�lled before the work with HITGRAPHIC can start. Chapter 3
gives a brief overview on HITGRAPHIC. Then it would be best to switch to the
tutorial (Chapter 7), which contains examples of the work with HITGRAPHIC. It is
intended that the user can perform the described steps on the computer in parallel
to reading the tutorial.

The main part of the reference guide is built up by Chapter 4 and Chapter 5. They
provide detailed information about each function of HITGRAPHIC. Chapter 6 gives
answers to speci�c questions, possibly arising during a HITGRAPHIC session.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Part I

Reference Guide

4

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 2

First Steps

For a user of HITGRAPHIC, there are some preparation steps necessary before the
normal operation can start. To understand the instructions some basic knowledge of
the UNIX system is required. Also the knowledge of an editor would be helpful. If
you have problems understanding this chapter, ask your system administrator. He
should be able to help you. It is recommended that you read this chapter completely
and perform the described actions in a second run.

Users of previous versions of HITGRAPHIC should also read this chapter, because it
contains some new aspects and hints for the database conversion.

First of all, you need to know the installation directory of HITGRAPHIC, for ex-
ample \/usr/local/Hitgraphic.sun4". In the following we will refer to this name using
the abbreviation \$fhitgraphicg". The directory \$fhitgraphicg" should contain the
subdirectories \bin", \dbase" and \lib". The �rst interest is in the \bin" directory
since it contains the programs \hitgraphic", \unset busy" and \db admin prg", which
can be called by the user. Therefore, the directory \$fhitgraphicg/bin" should be
added at the end of the search path for executable programs. This usually requires a
change in your startup �les (\.login", \.cshrc", \.pro�le" or something else, depending
on your system con�guration).

The user of HITGRAPHIC is responsible for his (user) databases. He must create
a directory for his databases, for example by performing \mkdir .DB DIR" in
the home directory. The HITGRAPHIC system needs to know the name of this
directory. Therefore, an environment variable named \DB DIR" must be set to
this name. In our example, you may add a line \setenv DB DIR $HOME/.DB DIR"
to a startup �le if using the C-shell. By setting the environment variable \DB DIR"
to the directory for databases of another user, you may get access to those databases
when starting HITGRAPHIC.

Next, we will create a new database. For this, we change to the directory for
databases, for example by \cd $DB DIR" assuming that \DB DIR" is already de-
�ned. New databases will be created by copying existing databases. Therefore,
an empty database exists in the HITGRAPHIC installation directory. The copy
process can be initiated by \cp -r $fhitgraphicg/dbase/init.db <my own>.db". The
name of the database, \my own.db" in our example, may not be longer than 79
characters.

7

Now, as you have created your �rst database, it is time to discuss access rights to
the database. They can be controlled by giving the directory and all its containing
subdirectories and �les the desired UNIX access rights by using \chgrp" and \chmod".
You may also set the s-bit for groups for the subdirectory \long �eld" in the database
directory. New �les will only be created in this directory, and the s-bit will control
the group attribute of new �les to be identical to the one of the directory. The
access rights of new �les depend on the actual umask of the process that started
HITGRAPHIC.

During the design of your database structure you should keep in mind that it is quite
easy to copy modelling objects between environments within one database, but an
automated copy from database to database is not supported.

After having started the X Window System it is now time to call HITGRAPHIC
on the command line by \hitgraphic <database>" (in our example \hitgraphic
my own.db"). The environment and the startup window appear and you can be-
gin a HITGRAPHIC session by creating a new environment. You can also start
HITGRAPHIC directly with an environment by using its name as second parameter
(\hitgraphic <database> <environment>").

In the following you will see an example session in a C-shell creating the directory
for databases and a database with exclusive read and write access for the owner and
the members of a group named \hitgr". In this session the change of startup �les is
avoided, but this is not recommended for frequent use of HITGRAPHIC.

Please note: This is an example session. It probably will not work on your machine
because groups or paths do not exist or you are using another kind of shell.

1% setenv PATH ${PATH}:/usr/local/Hitgraphic.sun4/bin

2% cd

3% mkdir .DB_DIR

4% setenv DB_DIR $HOME/.DB_DIR

5% cd $DB_DIR

6% cp -r /usr/local/Hitgraphic.sun4/dbase/init.db my_own.db

7% chmod 755 .

8% chgrp -R hitgr my_own.db

9% chmod 770 my_own.db

10% chmod 660 my_own.db/*

11% chmod 770 my_own.db/long_field

12% chmod g+s my_own.db/long_field

13% cd

14% csh -c "umask 007; hitgraphic my_own.db" &

If you have been using HITGRAPHIC Version 2.0.00 or later, user databases will
automatically be converted with the �rst call of the new HITGRAPHIC version.
Older databases are no longer supported. The database conversion is irreversible. If
you need a high degree of safety it is recommended to copy the database (e.g., on a
backup device) before starting the new version of HITGRAPHIC with it. Database
conversions may last some minutes depending on the size of the database. Please, do
not interrupt them.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

After the conversion of databases prior to version 3.2.00 it may be necessary to add
a %END at the end of a control part of an experiment because this is not part of the
automatic conversion.

A %ENDmust terminate the control part. Earlier versions of HITGRAPHIC have been
inconsistent concerning this aspect.

From version 3.3.00 onwards it is possible to change the font used within the HIT-
GRAPHIC editor from the default fixed by the resource Hitgraphic*font.

Usually this is all you need to know about databases and the call of HITGRAPHIC.
But problems may occur in case of machine crashes or abnormal program (e.g., X
server) terminations. The most common problem is that modelling objects cannot be
opened anymore because they are \busy" although no one has opened them. First,
make sure that nobody uses the database. Then, call \unset busy" with the database
(\unset busy <database>").

Some more operations can be performed by the program \db admin prg". It is called
in the same way (\db admin prg <database>"). Here again nobody should actually
use the database. A menu appears on your terminal.

� \Check db" checks the internal hash keys of the database.

� \Repair db" partially checks the integrity of the database and resets all \busy"
locks.

� \Simple �le check" searches for unreferenced �les.

In some cases you are asked to con�rm that corrections should be performed. The
program produces report �les with su�x \ trace" in the caller's home directory.

If HITGRAPHIC internally detects an error, it may create a �le called \DB trace" in
the user's home directory. Its content may help the HITGRAPHIC development team
to localize the problem. Please do not hesitate to inform or ask the HITGRAPHIC
development team.

If you have a problem using HITGRAPHIC you should consult Chapter 6, where you
may �nd a solution.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 3

Elements of Usage

3.1 HITGRAPHIC User Interface Conventions

HITGRAPHIC is the graphical user interface of HIT. It is based on the X Window
System. For all windows of HITGRAPHIC there is a common style in the user
interface. These conventions are described here.

3.1.1 Mouse Handling

If the right mouse button is held pressed down, popup menus show up (provided that
the cursor has been located in a sensitive area). Choose a function from the menu
and release the button.

The left mouse button is used for the selection of so-called buttons in dialog boxes.
The boxes must be closed in some way before other actions are enabled. Additionally
the left mouse button can be used for other functions, e.g., for selection or to mark the
new position of an object during a move operation. Please, note that HITGRAPHIC
uses X bu�ers.

Within the HITGRAPHIC editor the buttons are used in the conventional way (cf.
Section 4.5).

3.1.2 Where to Find Menus?

In general popup menus are o�ered on

� title bars;

� objects, represented by labels and graphical symbols (boxes, circles, . . .);

� the background of a window.

In Chapter 4 all popup menus are listed in detail for each window.

11

3.1.3 Dialog Boxes

Many of the functions available from the popup menus need an additional interaction
with the user. Dialog boxes can appear near the last cursor position or in the upper
left corner of the corresponding (sub)window. Note that boxes are di�erent from
windows. Boxes cannot be iconi�ed.

Boxes serve for the following purposes:

� Displaying error messages, e.g., in case a name already in use has been chosen.

� Requiring input from the user, e.g., rename.

� Requiring con�rmation of critical functions, e.g., delete.

No further actions can be executed or proceed until you have con�rmed the message
by clicking OK with the left mouse button or entering Carriage Return while the
cursor is inside the box. Selections with the left mouse button are possible, if they
are requested in the box.

Message Boxes

Message boxes mainly serve for error information. There are three types of errors:

� Errors due to unfeasible user actions.

� Errors due to the underlying graphic system (X Window System), showing up
with the message \X11-error: ...". In this case you should contact your system
administrator.

� Internal errors, showing up with the message \Error detected". In this case
it is advisable to check the information in the actual window and to start the
program \db admin prg" (cf. Chapter 2) after leaving HITGRAPHIC.

Figure 3.1: Message Box

Input Boxes

Input boxes require a text string. They are automatically placed at the cursor posi-
tion so that the string can be typed on the keyboard without any mouse movements.
Names can consist of letters, digits and underlines. Syntactical errors or HI-SLANG
keywords are recognized immediately when selecting the OK button or pressing Car-
riage Return. Please, note that name checks are performed case insensitive. Input
boxes may initially contain default strings.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 3.2: Input Box

Con�rm Boxes

To protect the user from an unintentional execution of \dangerous" functions, like
delete, a con�rmation is requested. It can be given by clicking the OK button,
otherwise the Cancel button must be selected. Carriage Return can be used as an
accelerator for selecting OK when the cursor is inside the box.

Figure 3.3: Con�rm Box

Other Boxes

There are some other special boxes, which will be introduced in later sections.

3.2 Window Types in HITGRAPHIC

The following types of windows are distinguished and shortly described in this section:

� environment window

� survey window

� component type graphic window

� control procedure window

� editor window

� aggregation description window

� evaluation window

� evaluation object window

� start/stop window

� hierarchy survey window

� hierarchy window

� experiment window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.1 Environment Window

The environment window serves as lead-in to the modelling activities. It is the work-
ing environment for the modeller. The current set of modelling objects (model types,
component types, aggregation descriptions, evaluations, experiments) is displayed,
and the environment window provides the user with some basic functionality, i.e.,
operations to create, delete, copy, open . . .modelling objects.

Figure 3.4: Environment Window

3.2.2 Survey Window

The survey window displays the structure of the model/component type under study
with respect to its hierarchical (sub)structure. It serves as a link between the envi-
ronment window and component type graphic windows by providing the user with
clear structural information about the relations between model/component types or
between corresponding instantiations, respectively.

Figure 3.5: Survey Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.3 Component Type Graphic Window

The task of constructing a model/component type is performed in the component
type graphic window. It provides the user with means for modelling services, used
services, instantiating objects of given component types, referring used to provided
services and the like. This work is simpli�ed by comprehensive graphical support.

Figure 3.6: Component Type Graphic Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.4 Control Procedure Window

The goal of control procedure windows is (of course) to specify control procedures
of component types respectively their instantiations. Modelling control procedures is
performed by selecting prede�ned standard control procedures or, with a wider range
of application, describing own procedures.

Figure 3.7: Control Procedure Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.5 Editor Window

Although HITGRAPHIC supports the user by providing a graphical interface, some
editing remains to be done, in particular the behaviour pattern of services must be
entered textually.

For editing purposes HITGRAPHIC provides a text editor. Depending on the given
context it is presented as a simple editor or as a partitioned editor consisting of several
subwindows.

Standard operations (search, search&replace, . . .) are supported as well as a cut
and paste mechanism which serves as support for window-to-window copies of text
blocks. Additionally check functions are provided for a local check of the entered
parts of code.

Figure 3.8: Editor Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.6 Aggregation Description Window

An aggregation description is always dependent on the underlying component type.
To perform an aggregation run of HIT it is just necessary to specify the maximal
population of each provided service. The aggregation description window provides
the user with a comprehensive style of specifying these populations.

Figure 3.9: Aggregation Description Window

3.2.7 Evaluation Window

The evaluation window serves as a basis for the speci�cation of various kinds of mea-
surements as well as related �elds. Starting with the well-known object structure of
the survey window the evaluation window allows for the basic operations on evalu-
ation objects, that represent a complete measurement speci�cation. Especially the
speci�cation, where a measurement will take place, is done in this window.

Figure 3.10: Evaluation Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.8 Evaluation Object Window

Whereas the evaluation window provides the user with basic operations on evalua-
tion objects, evaluation object windows are concerned with details of measurements,
i.e., they describe what should be measured and how it should be done. They al-
low for the speci�cation of estimators, streams, hierarchies and even more detailed
information.

Figure 3.11: Evaluation Object Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.9 Start/Stop Window

At various steps during the speci�cation of evaluations the necessity of start and stop
controls arises. Start/stop windows are used to specify boolean expressions, which
mirror the desired control.

Figure 3.12: Start/Stop Window

3.2.10 Hierarchy Survey Window

The need to distinguish load by the point of generation and the path down the model
hierarchy, which �nally leads to the location of the measurement, is accomplished
by the concept of hierarchies. Hierarchy survey windows provide the user with basic
operations on hierarchies.

Figure 3.13: Hierarchy Survey Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.11 Hierarchy Window

Again, graphical elements of the object structure are partially used as a compre-
hensive, well-known and general presentation of structural relations within the model
type. Load paths are speci�ed by selecting a path to the location of interest. All paths
within a hierarchy window are implicitly merged and form a load �ltering hierarchy.

Figure 3.14: Hierarchy Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

3.2.12 Experiment Window

Experiment windows serve as a bridge from all recent speci�cations to complete HIT
runs. They allow for designing experiments, which combine selected evaluations with
solution techniques (since the evaluation descriptions are independent of the solver
used) as well as with some general information constraining the experiment execution.

Figure 3.15: Experiment Window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 4

Functional Description

Before the HITGRAPHIC windows are discussed in detail, some general aspects con-
cerning the usage of HITGRAPHIC should be mentioned.

HITGRAPHIC is built on top of databases (a standard database and user databases).
For this reason a user needs access to a user database.

A user database is structured into environments. Each environment consists of a
collection of user de�nedmodel types, component types, aggregation descrip-
tions, evaluations and experiments (henceforth called modelling objects) and the
standard component types as de�ned by HIT (which are automatically added from
the standard database). The creation and usage of environments is recommended as
a structuring principle of HITGRAPHIC databases to distinguish di�erent user com-
munities or project activities and their subsets of modelling objects, respectively.

This chapter contains a detailed description of all functions in HITGRAPHIC. It is
subdivided into sections (4.1 - 4.12) according to window types the user interface of
the HITGRAPHIC system is composed of. The functions can be selected in popup
menus which are displayed while pressing the right mouse button. The entries of the
popup menus vary according to the object or area the cursor is pointing at. An entry
is selected by positioning the cursor and releasing the right mouse button. Some
operations have to be con�rmed within a message box by the user, e.g., delete or
rename. This is done either by clicking OK with the left mouse button or entering
Carriage Return. Screendumps displayed in this chapter will help to attach objects
and areas to their menus.

Some conventions concerning the entries in popup menus are speci�c to this chapter:

� Normal entries have the form \� entry", \{ entry" or \� entry".

� Pullright menus are indicated by a right-pointing small arrow. Entries, that
provide pullright menus, have the form \� entry {>".

� Switches between two entries are indicated by a slash: \� entry1/entry2". In
a popup menu that contains a switch, either entry1 or entry2 can be selected.

23

4.1 The Environment Window

The environment window forms the basis for modelling activities supported by HIT-
GRAPHIC. It is present during a complete HITGRAPHIC session and displays the
available model/component types, aggregation descriptions, evaluations and exper-
iments. Additionally to the user de�ned component types it provides all standard
component types available in HIT.

After starting a HITGRAPHIC session (cf. Chapter 2 or Section 7.2) the startup
window and an empty environment window are displayed.

Figure 4.1: Startup Window

In a subwindow within the startup window all available environments of the speci�ed
database are listed. The popup menu on each list item provides the user with basic
functions concerning the environment.

Figure 4.2: Menu on Environments

� open

opens the selected environment.

� rename

renames the selected environment.
A dialog box is displayed requesting the new name. After entering the name
and con�rming it the name of the environment is updated.

� delete

deletes the complete environment.
This operation should be performed carefully because the objects are really

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

deleted within the database. Therefore a double beep can be heard and a
con�rmation of this operation is requested.
During the delete operation, which may take some time, the con�rm box remains
visible.

A new environment can be created by clicking with the left mouse button on the
new environment button. A dialog box is displayed requesting the name of the new
environment. After entering the new name and con�rming it the environment win-
dow displays the new environment initially only consisting of the standard component
types.
The Quit Hitgraphic button can be used to close the HITGRAPHIC session.

The environment window is composed of a title bar and �ve (respectively six) subwin-
dows. The subwindows themselves contain a title bar and a list of subwindow-speci�c
modelling objects (cf. Figure 4.3). The (sub)title bar as well as the list entries allow
for some basic functions (new modelling object, copy, rename, . . .) on modelling
objects.

Besides these standard operations some features are provided. The most important
one, the operation transform & run, generates the HI-SLANG source code of the
selected experiment and starts the HIT system automatically.

Figure 4.3: Environment Window

4.1.1 Global Functions

Figure 4.4: Menu on the Title of the Environment Window

� About . . .

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.5: HITGRAPHIC Information

opens a window displaying information about the tool (version, address, license).
After con�rmation you can continue working with HITGRAPHIC.

� copy environment

opens a startup like window to copy the complete environment or a selected
element.

Figure 4.6: Subwindow to Copy to Other Environments

Firstly the destination environment has to be speci�ed. This is done either
by performing the select operation on a label within the environment list or
by clicking on the new environment button if you want to create a new en-
vironment. In this case a dialog box is displayed requesting the new name.
After entering the name and con�rming it, the destination environment gets
this name.
The two buttons at the bottom of the copy window allow to copy a complete
environment or only a selected element . An element is selected with the left
mouse button within the environment window.
During the copy operation, which may take some time, the corresponding but-
ton remains inverted.
If you have �nished copying environments or elements the Cancel button is used
to close the window.
The entry copy environment is not selectable, if other subwindows concerning
a model type, a component type, an aggregation description, an evaluation or
an experiment are still open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� change environment

opens a startup like window to manipulate environments.

Figure 4.7: Subwindow to Change to Another Environment

There is a popup menu available on each environment within the displayed
environment list.

{ open

opens the selected environment and pops down the change window.

{ rename

renames the selected environment.
A dialog box is displayed requesting the new name. After entering the
name and con�rming it the name of the environment is updated.

{ delete

deletes the complete environment.
This operation should be performed carefully because the objects are really
deleted within the database. Therefore a double beep can be heard and a
con�rmation of this operation is requested.
During the delete operation, which may take some time, the con�rm box
remains visible.

A new environment can be created by clicking with the left mouse button on
the new environment button. A dialog box is displayed requesting the name
of the new environment. After entering the new name and con�rming it the
environment window now displays the new environment only consisting of the
standard component types.
The Cancel button can be used to close the window and to return to the envi-
ronment window. If there exists no current environment, this button changes
to Quit Hitgraphic and can be used to close the HITGRAPHIC session.
The entry change environment is not selectable, if other subwindows concerning
a model type, a component type, an aggregation description, an evaluation or
an experiment are still open.

� quit

terminates a HITGRAPHIC session.
This entry is not selectable, if other subwindows concerning a model type, a
component type, an aggregation description, an evaluation or an experiment
are still open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.1.2 Functions on Kinds of Modelling Objects

For any kind of modelling object a newly created object initially has the mode free.
Next the functions are described in detail separated for each kind of modelling object.

Model Types

Figure 4.8: Menu on the Title of Model Types

� new model type

creates a new model type.
A dialog box is displayed, requesting the name of the new model type. After
con�rming the name by clicking OK with the left mouse button or entering
Carriage Return, the new model type is inserted in the list of all model types
according to the current sorting order.
An error occurs, if there already exists a model type, an evaluation or an ex-
periment description with the entered name or if you entered the name of a
standard component type.

� sort by {>

sorts the list of model types . . .

{ names (asc)

. . . alphabetically in ascending order.

{ names (desc)

. . . alphabetically in descending order.

Component Types

Component types are divided in standard component types (counter, ftserver, nowait-
send, observer, prioserver, semaphor, server, synchsend and tokenpool) and self de-
�ned component types. Standard component types cannot be changed and only a
restricted set of operations is possible.

� new component type

creates a new component type.
A dialog box is displayed, requesting the name of the new component type.
After con�rming the name the new component type is inserted in the list of the
self de�ned component types according to the current sorting order.
An error occurs, if there already exists a component type with the entered name.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.9: Menu on the Title of Component Types

� sort by {>

sorts the list of component types . . .

{ names (asc)

. . . alphabetically in ascending order.

{ names (desc)

. . . alphabetically in descending order.

Aggregation Descriptions

Figure 4.10: Menu on the Title of Aggregations

� new aggregation

creates a new aggregation description.
A dialog box is displayed, requesting you to select the component type to aggre-
gate in the list of self de�ned component types with the left mouse button. After
con�rmation the new aggregation description automatically gets the name of
the selected component type and is inserted in the list of aggregation descrip-
tions according to the current sorting order. Note that standard component
types cannot be aggregated.
An error message is displayed, if there already exists an aggregation description
for the selected component type or if the selection was invalid.

� sort by {>

sorts the list of aggregation descriptions . . .

{ names (asc)

. . . alphabetically in ascending order.

{ names (desc)

. . . alphabetically in descending order.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Evaluations

Figure 4.11: Menu on the Title of Evaluations

� new evaluation

creates a new evaluation.
A dialog box is popped up, requesting you to select the model type to evaluate
in the list of all model types with the left mouse button. After clicking OK , a
second dialog box is displayed, asking for the name of the new evaluation. If
you enter a correct name and con�rm it with OK or Carriage Return, the new
evaluation is inserted in the list of evaluations according to the current sorting
order.
An error message is displayed, if the selection was invalid, or, if there already
exists an evaluation or a model type with the entered name.

� sort by {>

sorts the list of evaluations . . .

{ names (asc)

. . . alphabetically in ascending order.

{ names (desc)

. . . alphabetically in descending order.

Experiments

Figure 4.12: Menu on the Title of Experiments

� new experiment

creates a new experiment.
A dialog box is displayed, requesting a name for the new experiment. After
entering a correct name and con�rming it, the new experiment is inserted in
the list of experiments according to the current sorting order.
An error message is displayed, if there already exists an experiment or a model
type with the entered name.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� sort by {>

sorts the list of experiments . . .

{ names (asc)

. . . alphabetically in ascending order.

{ names (desc)

. . . alphabetically in descending order.

4.1.3 Functions on Modelling Objects

Functions on a Model Type

Figure 4.13: Menu on Model Types

� information

opens the HITGRAPHIC text editor with the information �le of the selected
model type.
This entry is not selectable, if the text editor with this information �le is already
open.
The information �le is displayed in read-only mode, if the selected type is locked
by another user or released or if �le permissions are not su�cient for write mode.

� show survey

opens the survey window of the selected model type.
This entry is not selectable, if the survey window of this model type is already
open.

� open

opens the component type graphic window that corresponds to the selected
type.
This entry is not selectable, if the requested component type graphic window
has already been opened.
A message is displayed, if another user has already opened this window. In this
case the window is not opened. This behaviour prevents changes to get lost
during concurrent editing.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

If the selected type is locked by another user or released you can only have a
look on the corresponding component type graphic, but not change it.

� rename

allows to rename the selected model type.
A dialog box is displayed, requesting the new name of the model type. After
con�rmation the model type is reinserted in the list of all model types according
to the current sorting order.
In order to avoid misstatements of names, rename is not selectable, if a sub-
window of the model type is open.
If the selected type is locked by another user or released, this operation cannot
be performed. An appropriate message is displayed in this case.
An error occurs, if there already exists a model type, an evaluation or an ex-
periment description with the entered name or if you entered the name of a
standard component type.

� copy

copies the selected model type.
A dialog box is displayed, requesting the name of the copy of the selected model
type. After con�rming the name the new model type is inserted in the list of
the model types according to the current sorting order. Initially, the mode of
the new type is free.
Copy is not selectable, if a subwindow of this model type is still open.
An error occurs, if there already exists a model type, an evaluation or an ex-
periment description with the entered name or if you entered the name of a
standard component type.

� convert

converts the selected model type into a component type (without deleting the
model type).
A dialog box is displayed, requesting the name for the component type. After
con�rmation the resulting component type is inserted in the list of the self
de�ned component types according to the current sorting order.
Converting a model type into a component type causes the following changes
concerning the converted type in the component type graphic window:

� A component type has no global declarations (a model type may have).
They get lost in the new type generated by convert .

� Component types have control procedures (model types have not). After
conversion they have the default set of control procedures.

Convert is not selectable, if a subwindow of this model type is still open.
An error occurs, if there already exists a component type with the entered name.

� delete

deletes the selected model type.
A dialog box is displayed, asking for con�rmation to delete the model type.
After clicking OK with the left mouse button, the model type is removed from

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

the list of all model types. Note that evaluations created from this model type
are deleted, too. If you select Cancel , the model type is not deleted.
This entry is not selectable, if a subwindow of this model type is still open.
If the selected type is locked by another user or released, this operation cannot
be performed. An appropriate message is displayed in this case.

� mode

permits you to change the mode of the selected model type, if the current mode
is free or locked by you.
Section 5.1 describes in detail the functionality of this operation.
You cannot change the mode, if the model type is locked by another user or
released or if someone is just working on that model type. In this case you can
only select the Cancel button.

Functions on a Component Type

Figure 4.14: Menu on Component Types

On standard components only the entries information and open are available.

� information

opens the HITGRAPHIC text editor with the information �le of the selected
component type.
This entry is not selectable, if the text editor with this information �le is already
open.
The information �le is displayed in read-only mode, if the selected type is locked
by another user or released, if you select a standard component type or if �le
permissions are insu�cient for write mode.

� show survey

opens the survey window of the selected self de�ned component type.
This entry is not selectable, if the survey window of this component type is
already open.

� open

opens the component type graphic window that corresponds to the selected

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

type.
This entry is not selectable, if the requested component type graphic window
has already been opened.
A message is displayed, if another user has already opened this window. In this
case the window is not opened. This behaviour prevents changes to get lost
during concurrent editing.
If the selected type is locked by another user or released or if a standard compo-
nent type is selected, you can only have a look on the corresponding component
type graphic, but not change it.

� rename

allows to rename the selected self de�ned component type.
A dialog box is displayed, requesting the new name of the component type.
After con�rmation the component type is reinserted in the list according to
the current sorting order. Note that a corresponding aggregation description is
renamed and reinserted in its list, too.
This entry is not selectable for standard component types or, in order to avoid
misstatements of names, if a subwindow of the component type is open.
If the selected type is locked by another user or released or if a subwindow of
the corresponding aggregation description is open, rename cannot be performed.
An appropriate message is displayed in this case. The mode of the corresponding
aggregation description, if it exists, is not considered.
An error occurs, if there already exists a component type with the entered name.

� copy

copies the selected self de�ned component type.
A dialog box is displayed, requesting the name of the copy of the selected
component type. After con�rmation the new component type is inserted in the
list according to the current sorting order. Initially, the mode of the new type
is free.
This entry is not selectable, if a subwindow of this component type is still open.
An error occurs, if there already exists a component type with the entered name.

� convert

converts the selected self de�ned component type into a model type (without
deleting the component type).
A dialog box is displayed, requesting the name for the model type. After con-
�rmation the resulting model type is inserted in the list of the model types
according to the current sorting order.
This operation causes the following changes concerning the converted type in
the component type graphic window:

� Provided services and procedures in the component type are not provided
in the converted (model) type.

� Shared components in the component type change to normal components
in the converted type.

� The model type has no control procedures (the component type has).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� The model type can have global declarations (the component type does
not have), after convert they are initially empty.

This entry is not selectable, if a subwindow of the component type is still open.
An error occurs, if there already exists a model type, an evaluation or an ex-
periment description with the entered name or if you entered the name of a
standard component type.

� delete

deletes the selected self de�ned component type.
A dialog box is displayed, asking for con�rmation to delete the component type.
After clicking OK with the left mouse button, the component type is removed
from the list. If there exists a corresponding aggregation description, it is also
deleted. Note that all components that are incarnations of this type, original
or aggregated, are deleted, too. Pressing Cancel aborts the delete operation.
This entry is not selectable, if a subwindow of this component type is still open.
Delete cannot be performed, if the selected type is locked by another user or re-
leased or if the corresponding aggregation description is open. An appropriate
message is displayed in this case. (The mode of the corresponding aggrega-
tion description is not considered when performing an \automatic" delete, it is
deleted anyway.)

� mode

permits you to change the mode of the selected model type, if the current mode
is free or locked by you.
Section 5.1 describes in detail the functionality of this operation.
You cannot change the mode, if the component type is locked by another user
or released or if someone is just working on that component type. In this case
you can only select the Cancel button.

Functions on Aggregation Descriptions

Figure 4.15: Menu on Aggregation Descriptions

� information

opens the HITGRAPHIC text editor with the information �le of the selected

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

aggregation description.
This entry is not selectable, if the text editor with this information �le is already
open.
The information �le is displayed in read-only mode, if the selected aggrega-
tion description is locked by another user or released or if �le permissions are
insu�cient for write mode.

� open

opens the aggregation description window of the selected aggregation descrip-
tion.
This entry is not selectable, if this aggregation description window is already
open.
A message is displayed, if another user has already opened this window. In this
case the window is not opened. This behaviour prevents changes to get lost
during concurrent editing.
If there are no provided services or there are provided procedures within the
corresponding component type, the aggregation description window will appear,
but only to inform you with a message box that aggregation is not possible in
this case.
The aggregation description window is opened in read-only mode, if the selected
aggregation description is locked by another user or released.

� transform & run

generates the HI-SLANG source code of the selected aggregation description
and starts HIT.
If an error or a warning occurs during the transformation from the graphical de-
scription to HI-SLANG a window is popped up displaying the error message(s)
(cf. Figure 4.19). It provides the following functions:

{ search

causes a subwindow to appear allowing search operations on the error
messages.

{ quit

closes the transformation errors window.

If there are only warning messages initially no functions are available and the
transformation errors window is automatically closed after performing the run
within the run control popup. If no HIT run should take place, the transforma-
tion errors window can be closed with the quit function after the run control
popup has been quitted.
After correct completion of transformation or in case of warnings the run control
popup (cf. Figure 4.20) will be opened. In the run control popup the mode of
an aggregation run (dialog or batch) and the main memory for HIT compilation
and aggregation run can be speci�ed.
On the run control popup, there are again some functions.

{ run

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

starts the HI-SLANG compilation and, if no error occurred during the
compilation, HIT will start the aggregation run (in the speci�ed run mode).
Generated results, listing and protocol �les will be automatically added to
the database (related to the corresponding aggregation description).

{ quit

aborts the run speci�cation and no HIT compilation and run will be done.

If the run mode BATCH was selected and the run was started the run control
popup is automatically quitted and the compilation and experiment is done in
the background.
If the run mode DIALOG was selected compilation messages and the experi-
ment protocol are displayed in a protocol window.
The memory limitations for HIT compilation and experiment run must be pos-
itive integers.
The entry transform & run is not selectable, if the corresponding aggregation
description window is open.

Figure 4.16: Show Function on Aggregation Descriptions

� show {>

opens a HITGRAPHIC text editor or subwindow in read-only mode.
It shows . . .

{ protocol

. . . the standard output (HI-SLANG compilation messages and aggrega-
tion protocol) and the HI-SLANG listing that were generated during the
latest run of HIT.

{ errors

. . . a list of errors and warnings of the latest HIT run and their relation to
objects in HITGRAPHIC if possible (cf. Figure 4.22). In the popup menu
of the title bar, the following functions are provided:

� search
causes a subwindow to appear allowing search operations on the error
messages.

� quit
closes the subwindow.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

{ aggregate

. . . the results of the latest HIT run.

A single entry is not selectable, if the corresponding text editor is already open.

� copy to �le {>

copies the corresponding �le from the database to the �le system.
A popup is displayed requesting the name of the destination �le for the copy
operation. The input box will contain the following default names dependent
on the selected button.

listing <aggregation name>.lis
standard output <aggregation name>.pro
aggregate <aggregation name>.agg

The directory where you have called HITGRAPHIC is used as current directory
for the �le name, but you can also give absolute �le names.

� move to �le {>

moves the corresponding �le from the database to the �le system. Afterwards
the �le is no longer available in the database.
A popup is displayed requesting the name of the destination �le for the move
operation. The input box will contain the following default names dependent
on the selected button.

listing <aggregation name>.lis
standard output <aggregation name>.pro
aggregate <aggregation name>.agg

The directory where you have called HITGRAPHIC is used as current directory
for the �le name, but you can also give absolute �le names.

� delete

deletes the selected aggregation description and, if existing, the corresponding
additional information, i.e., HI-SLANG listing, protocol �le and the results of
the aggregation.
A dialog box is displayed, asking for con�rmation to delete the aggregation
description. After clicking OK with the left mouse button, the aggregation
description is removed from the list of all aggregation descriptions. Note that all
components, that are incarnations of the corresponding aggregate, are changed
to components of the corresponding (original) component type. Pressing Cancel
aborts the delete operation.
This entry is not selectable, if the corresponding aggregation description window
or the text editor with the information �le of the selected aggregation description
is still open.
If the selected aggregation description is locked by another user or released,
this operation cannot be performed. An appropriate message is displayed in
this case.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� mode

permits you to change the mode of the selected aggregation description, if the
current mode is free or locked by you.
Section 5.1 describes in detail the functionality of this operation.
The mode cannot be changed, if the aggregation description is locked by an-
other user or released or if someone is just working on the selected aggregation
description. In this case you can only select the Cancel button.

Functions on Evaluations

Figure 4.17: Menu on Evaluations

� information

opens the HITGRAPHIC text editor with the information �le of the selected
evaluation.
This entry is not selectable, if the text editor with this information �le is already
open.
The information �le is displayed in read-only mode, if the selected evaluation
is locked by another user or released or if �le permissions are not su�cient for
write mode.

� open

opens the corresponding evaluation window.
This entry is not selectable, if the window of the selected evaluation is already
open.
A message is displayed, if another user has already opened this window. In this
case the window is not opened. This behaviour prevents changes to get lost
during concurrent editing.
If the selected evaluation is locked by another user or released, you can only
have a look on the evaluation description, but not change it.

� rename

allows to rename the selected evaluation.
A dialog box is displayed, requesting the new name of the evaluation. After
con�rmation the evaluation is reinserted in the list of evaluations according to
the current sorting order.
In order to avoid misstatements of names, rename is not selectable, if any

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

subwindows of the selected evaluation are open.
If the selected evaluation is locked by another user or released, rename cannot
be performed. An appropriate message is displayed in this case.
An error occurs, if there already exists an evaluation or a model type with the
entered name.

� copy

copies the selected evaluation, whereby the relation to the referred model type
is maintained.
A dialog box is displayed, requesting the name of the copy of the selected
evaluation. After con�rmation the new evaluation is inserted in the list of the
evaluations according to the current sorting order. Initially, the mode of the
new evaluation is free.
This entry is not selectable, if subwindows of this evaluation description are still
open.
An error occurs, if there already exists an evaluation or a model type with the
entered name.

� delete

deletes the selected evaluation.
A dialog box is displayed, asking for con�rmation to delete the evaluation.
After clicking OK with the left mouse button, the evaluation is removed from
the list of evaluations. Note that this evaluation is also removed from the
evaluation lists in experiments. If a related experiment window is still open,
the evaluation will no longer be displayed after the next save operation in that
window. Pressing Cancel aborts the delete operation.
This entry is not selectable, if the evaluation window or the text editor with
the information �le of that evaluation is still open.
If the selected evaluation is locked by another user or released, this operation
cannot be performed. An appropriate message is displayed in this case.

� mode

permits you to change the mode of the selected evaluation, if the current mode
is free or locked by you.
Section 5.1 describes in detail the functionality of this operation.
You cannot change the mode, if the evaluation is locked by another user or
released or if someone is just working on that evaluation. In this case you can
only select the Cancel button.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Functions on Experiments

Figure 4.18: Menu on Experiments

� information

opens the HITGRAPHIC text editor with the information �le of the selected
experiment.
This entry is not selectable, if the text editor with this information �le is already
open.
The information �le is displayed in read-only mode, if the selected experiment
is locked by another user or released or if �le permissions are not su�cient for
write mode.

� open

opens the corresponding experiment window.
This entry is not selectable, if this experiment window is already open.
A message is displayed, if another user has already opened this window. In this
case the window is not opened. This behaviour prevents changes to get lost
during concurrent editing.
The experiment window is opened in read-only mode, if the selected experiment
description is locked by another user or released.

� rename

allows to rename the selected experiment.
A dialog box is displayed, requesting the new name of the experiment. After
con�rmation the experiment is reinserted in the list of experiments according
to the current sorting order.
In order to avoid misstatements of names, rename is not selectable, if any
subwindows of the selected experiment are open.
If the selected experiment is locked by another user or released, rename cannot
be performed. An appropriate message is displayed in this case.
An error occurs, if there already exists an experiment or a model type with the
entered name.

� copy

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

copies the selected experiment.
A dialog box is displayed, requesting the name of the copy of the selected
experiment. After con�rmation the new experiment is inserted in the list of the
experiments according to the current sorting order. Initially, the mode of the
new experiment is free.
This entry is not selectable, if subwindows of this experiment description are
still open.
An error occurs, if there exists already an experiment or a model type with the
entered name.

� transform

generates the HI-SLANG source code of the selected experiment.
A popup is displayed requesting the name of the output �le for the transforma-
tion. The default name is <experiment name>.hit in the directory where you
have called HITGRAPHIC. After con�rming the �le name the transformation
starts. During the execution of that operation the popup menu remains popped
up.
If an error or a warning occurs during the transformation from the graphical
description to HI-SLANG a transformation errors window is popped up display-
ing the error message(s).

Figure 4.19: Transformation Errors Window

It provides the following functions:

{ search

causes a subwindow to appear allowing search operations on the error
messages.

{ quit

closes the transformation errors window.

� transform & run

generates the HI-SLANG source code of the selected experiment and starts HIT.
If an error or a warning occurs during the transformation from the graphical

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

description to HI-SLANG a transformation errors window is popped up (cf.
Figure 4.19) displaying the error message(s). It provides the following functions:

{ search

causes a subwindow to appear allowing search operations on the error
messages.

{ quit

closes the transformation errors window.

If there are only warning messages initially no functions are available and the
transformation errors window is automatically closed after performing the run
within the run control popup. If no HIT run should take place, the transforma-
tion errors window can be closed with the quit function after the run control
popup has been quitted.
After correct completion of transformation or in case of warnings the run control
popup will be opened. In the run control popup the mode of an experiment run

Figure 4.20: HIT Run Control Window

(dialog or batch) and the main memory for HIT compilation and experiment
run can be speci�ed.
On the run control popup, there are again some functions.

{ run

starts the HI-SLANG compilation and, if no error occurred during the
compilation, HIT will start the experiment run (in the speci�ed run mode).
Generated results, trace, listing and protocol �les will be automatically
added to the database (related to the corresponding experiment).

{ quit

aborts the run speci�cation and no HIT compilation and experiment run
will be done.

If the run mode BATCH was selected and the experiment run was started the
run control popup is automatically quitted and the compilation and experiment
is done in the background.
If the run mode DIALOG was selected compilation messages and the experi-
ment protocol are displayed in a protocol window.
The memory limitations for HIT compilation and experiment run must be pos-
itive integers.
The entry transform & run is not selectable, if the corresponding experiment
window is open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.21: Show Function on Experiments

� show {>

opens a HITGRAPHIC text editor or subwindow in read-only mode.
It shows . . .

{ protocol

. . . the standard output (HI-SLANG compilation messages and experi-
ment protocol) and the HI-SLANG listing that were generated during the
latest run of HIT.

Figure 4.22: Errors of a HIT Run

{ errors

. . . a list of errors and warnings of the latest HIT run and their relation
to objects in HITGRAPHIC if possible. In the popup menu of the title
bar, the following functions are provided:

� search

causes a subwindow to appear allowing search operations on the error
messages.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� quit

closes the subwindow.

{ table

. . . the table representation of the results if the output TABLE was spec-
i�ed in the experiment window.

{ dump�le

. . . the dump�le representation of the results if the output DUMPFILE
was speci�ed in the experiment window.

{ trace

. . . the trace if it was demanded for a trace in the experiment or evaluation
window.

{ traceinfo

. . . information (size) about the trace�le if it was demanded for a trace in
the experiment or evaluation window.

A single entry is not selectable if the corresponding text editor is still open. You
will get a message if the requested text is not available.

Figure 4.23: Copy Function on Experiments

� copy to �le {>

copies the corresponding �le from the database to the �le system.
A popup is displayed requesting the name of the destination �le for the copy
operation. The input box will contain the following default names dependent
on the selected button.

listing <experiment name>.lis
standard output <experiment name>.pro
table <experiment name>.tab
dump�le <experiment name>.dmp
trace <experiment name>.tra

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The directory where you have called HITGRAPHIC is used as current directory
for the �le name, but you can also give absolute �le names.
A message is displayed if the requested texts are not available.

� move to �le {>

moves the corresponding �le from the database to the �le system. Afterwards
the �le is no longer available in the database.
A popup is displayed requesting the name of the destination �le for the move
operation. The input box will contain the following default names dependent
on the selected button.

listing <experiment name>.lis
standard output <experiment name>.pro
table <experiment name>.tab
dump�le <experiment name>.dmp
trace <experiment name>.tra

The directory where you have called HITGRAPHIC is used as current directory
for the �le name, but you can also give absolute �le names.
A message is displayed if the requested texts are not available.
It is recommended to use this function for traces if the size of the trace�le (see
the item traceinfo in the show menu) is too large.

� delete

deletes the selected experiment.
A dialog box is displayed, asking for con�rmation to delete the experiment.
After clicking OK with the left mouse button, the experiment is removed from
the list of all experiments. Pressing Cancel aborts the delete operation.
This entry is not selectable, if the corresponding experiment window or the text
editor with the information �le of the selected experiment is still open.
If the selected experiment is locked by another user or released, this operation
cannot be performed. An appropriate message is displayed in this case.

� mode

permits you to change the mode of the selected experiment, if the current mode
is free or locked by you.
Section 5.1 describes in detail the functionality of that operation.
The mode cannot be changed, if the experiment is locked by another user or
released or if someone is just working on the selected experiment. In this case
you can only select the Cancel button.

4.2 The Survey Window

The survey window is entered via a show survey being performed on a model/com-
ponent type within the environment window.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

It displays the hierarchical structure of the model/component type under study. The
hierarchical structure in the given context is the result of the instantiations of com-
ponent types within involved model/component types.

According to this understanding of hierarchical structure the survey window provides
two di�erent views. The �rst, which we refer to as the type structure, displays a type
oriented view. The second view, the object structure, provides the same information
based on instantiated objects.

The survey window is composed of three parts (cf. Figure 4.24). First a title bar
provides the user with the name and the kind (model/component) of the type under
study.

The buttons TYPE STRUCTURE and OBJECT STRUCTURE can be used to
switch between the views, that are displayed in the scrollable region.

Figure 4.24: Survey Window { Type Structure

As mentioned above the type structure deals with model/component types and their
hierarchical dependencies. Types are displayed in the form of labelled boxes which
provide a show type operation to show the component type graphic window in read-
only mode. The boxes are connected via lines that represent the hierarchical relation
between types. Each connection represents at least one instantiation of a certain
type due to the following constraints. An object can be instantiated single or as an
array which is denoted by a normal respectively a bold line. Another criterion of
instantiation results from the di�erence of a normal instantiation and a shared one
where the latter refers to an object instantiated somewhere else. This di�erence is
visualized by the use of solid respectively dashed lines. The combination of these
criterions leads to four di�erent kinds of lines. In Figure 4.24 three of them can be
seen.

The names of the instantiated objects that are represented by one line can be popped
up by selecting the small box on a line with the right mouse button. The list is

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

popped down, when the cursor leaves the box.

Note that within the type structure each type is displayed exactly once.

Figure 4.25: Survey Window { Object Structure

In contrast to the type structure the object structure deals with instantiated objects.
Each instantiated object is represented by a solid labelled box. The semantics of
dashed/solid and normal/bold lines are analogous to the type structure. A dot on
the line indicates that there exists a binding of a used service in the upper component
to a provided service of the lower component.

Note that an object may be accessed from di�erent hierarchical levels, e.g., the object
\link" of type \server" in Figure 4.25. The shared instantiation within the types
\handling" and \evaluation" is within the scope of the normal instantiation in type
\o�ce". For this reason the same object is referenced. If there was no normal
instantiation of the component \link" within the scope of the model/component type
under study each shared instantiation would reference to an own object (displayed as
a dashed box).

The position of objects in the object structure can be inuenced by the positions of
the objects in the corresponding component type graphic windows. Changes have to
be saved there, and the view in the survey window has to be actualized by a refresh
operation.

By default the object structure is displayed because it contains a more signi�cant
view of the structure.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.2.1 Global Functions

Figure 4.26: Menu on the Title of the Survey Window

� refresh

updates the currently displayed view.
This operation should be performed if modi�cations on underlying components
have been made to mirror the actual status of the model respectively component
type.

� print

prints the object structure of the model or component.
An input box requesting the settings for the PostScript �le appears (cf. Sec-
tion 5.3).
This entry is only available if the object structure is selected.

� quit

quits the survey window.
This entry is not selectable, if a component type graphic window started from
this survey window is still open.

4.2.2 Popup Menu in the Survey Window

Figure 4.27: Menu on Types in the Survey Window

� show type

shows the component type graphic window in read-only mode that corresponds
to the selected type respectively object.
This entry is not selectable, if the requested component type graphic window is
already open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.28: List of Local Objects

4.2.3 Function on Line in the Type Structure

Within the type structure of the survey window small rectangular boxes between the
types provide the possibility to list all the local objects of the lower type used in
the higher type. After performing a click with the right mouse button on the grip a
scrollable list is displayed showing the local objects. The list disappears after a cursor
movement out of the box.

4.3 The Component Type Graphic Window

The component type graphic window provides graphical support for the actual task of
specifying a HIT model/component type. Performing an open operation on a model
respectively component type within the environment window yields the component
type graphic window showing the current \ingredients" of the chosen type.

To describe the whole extent of a component type graphic window, let us distin-
guish elements which are represented graphically from elements which can be referred
through popup menus. The graphical representation of some elements is shown in
Figure 4.29.

Components are placed on the bottom of the graphic region. A component is visu-
alized by a box that is labelled with the name of the component and the component
type. In Figure 4.29 you see that the component type \handling" includes the three
components \humans", \stations" and \link". \Stations" is a component array which
is emphasized by a shadowed box and the indication of the array bounds in the la-
bel. An important fact to mention is the spatial separation of normal and shared
components. Normal components are placed left hand from the shared components
which are symbolized through dashed boxes drawn on a grey background (like the
component \link").

Components may provide services and/or procedures, e.g., components of the type
\server" provide the service \request". Provided services are represented by a verti-
cally drawn line starting at the upper side of a component box, provided procedures
are drawn with a dashed line.

Services and procedures that are subordinated to the current model/component type
are represented by parallelograms, dashed in case of a procedure, placed on the left
side of the graphic region. A parallelogram is labelled with the name of the ser-
vice/procedure it represents and, if the service/procedure is provided to an upper

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.29: Component Type Graphic Window

level, a small left-pointing arrow is drawn at the left edge. Here, we have a spatial
separation between services and procedures that are provided and internal services
and procedures: the �rst are always placed on top of the latter.

Used services/procedures are represented by horizontal arrows pointing to the
parallelogram of the using service/procedure. The service \edit" for example, which
is provided to an upper layer, uses four services.

To sum up the following line styles are used:

� solid for services,

� dashed for procedures,

� bold for arrays.

To indicate that a provided service/procedure refers to a used service/procedure a
dot is drawn at the point of intersection. The binding is also called a connection.

The parallelogram on the bottom represents the activities of the current model/com-
ponent type. Opening it will yield a text editor where you can enter HI-SLANG code

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

for the creation of activities and for other initialisations.

Streams within a component type are displayed in a subwindow at the bottom of
the component type graphic window as you can see in Figure 4.29. The subwindow is
only displayed if a stream exists in the model/component type. A stream is labelled
with its name and a capital letter that indicates the stream type (C for count, E
for event, or S for state stream).

Let us now briey discuss the non-graphical elements. If you work on a model type,
the popup menu on the title bar provides entries to specify formal parameters and
global and local declarations. These tasks are, as mentioned above, done in dedicated
text editors occurring when the corresponding entry is selected.

If you work on a component type, besides the entries formal parameters and locals
you will �nd an entry for modelling the control procedures of the type. This is done
in a special window that will be discussed in detail in Section 4.4.2. The same is
valid for control procedures of components. Other elements that can be speci�ed via
text editors are information �les, actual parameters of components, bodies, formal
parameters and local declarations of services/procedures as well as formal parameters
of used services/procedures.

4.3.1 Global Functions on Model Types

Figure 4.30: Menu on the Title of the Component Type Graphic Window

� formal parameters

opens the HITGRAPHIC text editor to specify the formal parameters of the
model type.
The corresponding actual parameters have to be added within the experiment
window, cf. Section 4.12.3.
This entry is not selectable, if the text editor with this �le is already open. The
�le is displayed in read-only mode, if the model type is locked by another user
or released or if �le permissions are not su�cient for write mode.

� declarations

opens the HITGRAPHIC text editor consisting of two subwindows for global
and local declarations, e.g., variables or record types.
This entry is not selectable, if the text editor with this �le is already open. The
�les are displayed in read-only mode, if the model type is locked by another
user or released or if �le permissions are not su�cient for write mode.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� new stream

creates a new stream.
A dialog box is displayed, requesting the name for the new stream. After you
have entered a correct name (i.e., a name that is not existing within the current
type graphic window) and con�rmed it the new stream is appended at the
stream list as an event stream.
As standard streams are considered automatically, you must not create them.
The error message \Sorry, name is in use." is displayed, if there already exists a
stream, a service or procedure, a used service or a used procedure, a component
or a component type with the entered name. Error messages concerning name
conicts may also occur during HI-SLANG compilation.
This function is not selectable, if the current type is locked by another user or
released.

� print

prints the type graphic of the model type.
An input box requesting the settings for the PostScript �le appears (cf. Sec-
tion 5.3).

� save

saves the current state of the model type.
This save does not include the contents of other windows, that provide a save,
e.g., text editors or windows to enter control procedures. For the duration of this
operation, the popup menu remains visible on the display. When the model type
is saved, the type graphic is redrawn. At this point you see the actual state of
the model type, i.e., how it is stored in the database. If you miss some objects,
the corresponding types must have been deleted in the environment window
meanwhile.
Save is not selectable, if the model type is locked by another user or released
or if windows opened from the component type graphic window are not closed.

� save & quit

saves the current state of the model type and quits the component type graphic
window.
If any problems occur during the save operation, the quit operation will not be
performed, but the window will be actualized according to the current state of
the database.
This entry is not selectable, if a window started from this component type
graphic window is still open or if the model type is locked by another user or
released.

� quit

quits the component type graphic window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
This entry is not selectable, if a window started from this component type
graphic window is still open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.3.2 Global Functions on Component Types

Figure 4.31: Menu on the Title of the Component Type Graphic Window

� formal parameters

opens the HITGRAPHIC text editor to specify the formal parameters of the
component type.
This entry is not selectable, if the text editor with this �le is already open.
The formal parameters are displayed in read-only mode, if the component type
is a standard component type, if it is locked by another user or released, or if
�le permissions are not su�cient for write mode.
Among the standard component types the types \counter", \semaphor", \to-
kenpool", \nowaitsend", \ftserver", and \observer" have formal parameters:

{ counter:

min : ARRAY OF INTEGER;

max : ARRAY OF INTEGER;

init: ARRAY OF INTEGER

{ semaphor:

sem_init: INTEGER DEFAULT 1

{ tokenpool:

no_of_tokens: INTEGER

{ nowaitsend:

no_of_buffers: INTEGER DEFAULT 1

{ ftserver:

processors : INTEGER;

degmax : INTEGER DEFAULT 1;

repair_units: INTEGER DEFAULT 1;

failure_rate: REAL;

repair_rate : REAL;

dormancy : REAL DEFAULT 1.0

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

{ observer:

obs_interval: REAL;

interactive : BOOLEAN DEFAULT FALSE

� locals

opens the HITGRAPHIC text editor to enter local declarations of the compo-
nent type, e.g., local variables.
This entry is not selectable, if the text editor with this �le is already open or if
the type graphic shows a standard component type.
The �le is displayed in read-only mode, if the component type is locked by
another user or released or if �le permissions are not su�cient for write mode.

� control procedures

opens the control procedure window for this component type.
This entry is not selectable, if the control procedure window for this component
type is already open or if the type graphic shows a standard component type.
If the component type is locked by another user or released, you can only have
a look on the control procedures, but not change them.
For further explanations cf. Section 4.4.2.

� new stream

creates a new stream.
A dialog box is displayed, requesting the name for the new stream. After you
have entered a correct name (i.e., a name that is not existing within the cur-
rent type graphic window) and con�rmed it the new stream is appended at the
stream list as an event stream.
As standard streams are considered automatically, you must not create them.
The error message \Sorry, name is in use." is displayed, if there already exists a
stream, a service or procedure, a used service or a used procedure, a component
or a component type with the entered name. Error messages concerning name
conicts may also occur during HI-SLANG compilation.
This function is not selectable, if the current component type is locked by an-
other user or released or if it is a standard component type.

� print

prints the type graphic of the component type.
An input box requesting the settings for the PostScript �le appears (cf. Sec-
tion 5.3).

� save

saves the current state of the component type.
This save does not include the contents of other windows, that provide a save,
i.e., text editors or windows to enter control procedures. For the duration of
this operation, the popup menu remains visible on the display. When the com-
ponent type is saved, the type graphic is redrawn. At this point you see the
actual state of the component type, i.e., how it is stored in the database. If
you miss some objects, the corresponding types must have been deleted in the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

environment window meanwhile.
Save is not selectable, if the component type is locked by another user or re-
leased, if windows opened from the component type graphic window are not
closed, or if the type graphic shows a standard component type.

� save & quit

saves the current state of the component type and quits the component type
graphic window.
If any problems occur during the save operation, the quit operation will not be
performed, but the window will be actualized according to the current state of
the database.
This entry is not selectable, if a window started from this component type
graphic window is still open, if the component type is locked by another user
or released, or if the type graphic shows a standard component type.

� quit

quits the component type graphic window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
This entry is not selectable, if a window started from this component type
graphic window is still open.

4.3.3 Popup Menus in the Graphic Region

The Background Popup Menu

Figure 4.32: Menu on the Background of the Component Type Graphic Window

The entries of the popup menu are not selectable for standard component types.

� new component

is used to create an incarnation of an existing component type.
A dialog box is displayed, asking you to select a component type. At this point
you have to turn to the environment window, select a component type with
the left mouse button and then give your OK in the dialog box. If you really
selected a component type { not, e.g., a model type or even nothing {, another

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

dialog box is displayed, requesting the name for the new component. Check the
type name in the question { so you can be sure to incarnate the right object.
After entering a correct name, i.e., not the name of another component or
component type, service, procedure or stream in the current type, you will �nd
the new component in your type graphic, placed at the right end of the normal
components (as a normal component in the white area). If you did something
wrong during this operation, error messages will tell you the problem.
New component is not selectable, if the current type is locked by another user
or released.

� new service

creates a new service.

� new procedure

creates a new procedure.

In both cases a dialog box is displayed, requesting the name of the new service
respectively procedure. After entering a correct name, i.e., not the name of
another component or component type, service, procedure or stream in the cur-
rent type, and con�rming it you will �nd the new service respectively procedure
placed at the upper end of the already existing internal services and procedures
(as an internal service respectively procedure).
New service respectively new procedure is not selectable, if the current type is
locked by another user or released.

� get

inserts the component respectively service or procedure that was selected by
the most recent put operation (cf. this section) into the current type graphic
window.
A dialog box is displayed, requesting the name for the new component respec-
tively the new service or procedure. After entering a correct name, i.e., not the
name of another component or component type, service, procedure or stream in
the current type, and con�rming it you will �nd a copy of the object, on which
the put operation was applied before.
This operation includes the copy of all �les (e.g., parameter �les) and, dealing
with components, the control procedures of the original component. If the put
operation was performed on a service respectively procedure, all used services
and used procedures (including their �les) are copied, too. This explains that
you possibly may wait some seconds for the completion of this operation.
An error message is displayed, if no object from a previous put operation can
be retrieved.
It is not necessary that the put and get operations are performed in the same
type graphic window.
Get is not selectable, if the current type is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Function on Activities

Figure 4.33: Menu on Activities in the Component Type Graphic Window

� open

opens the HITGRAPHIC text editor to enter HI-SLANG code for the creation
of activities or for initialisations of the current component type respectively
model type.
To ease the handling of speci�ed parameters and declarations within the speci-
�cation of activities they are also shown in read-only mode.
This entry is not selectable, if the text editor with the activities �le is already
open or the type graphic shows a standard component type. The �le is dis-
played in read-only mode, if the component type is locked by another user or
released or if �le permissions are not su�cient for write mode.

Functions on Components

Figure 4.34: Menu on Components in the Component Type Graphic Window

� actual parameters

opens the HITGRAPHIC text editor with two subwindows to enter the actual

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

parameters of the component.
In the upper part of the editor the formal parameters of the type are displayed.
This is useful, because the actual values must be entered in correct form and
sequence in the lower part of the editor. Note that the formal parameters can-
not be changed at this place.
If the formal parameters have been changed or deleted within the corresponding
component type the actual parameters have to be updated in this window by
the user himself.
The function is not selectable, if the text editor with the actual values of this
component is already open. The actual parameters are displayed in read-only
mode, if the current type is locked by another user or released or if �le permis-
sions are not su�cient for write mode.

� control procedures

opens the control procedure window for the component.
If this function is performed for the �rst time for this component, a dialog box
is displayed asking for a save before opening the control procedure window.
This entry is not selectable, if the requested control procedure window is already
open.
If the current type is locked by another user or released, you can only read the
control procedures of the component, but cannot change them.
For explanations on control procedures concerning components cf. Section 4.4.3.

� shared/normal

transforms a normal component into a shared one respectively a shared compo-
nent into a normal one.
If you switch from normal to shared , the component is moved into the grey area
and is placed there at the �rst position. If you switch from shared to normal ,
the component is moved into the white area and is placed there at the last
position.
In model types, the switch is not selectable. It is also not selectable, if the
current type is locked by another user or released.

� array/single

converts a single component into a component array respectively a component
array into a single component.
If you switch from single to array, a dialog box is displayed, requesting integer
values for the array bounds:

Figure 4.35: Array Bounds Window

If your OK is responded with a beep, maybe one of the values contains letters.
Note that letters and the following characters are not ignored, if an entry begins

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

with a correct integer value.
An error message is displayed, if the lower bound value is greater than the upper
bound value.
If the values are correct, they are appended at the component name in the type
graphic. They are replaced by a \[*]", if component name and bounds do not
�t in the component box.
After switching from single to array and performing a save operation all refer-
ences to the single component in any evaluation are replaced by a reference to
the �rst component with the index identical to the lower bound.
After switching from array to single and performing a save operation all ref-
erences to any component or any range of components of the array in any
evaluation are replaced by a reference to the single component.
This switch is not selectable, if the current type is locked by another user or
released.

� array bounds

enables you to change the array bounds of the component array.
The values can be changed in the \array bounds" dialog box that is described
for the array/single switch.
A change of bounds may cause components of the array to disappear, which are
referenced in an evaluation. After a save operation all parts of any evaluation
will be deleted, that contain such a reference to a no longer existing component
in a component array. This can also cause a reduction of the range of the
component array in an evaluation object.
This entry is not selectable, if you have selected a single component or if the
current type is locked by another user or released.

� use aggregate/use original

performs a switch between aggregated and detailed representation for a compo-
nent. Aggregated components are marked by a label below their box.
Please, note that all components of the same type exist in the same representa-
tion (within the component graphic window), that means either in aggregated
or original representation. A representation switch for one component causes
a representation switch for all objects of the same type within the component
graphic window. If new components within the scope of this window are gen-
erated, their representation depends on existing components of the same type
(within the component graphic window). If no other components exist the de-
fault \original" will be used.
Copying a component will not change its representation.
The switch to aggregate or original is only selectable if an aggregation descrip-
tion exists for the component type. The representation of a shared component
cannot be changed, it depends on the information at the point of instantiation
of the component.
Performing the switch from original to aggregate causes the control procedures
to change to default values, which are \always" for the accept procedure and
\all" for the o�er procedure. Also evaluation objects and hierarchies within
subcomponents are no longer available together with the corresponding speci�-
cations.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

After a switch from the original to the aggregated representation and a save
operation all components, that have been initiated because of the use of the
original representation, will be deleted, because they no longer appear in the
aggregated representation. This will also cause a deletion of all parts of any
evaluation, that contain a reference to these now deleted components.
The switch is not selectable, if the current type is locked by another user or
released.

� use popul/no popul

performs a switch between normal and expanded view of the component.
If you switch to popul additionally there are provided popul procedures which en-
able to determine the current number of processes in this component. Di�erent
procedures are available for the component areas and the complete component.

{ popul ann

{ popul entry

{ popul serv

{ popul exit

{ popul

If the component type provides more than one service, for each of them another
set of popul procedures exists.
This entry is only available for components of standard component types.
It is not available, if the current type is locked by another user or released.

� rename

allows you to rename the component.
The new name can be entered in the dialog box that is popped up. After con-
�rmation the component is redrawn with the new name in its box.
An error message is displayed, if there already exists a component or a compo-
nent type, a service, a procedure or a stream with the entered name.
Rename is not selectable, if subwindows of this component are open or if the
current type is locked by another user or released.

� copy

copies the component.
A dialog box is displayed, requesting the name for the copy of the component.
After entering a correct name and con�rming it the copy is inserted right hand
from the selected component. This operation includes the copy of actual pa-
rameters and control procedures.
An error message is displayed, if there already exists a component or component
type, a service, a procedure, or a stream with the entered name.
This function is not selectable, if the current type is locked by another user or
released.

� put

stores the component in an internal bu�er in order to prepare the next get

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

operation.
If the current component was not saved before, a dialog box is displayed asking
for a save before performing the put operation.

� move

allows you to move the component to another position.
Move the cursor to the new position and press the left mouse button. The
component will move from its old position to the new one.
A position is only accepted, if the cursor points between two components or left
hand from the �rst component or right hand from the last component. Note
that components can only be moved within their area, i.e., normal components
within the white area and shared components within the grey area. Otherwise
an error message is displayed.
The position of a component in the type graphic window a�ects the layout of
object structures in survey windows containing objects of the type.
Move is not selectable, if the current type is locked by another user or released.

� print

prints the actual parameters and control procedures of the component.
(This is not yet implemented in the current HITGRAPHIC version.)

� delete

deletes the component.
A dialog box is displayed, asking for con�rmation to delete the component.
Clicking OK deletes the component.
Delete is not selectable, if subwindows of this component are open or if the
current type is locked by another user or released.

Function on Provided Services and Provided Procedures

Figure 4.36: Menu on Provided Services

� show formal parameters

opens the HITGRAPHIC text editor with two subwindows showing the formal
parameters of the provided service respectively procedure in the upper part and
the result parameters in the lower part.
You can only have a look at the contents of the �les with this operation; changing
the contents is possible with the formal parameters function on this provided
service in the type graphic of the underlying component type.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Functions on Services and Procedures

Figure 4.37: Menu on Services

Within standard component types only the entries information and formal parameters
are selectable, and the displayed �les are only readable.

� information

opens the HITGRAPHIC text editor with the information �le of the service or
procedure.
Information is not selectable, if the text editor with this information �le is
already open. The information �le is displayed in read-only mode, if the current
type is locked by another user or released or if �le permissions are not su�cient
for write mode.

� open

opens the HITGRAPHIC text editor to enter the interior of the service or
procedure, i.e., the local declarations (variables or records) and the body.
The interface, i.e., formal parameters and results, are shown in read-only mode.
Open is not selectable, if the text editor with the body �le is already open. The
�les are displayed in read-only mode, if the current type is locked by another
user or released or if �le permissions are not su�cient for write mode.

� formal parameters

opens the HITGRAPHIC text editor with two subwindows to enter or change
the interface of the service respectively procedure, i.e., the formal parameters
in the upper part and the result parameters in the lower part.
This entry is not selectable, if this text editor is already open. The �les are
displayed in read-only mode, if the current type is locked by another user or
released or if �le permissions are not su�cient for write mode.

� provide/internal

provides a service or procedure for external use respectively converts a provided
service or procedure into an internal one not provided any longer.
If you select provide on an internal service or procedure, it is moved to the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

lower end of the already existing provided services and procedures. A small
left-pointing arrow indicates the fact, that the service or procedure is provided
now.
If you select internal on a provided service or procedure, it is moved to the
upper end of the already existing internal services or procedures, and the small
arrow is removed.
This function is not selectable, if the current type is a model type or if the
current type is locked by another user or released.

� new used service

creates a new used service.
New used service is not selectable for procedures.
More information can be found under the next item.

� new used procedure

creates a new used procedure.

In both cases (new used service and new used procedure) a dialog box is dis-
played, requesting the name of the new used service respectively procedure.
After entering a correct name, i.e., a name that is not existing among the used
services, the used procedures and streams, and con�rming it you will �nd the
new used service respectively procedure placed at the lower end of the already
existing used services and procedures of the selected service or procedure.
The error message \Sorry, name is in use." is displayed, if the service or proce-
dure already has a used service or a used procedure with the same name or if
there exists a stream with the same name.
This function is not selectable, if the current type is locked by another user or
released.

� rename

allows you to rename the service respectively procedure.
Enter the new name in the dialog box that is popped up. After con�rmation
the service respectively procedure is redrawn with the new name.
An error message is displayed, if there already exists a service or procedure or
a component or component type or a stream with the entered name.
Rename is not selectable, if subwindows of this service respectively procedure
are open or if the current type is locked by another user or released.

� copy

copies the service respectively procedure.
A dialog box is displayed, requesting the name for the copy of the selected
service respectively procedure. After entering a correct name and con�rming it
the copy is inserted directly below the selected service respectively procedure.
This operation includes the copy of used services, used procedures and �les.
An error message is displayed, if there already exists a service or procedure or
a component or component type or a stream with the entered name.
Copy is not selectable, if the current type is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� put

stores the service respectively procedure in an internal bu�er in order to prepare
the next get operation.
If the current component type was not saved before, a dialog box is displayed
asking for a save before performing the put operation.

� move

allows you to move the service respectively procedure to another position.
Move the cursor to the new (relative) position and press the left mouse button.
The type graphic is redrawn, showing the service respectively procedure at its
new position.
A position is only accepted, if the cursor points between two services or proce-
dures or directly below or above the �rst respectively last service or procedure.
Note that internal services and procedures can only be movedwithin the scope of
internal services and procedures, provided services and procedures only within
the scope of provided services and procedures. Otherwise an error message is
displayed.
Move is not selectable, if the current type is locked by another user or released.

� print

prints the information �le, formal parameters, locals and the body of the service
respectively procedure.
(This is not yet implemented in the current HITGRAPHIC version.)

� delete

deletes the service respectively procedure.
A dialog box is displayed, asking for con�rmation to delete the selected object.
Clicking OK deletes the service respectively procedure and redraws the type
graphic.
Delete is not selectable, if subwindows of this service respectively procedure are
open or if the current type is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Functions on Used Services and Used Procedures

Figure 4.38: Menu on Used Services

� formal parameters

opens the HITGRAPHIC text editor with two subwindows to enter or change
the formal parameters of the used service respectively procedure in the upper
part and the result parameters in the lower part.
This entry is not selectable, if this text editor is already open. The �les are
displayed in read-only mode, if the current type is locked by another user or
released or if �le permissions are not su�cient for write mode.

� set array/unset array

transforms the used service or procedure into an array respectively transforms
a used service or procedure array into a single used service or procedure.
Be sure, that you have connected component arrays with used service respec-
tively procedure arrays and single components with single used services respec-
tively procedures. Otherwise, you will get error messages during HI-SLANG
compilation.
This entry is not selectable, if the current type is locked by another user or
released.

� rename

allows you to rename the used service respectively used procedure.
Enter the new name in the dialog box that is popped up. After con�rmation
the used service respectively used procedure is redrawn with the new name.
The error message \Sorry, name is in use." is displayed, if there already exists a
stream, a used service or a used procedure with the entered name at the current
service or procedure.
Rename is not selectable, if the text editor with the formal parameters of this
used service respectively used procedure is open or if the current type is locked
by another user or released.

� copy

copies the used service respectively used procedure.
A dialog box is displayed, requesting the name for the copy of the selected used
service respectively procedure. After entering a correct name and con�rming it

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

the copy is inserted directly below the selected used service respectively used
procedure. This operation includes the copy of the formal parameters.
The error message \Sorry, name is in use." is displayed, if there already exists a
stream, a used service or a used procedure with the entered name at the service
or procedure you are working on.
Copy is not selectable, if the current type is locked by another user or released.

� move

allows you to move the used service respectively used procedure to another po-
sition within the other used services and used procedures of the current service
respectively procedure.
Move the cursor to the new (relative) position and press the left mouse button.
The service respectively procedure is redrawn, showing the used service respec-
tively used procedure at its new position.
A position is only accepted, if the cursor points between two used services or
procedures or below or above the �rst respectively last used service or proce-
dure. Otherwise an error message is displayed.
Move is not selectable, if the current type is locked by another user or released.

� unbind

is used to delete connections.
Unbind is only selectable, if the used service respectively used procedure is
already connected. If you select unbind , the connection is deleted.
This entry is not selectable, if the current type is locked by another user or
released.

� delete

deletes the used service respectively used procedure.
A dialog box is displayed, asking for con�rmation to delete the selected object.
Clicking OK deletes the used service respectively used procedure and redraws
the type graphic.
Delete is not selectable, if the text editor with the formal parameters of this
used service respectively used procedure is open or if the current type is locked
by another user or released.

Functions on Streams

Figure 4.39: Menu on Streams

� change type

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

displays the stream dialog box to select the type of the stream.

Figure 4.40: Stream Dialog Box

Select the stream type COUNT , STATE or EVENT with the left mouse button.
The selected stream type is inverted. Click OK to con�rm your selection.
The letter of the corresponding stream cycle in the type graphic, that indicates
the selected stream type is updated. E stands for event stream, S for state
stream and C for count stream.
Change type is not selectable, if the current type is locked by another user or
released.

� rename

allows you to rename the stream.
Enter the new name in the dialog box that is popped up. After con�rmation
the stream is redrawn with the new name.
The error message \Sorry, name is in use." is displayed, if there already exists a
stream, a service or procedure, a used service or a used procedure, a component
or a component type with the entered name within the current type.
Rename is not selectable, if the current type is locked by another user or re-
leased.

� move

allows you to move a stream to another position within the stream area.
Move the cursor to the new (relative) position and press the left mouse button.
The stream area is redrawn, showing the stream at its new position.
A position is only accepted within the stream area. Otherwise an error message
is displayed.
Move is not selectable, if the current type is locked by another user or released.

� delete

deletes the stream.
A dialog box is displayed, asking for con�rmation to delete the stream. Clicking
OK deletes the stream and redraws the type graphic.
Delete is not selectable, if the current type is locked by another user or released.

Functions on Connections

A popup menu exists on the point of intersection of a line representing a provided
service respectively procedure and a line representing a used service respectively used

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

procedure. The operations in the menu depend on the current state, i.e., whether a
connection dot exists or not.

Figure 4.41: Menu on a Point of Intersection without a Dot

� set

is used to set a connection between used and provided service respectively pro-
cedure.
Set is not selectable, if the used service or procedure is already bound, if you
try to connect a service and a procedure, a single line and an array line, or if
the current type is locked by another user or released.

� set with transfer

operates like set, but additionally the formal parameters of the provided service
respectively procedure are transfered to the used service respectively procedure.
The transfer operates directly on the database without an explicit save opera-
tion. Therefore, a con�rm box may appear.

Figure 4.42: Menu on a Connection Dot

� transfer formal parameters

transfers the formal parameters of the provided service respectively procedure
to the used service respectively procedure.
This function operates directly on the database without an explicit save oper-
ation. Therefore, a con�rm box may appear.
This operation is not selectable, if the current type is locked by another user or
released.

� delete

deletes the connection between used and provided service respectively proce-
dure.
Delete is not selectable, if the current type is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.4 The Control Procedure Window

The control procedure window supports the user in controlling the progress of a
service call within a component. According to the general view of a component as
an autonomous object, a component is (virtually) divided into four areas respectively
queues. The transitions between the areas and the behaviour within the service area
are controlled by control procedures. For each kind of control procedure (accept,
schedule, dispatch, o�er) certain standard disciplines are selectable in dependence
on the component type under study. If necessary, actual parameters, i.e., speeds or
population bounds, can be speci�ed via an editor.

The control procedure window can be used in two situations. For a self de�ned
component type the default control procedures can be overwritten by self de�ned
control procedures. Their implementation is described in HI-SLANG within a text
editor.

For a component the control procedure window is used to select the control procedures
that should be used for this component.

Note that switching to another procedure causes a loss of the former speci�cations
(i.e., parameters or self de�ned procedures).

4.4.1 Global Functions

Figure 4.43: Menu on the Title of the Control Procedure Window

� save

saves the current choice of control procedures.
This save does not include the contents of HITGRAPHIC text editors opened
from this window, i.e., self de�ned HI-SLANG procedures or parameter �les
must be saved before quitting the corresponding editor.
Note that the save operation causes the loss of former speci�cations (i.e., pa-
rameters or self de�ned procedures) if you have changed a procedure.
Save is not selectable, if subwindows are still open or if the component type is
locked by another user or released.

� save & quit

saves the current choice of control procedures and quits the control procedure
window.
This save does not include the contents of HITGRAPHIC text editors opened

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

from this window, i.e., self de�ned HI-SLANG procedures or parameter �les
must be saved before quitting the corresponding editor.
If any problems occur during the save operation, the quit operation will not be
performed, but the window will be actualized according to the current state of
the database.
Save & quit is not selectable, if subwindows are still open or if the component
type is locked by another user or released.

� quit

quits the control procedure window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
Quit is not selectable, if text editors opened from this window are not closed.

4.4.2 Functions on Control Procedures for Component
Types

Figure 4.44: Menu on a Control Procedure

� HI-SLANG

switches to a self de�ned HI-SLANG control procedure as default for the type.
Indicating the use of an own control procedure, the string \HI-SLANG" is
displayed below the corresponding selection �eld.
To specify or change the control procedure within the HITGRAPHIC text editor
you have to perform an open operation on the displayed procedure label. If you
opened the editor for the �rst time a save is requested before the editor is
displayed.
Open is not selectable, if the text editor is already open.

� <type default>

sets the default control procedure of the type to a standard default control pro-
cedure (in Figure 4.44: immediate).
The following table shows the standard default control procedures for the avail-
able component types. Self de�ned types have the same standard default control
procedures as servers.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

accept schedule dispatch o�er
self de�ned type always immediate equal all
server always immediate equal all
prioserver always prionp equal all
ftserver always prionp equal all
counter { crandom { {
semaphor { { { {
tokenpool { { { {
synchsend { { { {
nowaitsend { { { {
observer { { { {

The name of the current default procedure is displayed below the corresponding
selection �eld.
This entry is not selectable, if the component type is locked by another user or
released.

Specifying a Procedure

Figure 4.45: Menu on \procedure"

� open

opens the HITGRAPHIC text editor with three subwindows. In the subwindow
on the right the control procedure is speci�ed. The other subwindows display
formal parameters and local declarations of the component type in read-only
mode.
If a save operation for the control procedures is required before the open oper-
ation, you are informed about this by a dialog box and asked for con�rmation.
Open is not selectable, if this text editor is already open. The procedure is
displayed in read-only mode, if the type is locked by another user or released
or if �le permissions are not su�cient for write mode.

4.4.3 Functions on Control Procedures for Components

The popup menus described in this section provide control procedures (accept, sched-
ule, dispatch, o�er), which can be attached to the component. To avoid repetitions,
the common features of the menus are described now and therefore are omitted in
the following sections:

� As the setting of control procedures for components depends on the correspond-
ing type, only the valid entries are selectable in each menu.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� If the selected control procedure requires actual parameters, a parameter button
appears. To enter or change the parameters within the editor you have to
perform an open operation. If the editor is opened for the �rst time a save
operation is requested before.

� Type default always stands for the procedure speci�ed as default in the corre-
sponding type (HI-SLANG or a standard default).

� All entries except open on the parameters label are not selectable, if the type
is locked by another user or released.

The selected procedure is displayed below the selection �eld.

Control Procedure \accept"

Figure 4.46: Menu on the Control Procedure \accept"

� always

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of a self de�ned or aggregated type.

� limited

is valid for components of type \server", \prioserver", and for components of a
self de�ned or aggregated type.

� restrict

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of an aggregated type.

� type default

is valid for all components.

Control Procedure \schedule"

� fcfs

is valid for components of type \server" and for components of a self de�ned
type.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.47: Menu on the Control Procedure \schedule"

� immediate

is valid for components of type \server", \prioserver", and for components of a
self de�ned type.

� lcfs

is valid for components of type \server" and for components of a self de�ned
type.

� lcfspr

is valid for components of type \server" and for components of a self de�ned
type.

� random

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of a self de�ned type.

� crandom

is valid for components of type \counter".

� cprio

is valid for components of type \counter".

� prionp

is valid for components of type \prioserver" and \ftserver".

� prioprep

is valid for components of type \prioserver" and \ftserver".

� priopres

is valid for components of type \prioserver".

� type default

is valid for all components.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Control Procedure \dispatch"

Figure 4.48: Menu on the Control Procedure \dispatch"

� equal

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of a self de�ned type.

� sdequal

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of a self de�ned type. f a self de�ned type.

� sdshared

is valid for components of type \server", \prioserver", and for components of a
self de�ned type.

� shared

is valid for components of type \server", \prioserver", and for components of a
self de�ned type.

� type default

is valid for all components.

Control Procedure \o�er"

Figure 4.49: Menu on the Control Procedure \o�er"

� all

is valid for components of type \server", \prioserver", \ftserver", and for com-
ponents of a self de�ned or aggregated type.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� type default

is valid for all components.

Specifying Parameters

Figure 4.50: Menu on \parameters"

� open

opens the HITGRAPHIC text editor with two subwindows to enter or change
the actual parameters of the selected control procedure. In the upper part of
the editor the formal parameters of the procedure are displayed in read-only
mode.
If a save operation for the control procedures is required before the open oper-
ation, you are informed about this by a dialog box and asked for con�rmation.
Open is not selectable, if this text editor is already open. The actual param-
eters are displayed in read-only mode, if the type is locked by another user or
released or if �le permissions are not su�cient for write mode.

4.5 The Editor Windows

As mentioned in the previous sections, some parts of HI-SLANG models are described
in textual form. The HITGRAPHIC text editor may have several subwindows to show
you di�erent but related texts at the same time. Some subwindows display �les in
read-only mode, e.g., the formal parameters when editing the actual parameters.

These textual parts concern the following items:

� Global declarations of variables, constants, types for the model type (in HI-
SLANG: those located outside the model type).

� Local declarations for model/component types, service types, procedures and
experiments.

� Activities of model/component types, bodies of service types, procedures and
experiments, i.e., statements to be executed at instantiation.

� Implementations of HI-SLANG control procedures.

� Formal parameters of model/component types, service types and procedures
(and result parameters where appropriate).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� Actual parameters of components, prede�ned control procedures and evalua-
tions.

Furthermore you can give some comments (information) about model/component
types, service types, aggregation descriptions, evaluations and experiments. Files
resulting from a HIT run (e.g., listing or table) are only readable.

The following list contains all menu items that cause an editor window for HI-
SLANG to appear. If the editor consists of multiple subwindows, they are also
listed. (Sub)windows that cannot be changed are marked by \(ro)" which stands
for read-only mode.

� Environment window:

{ model type information

{ component type information

{ aggregation

� information

� show protocol : standard output (ro), listing (ro)

� show aggregate (ro)

{ evaluation information

{ experiment

� information

� show protocol : standard output (ro), listing (ro)

� show table (ro)

� show dump�le (ro)

� show trace (ro)

� Type graphic window:

{ formal parameters

{ model type declarations: globals, locals

{ component type locals

{ service/procedure

� information

� formal parameters: parameters, results

� open: parameters (ro), results (ro), locals, body

{ used service/procedure formal parameters: parameters, results

{ model type activities open: formal parameters (ro), globals (ro), locals
(ro), activities

{ component type activities open: formal parameters (ro), locals (ro), activ-
ities

{ provided service/procedure at component show formal parameters: param-
eters (ro), results (ro)

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

{ component actual parameters: formal parameters (ro), actual parameters

� Control procedure window:

{ procedure open: formal parameters of the component type (ro), locals of
the component type (ro), HI-SLANG control procedure

{ parameters open: formal parameters (ro), actual parameters

� Evaluation object window:

{ frequency interval open (on shaded label)

� Experiment window:

{ open: control part, locals, body

{ actual parameters on evaluation: formal parameters of the model type (ro),
actual parameters for the model

4.5.1 HI-SLANG in Editor Windows

In this section we give examples for texts you are expected to �ll in. We suppose you
are fairly familiar with the programming kernel of HI-SLANG, so we do not explain
HI-SLANG syntax.

Information

You should use this possibility to comment your modelling objects wherever the in-
formation entry is available. The entered texts will be included in the generated code
as comments (with a \% " at the beginning of the line inserted by HITGRAPHIC),
so you need not worry about any syntactical restrictions.

Example (Information of Standard Component Type \server")

The component type "server" is used to model time consumption.

It provides the service "request" which has a real parameter

"amount". The parameter expresses the amount of work to be

done by the server.

Of course, the service time depends on the speed of the

server, described in the dispatch procedure selected for the

component. By default a component of type "server" models an

"infinite server", i.e., scheduling is "immediate" and

dispatching is "equal" with speed 1.

In HI-SLANG notation the component type "server" has the

following structure:

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

TYPE server COMPONENT;

PROVIDE

SERVICE request (amount : REAL);

END PROVIDE;

...

END TYPE server;

Formal Parameters

Here you can declare formal parameters for model and component types and for ser-
vices and procedures. The formal parameters are everything between the parentheses
\(" and \)". There are no further restrictions.
fHI-SLANG syntax: non-terminal formal par without the parentheses [, . . .]g

Example

no_of_users, access_limit : INTEGER; clock_rate : REAL

Result Parameters

If you give result parameters in the result subwindow, the keyword \RESULT" will
be generated followed by your text.
fHI-SLANG syntax: simple type [, . . .]g

Example

POINTER FOR pid, BOOLEAN

Actual Parameters

In giving actual parameters, you are as free as you know it from HI-SLANG: You can
give all parameters in their order, you can rearrange them by \LET . . . ", and you
can omit some parameters if you have given a default in the formal parameters. The
text you edit will be inserted between the generated parentheses.
fHI-SLANG syntax: non-terminal act par without the parenthesesg

Example

1, LET speed := 32

Globals

The editor where you can de�ne the global declarations (in short form called globals)
is displayed together with the editor for the locals if you select the declarations entry

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

within the menu on the title of the type graphic window. Globals are de�ned for
model types only.

Here you can edit declarations that should be global for all component types of this
model type, even for the model type itself. Typical applications are declarations of
record types, which are allowed only here. Please, note the danger of name conicts
in the globals when there are multiple EVALUATE statements in an experiment.

Example

TYPE pid RECORD (proctype : TEXT; procid : INTEGER);

VARIABLE

active : BOOLEAN DEFAULT TRUE;

pred, succ : POINTER FOR pid DEFAULT NONE;

END TYPE pid;

CONSTANT speed_of_medium : REAL DEFAULT 200E6; {meters per second}

Locals

This editor serves for the local declarations of a modelling object, i.e., variables, pro-
cedures, etc. You can insert any declarations here, in the generated code this will be
the text before the \BEGIN" of the modelling object.

Example

VARIABLE

number : INTEGER;

duration : REAL;

PROCEDURE hour RESULT INTEGER;

BEGIN

RESULT time/3600; {here: time has second as unit}

END PROCEDURE hour;

Body of a Service Respectively Procedure

The body editor for a service respectively procedure serves for the speci�cation of
statements to be executed when the service or procedure is called. It contains the
speci�cation of the behaviour pattern of the service respectively the speci�cation of
statements to be executed sequentially and without model time consumption in case
of a procedure.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Example

BRANCH

PROB 0.6: hier_modelling (negexp (1.0/(1*60*60.0)));

PROB 0.3: loss_modelling (negexp (1.0/(19*60.0)));

PROB 0.1: AVERAGE 3 TIMES LOOP

detailed_simul (negexp (1.0/(18*60*60.0)));

END LOOP;

END BRANCH;

IF draw (0.15) THEN

phone_partner (negexp (1.0/(15*60.0)));

END IF;

LOOP

write_section (negexp (1.0/(26*60.0)));

END LOOP until draw (0.95);

Activities of a Model or Component Type

This editor contains the speci�cation of CREATE statements for the services within
the model respectively component type or other initialisations. The following is an
example for the creation of a service named \batch".

Example

CREATE 1 PROCESS batch EVERY negexp(1/100);

HI-SLANG Control Procedure

When using self de�ned control procedures, you should be familiar with HI-SLANG
syntax. In case of a schedule procedure the \CONTROL PROCEDURE schedule;"
and \END PROCEDURE;" will be generated by HITGRAPHIC, so you only have to
take care for the local declarations, the \BEGIN" and the statements (ending with
\;"). The last-come-�rst-scheduled preemptive resume schedule procedure is given as
an example.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Example

VARIABLE found : BOOLEAN DEFAULT FALSE;

BEGIN

INSPECT ENTRY_AREA WHILE NOT found LOOP REVERSE

SELECT;

found := TRUE;

END LOOP;

IF found THEN

INSPECT SERVICE_AREA LOOP

SELECT;

END LOOP;

END IF;

Frequency Interval

If the estimator FREQUENCY INTERVAL is selected within the evaluation object
window, the intervals can be entered in this editor window. The estimator FRE-
QUENCY INTERVAL can only be applied to event streams (e.g., TURNAROUND-
TIME). For each interval, you will get the number of updates on the stream that fall
into the interval. The lower bound is included, the upper bound excluded.

Example

20 .. 23.3, 23.3 .. 26.6, 26.6 .. 30

Control Part of Experiment

In the control part you have the possibility to specify some HI-SLANG control state-
ments used by the HI-SLANG compiler.
Do not forget the \%END" at the end of the speci�cation.

Example

%PARM = UPDATES

%PARM = INDENT=|1

%END

Body of Experiment

The instruction part of an experiment is given in the body where you can specify the
course of experiment execution.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Execution of evaluations are requested by the EVALUATE statement. It is an abbre-
viation of the EVALUATE statement in HI-SLANG. Here, it consists of the keyword
EVALUATE followed by the name of an evaluation without any parameters and �n-
ished by a semicolon. The EVALUATE statement must be separated in a single line.
Actual parameters are speci�ed in the experiment window.
For compatibility reasons an old form of the EVALUATE statement with the evalu-
ation name in embedding \$" symbols is also still supported.

Example

FOR no := 1 STEP 1 UNTIL 3

LOOP

EVALUATE bibsystem_eva;

END LOOP;

no := 10;

EVALUATE bibsystem_eva;

Other Aspects of the HI-SLANG Code

In the generated code, there is automatic indentation (by steps of 3), so you may
disable indentation for the listing written by the compiler. Your edited texts have
an initial indentation with respect to the surrounding code, but further indentation
within your text will not be done, so you should do it when editing (for better read-
ability).

When using HI-SLANG keywords, you should use upper-case letters to conform with
the generated part of the code, but as HI-SLANG is case insensitive, it will not result
in an error if you use your own upper-/lower-case rules.

Information texts are inserted in the generated code as comment lines.

The names of hierarchies, except the prede�ned hierarchy \all", are extended in the
generated code by the concatenation of an underline and the name of the evaluation
object, where the hierarchy is used. The extended names are visible in the result
output �les.

4.5.2 Structure of the Editor Window

The HITGRAPHIC text editor provides the user with a variable number of editor
areas which can be edited \in parallel". In case that there are more editor areas than
just one, they are placed side by side and/or one beneath the other. This leads to a
two dimensional structure which consists of columns and rows of editor areas.

The window of the HITGRAPHIC text editor consists of the head label area and
the editor's pane. In the head label area a text string is displayed which contains
information about the logical relationships of the �les which can be edited in the
editor's pane. In the example depicted by Figure 4.51 the string \SERVICE { report"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.51: An Example Structure of the HITGRAPHIC Text Editor

is displayed in the head label area. The editor's pane is located below the head label
area and contains one editor area for each �le to be edited or shown.

Each editor area consists of an editor label area and an editing area which is located
below the editor label area. In the editor label area a text string is displayed contain-
ing information about the �le which can be edited in the corresponding editing area.
In the editor label areas of the example of Figure 4.51 the �les \PARAMETERS",
\RESULTS", \LOCALS" and \BODY" are displayed. The value behind the label
indicates the line number of the current cursor position. The text in the editing areas
can be editable (i.e., read/write) or read-only. If the editing mode of an editing area
is read-only, any attempt to modify the text will cause a beep.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.5.3 Global Functions on the Head Label Area

Depending on showing just one or multiple �les the provided functions of the text
editor vary, con�rm Figures 4.52 and 4.53.

Figure 4.52: Menu on the Title of the Editor Window with Multiple Files

Figure 4.53: Menu on the Title of the Editor Window with a Single File

� check

performs a local check (of syntactical and semantical conditions) of the HI-
SLANG part based on the currently displayed version, which may di�er from
the last saved version, and displays locally unknown identi�ers or error messages
in a check message window.
This function is only available in case of a single �le editor window. If there
is more than one editor area, it is provided from the menu on the editor label
area. For a detailed explanation of the function please con�rm Section 4.5.6.
The check function is not provided in context with information �les or result
�les from an experiment run.

� goto line

pops up a request box to enter the desired line number.
This function is only available in case of a single �le editor window. If there
is more than one editor area, it is provided from the menu on the editor label
area. For a detailed explanation of the function please con�rm Section 4.5.6.

� search & replace

causes a popup menu to appear which enables search and replace operations on
the text.
This function is only available in case of a one dimensional editor window.
If there is more than one editor area, it is provided from the menu on the
editor label area. For a detailed explanation of the function please con�rm
Section 4.5.6.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� save all respectively save

saves the contents of all editing areas which contain unsaved changes respec-
tively the contents of the only area.
If there are no unsaved changes, this function has no e�ect.

� save all & quit respectively save & quit

saves the contents of all editing areas which contain unsaved changes respec-
tively the contents of the only area, and then closes the editor window.

� quit

exits the HITGRAPHIC text editor.
If any changes were made since the last save operation, you are asked for con-
�rmation.

4.5.4 Global Functions on the Editor's Pane

A special feature of the HITGRAPHIC text editor are the grips which allow to resize
the editor areas within the bounds of the editors pane in case there are more than
one editor area in the editor's pane. If there is only one editor area in the editor's
pane the whole HITGRAPHIC text editor window has to be resized in order to resize
the editor area.

Grips are depicted as small rectangular regions on the border lines between columns
and rows of editor areas. Grips between columns are called horizontal grips because
they enable to move the border separating the columns horizontally. Correspondingly,
the grips between rows are called vertical grips. In the example of Figure 4.51 there
are one horizontal grip and two vertical grips.

When the cursor touches a horizontal grip, the cursor shape switches into a horizontal
double arrow. In the same way, the cursor switches into a vertical double arrow
over a vertical grip. Then the corresponding border line can be moved by pressing
and holding down a mouse button, shifting the cursor to the desired new position
and releasing the mouse button. Immediately after having released the button, the
columns and rows of the editor's pane will resize.

4.5.5 Text Selection

Some operations of the HITGRAPHIC text editor are designed to be applied on text
blocks. These text blocks which we refer to as \selected text", are displayed invertedly
during selection.

To select a text, three methods are proposed.

1. The simplest method of selecting text is to press the left mouse button at the
start/end of the block, drag the cursor to the end/start of the block and then
release the mouse button. This method only works on text actually displayed
in an editor area.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

2. Another method is to press and release the left mouse button at the start/end
of the block, move the cursor to the end/start of the block and there press and
release the right mouse button. This method allows to select text blocks of
arbitrary length.

3. Some kind of canonical text blocks can be selected by multiple fast clicks with
the left mouse button according to the following.

� Two clicks

select the word under the cursor. A word boundary is de�ned as a Space,
Tab or Carriage Return.

� Three clicks

select the line under the cursor.

� Four clicks

select the paragraph under the cursor. A paragraph boundary is de�ned
as two Carriage Returns in a row with only Spaces or Tabs between them.

� Five clicks

select the entire contents of the editing area.

A text selection which is currently displayed invertedly can be modi�ed by clicking
the right mouse button near either the end or the start of the selection to adjust. This
end of the text selection may be moved while holding down the right mouse button
until the button is released.

A main application for selected text blocks is to paste them into other editing areas.
After having selected the desired text block, you move the cursor into the other editing
area. There you click the left mouse button at the destination point. Then you click
the middle mouse button. This causes the selected text to be inserted at the desired
position.

The selected text is bu�ered until the next text selection is made, i.e., even if the text
block is not longer displayed invertedly, the selection can be pasted to other locations.

4.5.6 Global Functions on the Editor Label Area

Figure 4.54: Menu on the Title of the Editor Area

� check

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

performs a local check (of syntactical and semantical conditions) of the HI-
SLANG part based on the currently displayed version, which may di�er from
the last saved version, and displays locally unknown identi�ers or error messages
in a check message window.
During the check operation the menu remains popped up. If everything is ok
the menu will pop down. Otherwise a check message window is displayed show-
ing errors and/or warnings and, in case of syntactical correctness, the locally
unknown identi�ers which can be compared with the declarations made in cor-
responding editors.

Figure 4.55: The Check Message Window

The displayed line numbers indicate the occurrence of locally unknown identi-
�ers or errors. Selecting a line number (e.g., by a double click) automatically
places the cursor within the corresponding editing area at the beginning of this
line. The placement is only done if the selection has changed.

The check message window provides a quit menu, but it is automatically closed
if a new check operation is started within the same editing area or if the editor
is closed itself.

The check function is not provided in context of windows showing �les resulting
from a HIT run.

� goto line

pops up a request box to enter the desired line number.
The cursor is placed at the beginning of the line with the entered number. The
editing area is scrolled so that the actual line is placed in the middle of the
visible area.

� search respectively search & replace

pops up a popup menu which enables search and replace operations on the text
in the corresponding editing area.
If an editing area is in write mode this function is labelled search & replace while

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

it is labelled search in case of a read-only area, where no replace operations are
permitted.

Figure 4.56: The Search & Replace Box

At the top of the search popup there are two buttons labelled Backward and
Forward , which indicate the direction in which the search will be performed.
The Forward button will be highlighted by default, but the desired direction
can be changed by clicking on the appropriate button.
Below these buttons there are two text areas, one labelled Search for and the
other labelled Replace with. If the text of the editing area is displayed in read-
only mode, the replace �eld is insensitive and no replacements are allowed.
To the right of each of these labels there is a text �eld which allows to enter a
string to search for and a string to replace with. Only one of these text �elds
will have a border around it. This �eld is the active �eld. Any key presses that
occur in the search popup are directed to the active �eld. There are a few key
sequences with special meaning to the active �eld.

{ Carriage Return

executes the action and removes the popup from the screen.

{ Tab

executes the search operation, if the search �eld is active, and moves to
the next �eld.

{ Shift Carriage Return

executes the search operation, if the search �eld is active, and moves to
the next �eld.

{ Control-q Tab

inserts a Tab into the active �eld.

{ Control-c

removes the popup from the screen.

At the bottom of the search popup there is a row of buttons. The use of these
buttons performs the following actions.

{ Search

searches for the string in the search �eld. The popup remains on the screen.

{ Replace

replaces the currently highlighted string with the string in the replace �eld,

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

and moves to the next occurrence of the search string in the editing area.
The popup remains on the screen.

{ Replace All

replaces all occurrences of the search string with the replace string from
the current position of the text cursor to the end (or beginning) of the �le.
The popup remains on the screen.

{ Cancel

removes the search popup from the screen.

By clicking the middle mouse button, selected text blocks can be pasted into
the search and replace �elds. Within the �elds only the last line of the block is
visible.

� save

saves the contents of the corresponding editing area.
If the text of the corresponding editing area is displayed in read-only mode, this
function is insensitive. If there are no unsaved changes the save function has
no e�ect.

When the �rst editing operation in the editing area of an editor area is performed,
the string (edited) is appended to the string displayed in the corresponding editor
label area. A save operation, either from the editor label popup or from the head
label popup then deletes this appendix from the displayed string.

4.5.7 Functions on the Editing Area

Most of the editing actions described in this section refer to the position of the text
cursor within an editing area. This position will be called the insertion point.

Depending on the number of text columns displayed in an editing area not all lines
of a text may be shown completely. If the text of a �le in one line is wider than the
editing area, a small rectangle is painted in the right margin of the editing area to
indicate that the line is too long. The tail of the line can be made visible by adjusting
the corresponding horizontal scrollbar.

Scrollbars

Every editing area permanently has two scrollbars: a vertical scrollbar at the left
hand side and a horizontal scrollbar at the bottom.

The background of a scrollbar is called the scroll region. It represents the length
of the area that users can scroll. The dark area is the slider representing a window
through which a user looks at the displayed data. So the slider marks the location
of a user's viewport in relation to the total scrollable area. The slider also indicates
the relation between the visible part of the �le and its invisible part. The larger the
slider, the larger is the visible part of the �le in comparison to the invisible part.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The user's viewport can be modi�ed by changing the position of the slider. A click
with the left mouse button on the scroll region moves the viewpoint downwards in
case of a vertical scrollbar and to the right in case of a horizontal one. A click with
the right mouse button moves the viewport upwards respectively to the left. The
range of the movement depends on the cursor position within the scroll region.

Pressing and holding down the middle mouse button on the scrollbar enables to slide
to an arbitrary position.

File Insertion

Typing the key sequence Meta-i in an editing area activates the �le insert popup
which appears under the cursor. Any text typed while the cursor is in this popup is
directed to the text �eld used for the �lename. When the desired �lename has been
entered, a click on the Insert File button or a Carriage Return will cause the �le to
be inserted at the position of the insertion point.

If an error occurs while opening the �le, an error message will be displayed, prompting
to enter the �lename again. The �le insertion operation may be aborted by clicking
on the Cancel button. If Meta-i is typed at an editing area in read-only mode, the
bell will beep, as no �le insertion is allowed.

By clicking the middle mouse button, selected text blocks can be pasted into the text
�eld.

Editing Actions

The following keystroke combinations are de�ned to cause editing actions.

Ctrl-a sets the insertion point to the beginning of the line
Ctrl-b sets the insertion point one character backward
Ctrl-d deletes the next character
Ctrl-e sets the insertion point to the end of the line
Ctrl-f sets the insertion point one character forward
Ctrl-g resets the keystroke multiplication factor to one

after a Ctrl-u (i.e., cancels Ctrl-u)
Ctrl-h deletes the previous character
Ctrl-j inserts a newline and indents the new line to the line

above at the next keystroke
Ctrl-k kills all characters to the end of the line
Ctrl-l redraws the display
Ctrl-m inserts a newline; insertion point is the beginning

of the new line
Ctrl-n moves the insertion point one line down
Ctrl-o inserts a newline; insertion point is the end

of the old line
Ctrl-p moves the insertion point one line up
Ctrl-r activates the search/replace popup for backward search
Ctrl-s activates the search/replace popup for forward search

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Ctrl-t exchanges the positions of characters left and right
of the insertion point and sets the insertion point one
character forward

Ctrl-u the next keystroke will be executed four times
Ctrl-v moves the insertion point one page down

(a page is de�ned by the number of lines currently
visible in the editing area)

Ctrl-w kills currently selected (i.e., invertedly displayed) text
Ctrl-y undo last kill command (e.g., Ctrl-k or Ctrl-w)
Ctrl-z scrolls the visible part of the �le one line down
Meta-b sets the insertion point one word backward
Meta-d deletes the word right from the insertion point
Meta-D kills the word right from the insertion point
Meta-f sets the insertion point one word forward
Meta-h deletes the word left from the insertion point
Meta-H kills the word left from the insertion point
Meta-i activates the �le insertion menu
Meta-k kills the rest of the paragraph
Meta-q formats the current paragraph in a way that its lines

�rst are joined together and then split into new lines
which �t into the current width of the editing area

Meta-v moves the insertion point one page up
(a page is de�ned by the number of lines currently
visible in the editing area)

Meta-y inserts the currently selected text at the insertion point
Meta-z scrolls the visible part of the �le one line down
Meta-< sets the insertion point to the beginning of the �le
Meta-> sets the insertion point to the end of the �le
Meta-[sets the insertion point to the beginning of the current

paragraph
Meta-] sets the insertion point to the end of the current paragraph
Meta-Delete deletes the word left from the insertion point
Meta-Shift Delete kills the word left from the insertion point
Meta-Backspace deletes the word left from the insertion point
Meta-Shift Backspace kills the word left from the insertion point

4.6 The Aggregation Description Window

The aggregation description window is used, when an automated aggregation of a
component type is desired.

The aggregation of component types is performed to reduce the complexity of models
and their analysis. This goal is reached by generating a substitute representation of
the original component type.

The technique is only applicable on component types, that ful�ll certain properties,
e.g., they must have neither parameters nor parameterized provided services. There
should be at least one provided service and provided procedures are not allowed.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The result of the aggregation, henceforth called the aggregate, is a simple load-
dependent server, that

� provides the same interface (provided services) and

� behaves similarly to the original component type in terms of quantitative as-
pects.

To generate a load-dependent server, it is necessary to specify upper bounds for the
population of each provided service. The aggregation description window allows the
user to enter these bounds.

4.6.1 Global Functions

Figure 4.57: Menu on the Title of the Aggregation Description Window

� save

saves the current population values of the aggregation description.
If the values are correct, i.e., a non-negative integer value was entered for each
population, the save operation is executed (and the corresponding database is
modi�ed). For the duration of this operation the popup menu remains visible
on the display. The contents of the aggregation description window is redrawn,
when the operation is �nished. At this point the actual state of the aggregation
description will be displayed. If the number or sequence of the provided services
is di�erent now, the corresponding component type must have been changed
meanwhile.
Save is not selectable, if the aggregation description is locked by another user
or released.
An error message is displayed, if the population values are not correct.

� save & quit

saves the current population values of the aggregation description in the same
way as the save operation does, and quits the aggregation description window
after a successful save.
Save & quit is not selectable, if the aggregation description is locked by another
user or released.

� quit

quits the aggregation description window.
If any changes were made since the last save operation, you are asked for con-
�rmation.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.6.2 Speci�cation of Population

Figure 4.58: Aggregation Description Window

As shown by Figure 4.58, the graphic area of the aggregation description window
displays the provided services of the component type as done within the component
type graphic window.

For each provided service, an associated text box on the right hand allows for the
speci�cation of the population bound. The speci�ed values are syntactically checked,
when the save or save & quit operation on the title bar is performed.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.7 The Evaluation Window

The evaluation window serves as the basis for evaluation speci�cation. Its graph-
ics consist of the object structure and some additional information, which will be
explained later in this section.

All speci�cations done in this window are somehow independent of the analysis tech-
nique, which is applied via HIT. Some speci�cations, which are only suitable for
simulative analysis, will be ignored and not be generated (during the transformation
step) for analytical experiments.

Since evaluation speci�cation is only sensible for completed model type speci�cations,
an error occurs if the model type includes enclosed components without main dec-
larations. In this case, an error message is displayed and the evaluation window is
opened in read-only mode.

The example in Figure 4.59 is used to discuss the evaluation window.

Figure 4.59: Evaluation Window

The �rst point to be addressed is the concept of evaluation objects. An evalu-
ation object determines a location within a model, where measurements should be
performed. The evaluation window allows for their creation and further speci�cation.
Evaluation objects are displayed as rectangular boxes underneath the associated com-
ponent.

Figure 4.59 displays two evaluation objects: \clerks 4 at 1" at the component \clerks"
(type \server") and \link 4" at the component \link" (type \server").

A problem arises during the creation of evaluation objects, if a component array is

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

located on the path from the model down to the associated component, following the
instantiating declarations (see \clerks 4 at 1"). This path is called component decla-
ration path. To distinguish the subcomponents of a component array in a component
declaration path the speci�cation of an identifying array index is required. If the
associated component is a component array itself, you can select one component by a
single index or a set of components by an index range. For each component of the set
the same kind of measurement, as described in the evaluation object, is performed
separately.

Additionally, the evaluation window allows for creation of a simulation stop control
at an evaluation object, which determines when a simulative analysis should stop.
These stop controls are displayed by usual stop symbols, which are borrowed from
the corresponding tra�c sign. Multiple simulation stop conditions are connected by a
\logical or" operation to build the overall simulation stop condition of the evaluation.

Finally, the evaluation window allows to specify that certain components should be
traced during the simulation. This is indicated by a triangle (see component \clerks"
of type \server").

4.7.1 Global Functions

Figure 4.60: Menu on the Title of the Evaluation Window

� print

prints the evaluation window.
An input box requesting the settings for the PostScript �le appears (cf. Sec-
tion 5.3).

� save

saves the current evaluation.
This save does not include the contents of other windows, which provide a
save, i.e., evaluation object, hierarchy survey, hierarchy and start/stop control
windows. For the duration of this operation the popup menu remains visible on
the display. The evaluation window is redrawn, when the operation is �nished.
At this point you see the actual state of the evaluation, i.e., how it is stored in
the database. If the object structure looks di�erent now, component types or
the corresponding model type must have been changed in the meantime.
Save is not selectable, if the evaluation is locked by another user or released. In
order to avoid inconsistencies, save is also not selectable, if subwindows of this
evaluation window are open.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� save & quit

saves the current evaluation in the same way as save does. If the saving is
successful, the evaluation window is closed. Otherwise the actual information
of the database will be retrieved and displayed.
Save & quit is not selectable, if the evaluation is locked by another user or
released or if subwindows of this evaluation window are open.

� quit

quits the evaluation window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
Quit is not selectable, if a window started from this evaluation window is still
open.

4.7.2 Speci�cation of the Evaluation

Functions on the Model respectively on Components

Figure 4.61: Menu on Models and Components

� show type

shows the corresponding model respectively component type.
Show type opens the type graphic window corresponding to the type of the
selected model or component in read-only mode.
Show type is not selectable, if the type graphic was opened before from this
entry and is still open.

� open hierarchies

opens the window with the list of hierarchies belonging to the selected model
or component.
Open hierarchies is not selectable, if the window with the list of hierarchies is
already open.
A modi�cation of the hierarchy list is not possible if the evaluation is locked by
another user or released.

� trace/no trace

sets the trace option respectively resets the trace option for the selected com-
ponent.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

If the trace option is set, a trace �le will be generated during a simulative HIT
run. Trace will be ignored for analytical evaluations.
A trace ag marks the selected object, if you switch to trace. Otherwise the
trace ag is removed.
If the trace option is set, along the component declaration path component ar-
rays will be searched. For every component array an index will be asked for
to set the trace for the right components. If the associated component is a
component array, you can set the trace option for one component by one index
or for multiple components of the array by an index range.
The switch is not selectable, if the evaluation is locked by another user or re-
leased.

� show trace path

opens a popup displaying the component declaration path (possibly with array
indices) to the corresponding object (cf. trace/no trace).
This entry is only selectable, if the trace option is set.

� new evaluation object

creates a new evaluation object.
A dialog box is displayed, requesting the name for the new evaluation object.
After giving a valid name and clicking OK with the left mouse button, com-
ponent arrays will be searched along the component declaration path from the
object to the model. For every component array an index will be asked for.
If the associated component itself is a component array, you can attach the
evaluation object to one or multiple components of the array by specifying an
index or an index range.
The new evaluation object is appended underneath the already existing evalu-
ation objects of the selected component or model.
An error message is displayed, if the name of the evaluation object already ex-
ists as an evaluation object name within the current evaluation.
New evaluation object is not selectable, if the evaluation is locked by another
user or released.

Index or Range Speci�cation

Figure 4.62: Box to Select an Index or an Index Range

Associated components of component arrays are selected by a dedicated input box.
A single component is speci�ed by the index in the index �eld, a set of components
by a range of indices given in a lower and upper bound �eld. At a time, only the
index or the range variant is active. You can change the variant with the Switch to

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

range respectively the Switch to index button. The OK and Cancel button operate
in a similar way as for standard input boxes.

Functions on Evaluation Objects

Figure 4.63: Menu on Evaluation Objects

� open

opens the corresponding evaluation object window.
If a new evaluation object should be opened, a dialog box is displayed asking
for a save before performing the open operation.
Open is not selectable, if the current evaluation object window is already open.
No modi�cations are possible in the evaluation object window if the evaluation
is locked by another user or released.

� simulation STOP

o�ers the possibility to specify simulation stop conditions for the experiment
run which concern the selected evaluation object.
To indicate the fact that the evaluation object is now provided with simulation
stop conditions, it is marked with a STOP symbol. These stop conditions are
only signi�cant in simulative experiments. If an analytical method is selected,
they will be ignored.
This entry is not selectable, if the selected evaluation object is already provided
with a simulation stop control or if the current evaluation is locked by another
user or released.

� rename

allows you to rename the selected evaluation object.
A dialog box is displayed, requesting the new name of the evaluation object.
After entering a correct name and con�rming it the old name is replaced by the
new name in the evaluation window.
An error message is displayed, if the new name already exists as an evaluation
object name within the current evaluation.
Rename is not selectable, if the corresponding evaluation object window is open
or if the current evaluation is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� copy

copies the selected evaluation object.
A dialog box is displayed, requesting the name for the copy. After entering a
correct name and con�rming it the new evaluation object is created and ap-
pended underneath the already existing evaluation objects. Note that if you
copy an array element, the copy has the same array index as the selected evalu-
ation object. As a consequence, you cannot copy one array element into another
array element. If some start and/or stop control statements are speci�ed for
the selected evaluation object, they are copied, too.
An error message is displayed, if the entered name already exists as an evalua-
tion object name within the current evaluation.
Copy is not selectable, if the correspondig evaluation object window is open or
if the current evaluation is locked by another user or released.

� index/range

opens the dedicated input box for index or range speci�cation. This item is
only selectable, if the evaluation object is attached to a component array. The
association of the evaluation object to components of the array can be changed.
Index/range is not selectable, if the current evaluation is locked by another user
or released.

� show path

opens a popup displaying the component declaration path (possibly with array
indices) to the corresponding object.

� move

allows to change the position of an evaluation object in the list of evaluation
objects at a component. After selecting the move operation, the new position
is determined by a mouse click with the left button on the box, below that
the evaluation object should be moved. A message box may inform you about
illegal positions.
Move is not selectable, if the corresponding evaluation object window is open
or if the current evaluation is locked by another user or released.

� delete

deletes the selected evaluation object.
A dialog box is displayed, asking for the con�rmation to delete the selected
evaluation object. After clicking OK with the left mouse button, the evaluation
object including its start and stop conditions is deleted. Clicking Cancel aborts
the delete operation.
Delete is not selectable, if the corresponding evaluation object window is open
or if the current evaluation is locked by another user or released.

Functions on a STOP Symbol

� open

opens the corresponding stop window to specify simulation stop conditions.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.64: Menu on the STOP Symbol

If the stop window is opened for the �rst time, a dialog box is displayed asking
for a save before performing the open operation.
Open is not selectable, if this stop window is already open.
If the corresponding evaluation is locked by another user or released, no modi-
�cations are possible in the stop window.

� delete

deletes the simulation stop conditions of the corresponding evaluation object.
A dialog box is displayed, asking for con�rmation to delete the simulation stop
conditions. After clicking OK with the left mouse button, the STOP symbol is
removed and the simulation stop conditions are deleted. Clicking Cancel aborts
the delete operation.
Delete is not selectable, if the stop window is open or if the current evaluation
is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.8 The Evaluation Object Window

The evaluation object window serves for the speci�cation of measurements that are
to be performed at the evaluation object.

Figure 4.65: Evaluation Object Window

It is divided into �ve speci�cation areas, which will be discussed now with the help
of Figure 4.65:

� The upper symbol represents the three AREAs of a component and its AN-
NOUNCE QUEUE. It is possible to select one or all areas by clicking with the
left button on the appropriate �eld of the symbol. By default, the complete
component is selected.

� The next subwindow, which is entitled STREAM, allows the speci�cation of one
or more performance indices that are to be measured. It contains the so-called
standard streams in the �rst part of the list, as well as the user de�ned streams
that were speci�ed in the component type graphic window of the corresponding
component type. Streams are selected or deselected by clicks with the left mouse
button. Note that it is impossible to deselect a stream that is the last selected
one. In Figure 4.65 the stream TURNAROUNDTIME is selected.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� The following subwindow, named ESTIMATOR, allows to specify the esti-
mator, which should be applied for measurement purposes. The estimators
STANDARDDEVIATION, CONFIDENCE LEVEL and FREQUENCY are
only evaluable during simulation and are ignored otherwise.

� The next subwindow allows for the selection of HIERARCHYs. It contains the
standard hierarchy \all" as well as all appropriate user de�ned hierarchies, that
were de�ned and speci�ed in the hierarchy survey and hierarchy window for the
corresponding component.

� Finally, the subwindow START/STOP displays two rectangular symbols with
initial values \0" and \1", respectively. They represent the start/stop controls
that determine the start and stop time of the current measurement during sim-
ulative analysis. An empty box expresses that a measurement control condition
is speci�ed. A stop symbol in the right box indicates a simulation stop condition
based on the measurements. This condition is directly described here in a box
with a popup menu and two value �elds for the WIDTH, that the con�dence in-
terval should fall below, and the number of UPDATES, that should be reached.
The simulation stops, if all simulation stop conditions of all measurements are
ful�lled.

4.8.1 Global Functions

Figure 4.66: Menu on the Title of the Evaluation Object Window

� save

saves the current evaluation object.
For the duration of this operation the popup menu remains visible on the display.
The window is refreshed, when the operation is �nished. At this point you see
the actual state of the evaluation object as it is stored in the database. If names
or the number of streams or hierarchies are di�erent now, the corresponding
component type respectively the corresponding hierarchy list must have been
changed in the meantime.
Save is not selectable, if the corresponding evaluation is locked by another user
or released.
If values are not correct, an error message is displayed and the save operation
is aborted.

� save & quit

performs a save in the same way as the save operation does, but also quits the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

evaluation object window after a successful save.
Save & quit is not selectable, if the corresponding evaluation is locked by another
user or released or if a subwindow of this evaluation object window is not closed.

� quit

quits the evaluation object window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
Quit is not selectable, if a window opened from this evaluation object window
is not closed.

4.8.2 Speci�cation of the Evaluation Object

Selection of the Area

Figure 4.67: The Selection of the Area

The evaluation of a model or component can be restricted to one area: announce
queue, entry area, service area or exit area. Selecting another single area is performed
by clicking on it with the left mouse button. To select all areas when a single area is
highlighted, click on the already highlighted area with the left mouse button.

By default the evaluation is not restricted to a single area.

If any of the streams UTILIZATION, SCHEDULE RATE and PREEMPT RATE or
a self de�ned stream is selected, restriction to one area is not possible.

A selection is not possible as well, if the corresponding evaluation is locked by another
user or released.

Selection of Streams

Figure 4.68: The Selection of Streams

The stream list contains all streams which are available for the current evaluation
object. If the whole model respectively component is to be evaluated, these are the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

standard streams THROUGHPUT, TURNAROUNDTIME, POPULATION, UTI-
LIZATION (only in case of a server or prioserver), OCCUPATION, SCHEDULE
RATE and PREEMPT RATE, and all self de�ned streams (i.e., the streams that
were speci�ed in the component type graphic window, that corresponds to the type of
the model respectively component the evaluation object is related to). The standard
streams UTILIZATION, SCHEDULE RATE and PREEMPT RATE as well as all
self de�ned streams are not selectable, if the evaluation is restricted to one area.

POPULATION is selected as the default.

One or more streams can be selected. A selection can be reset with the left mouse
button. Selected streams are indicated by a right-pointing, small arrow. To insure
that at least one stream is selected, a reset of the last stream is prevented.

Note that during the transform operation selected streams are ignored, if they cannot
be evaluated with the method chosen for the experiment.

Changing the stream selection is not possible, if the corresponding evaluation is locked
by another user or released.

Selection of Estimators

Figure 4.69: The Selection of Estimators

The estimator table provides the �ve entries MEAN, STANDARDDEVIATION,
CONFIDENCE LEVEL, FREQUENCY INTERVAL and BOUNDS. The default se-
lection is estimator MEAN.

Selecting CONFIDENCE LEVEL entails an automatically selection of MEAN and
STANDARDDEVIATION, because they must be computed, too. MEAN is also
selected, if STANDARDDEVIATION or BOUNDS are requested.

Estimators can be selected respectively a selection can be reset with the left mouse
button. Selected estimators are indicated by a right-pointing, small arrow. To insure
that at least one estimator is selected, a reset of the last and only estimator causes
the selection of the default estimator MEAN.

The estimator CONFIDENCE LEVEL requires two integer values for level and degree.
The level value must be in the interval [90,99], the degree value in the interval [1,20].
Default values are 95 and 10, respectively.

The estimator FREQUENCY INTERVAL requires intervals. They can be edited
in an editor window, which is displayed when performing an open operation on the
\[*,*]"-symbol with the right mouse button. There is no initial default interval.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Changing the estimator selection is not possible, if the corresponding evaluation is
locked by another user or released.

Selection of Hierarchies

Figure 4.70: The Selection of Hierarchies

The list contains on one hand the standard hierarchy \all", which is the default of
this list, and, on the other hand, all hierarchies, that were generated for the model
respectively component the current evaluation object is related to.

Hierarchies can be selected respectively a selection can be reset with the left mouse
button. Selected hierarchies are indicated by a right-pointing, small arrow. To insure
that at least one hierarchy is selected, a reset of the last hierarchy is prevented.

Changing the hierarchy selection is not possible, if the corresponding evaluation is
locked by another user or released.

Functions Concerning Start/Stop Controls

Figure 4.71: Menu for Stop Control Selection

� simulation STOP

A simulation stop control condition is added to the measurements of the eval-
uation object.

� measurement STOP

A measurement stop control condition is added to the measurements of the eval-
uation object. This function implicitly generates a default measurement stop
control (CONFIDENCE LEVEL 95, DEGREE 10, WIDTH 10, POPULATION,
HIERARCHY all).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.72: Menu on Measurement Start/Stop Control

� open

opens the corresponding start respectively stop window.
In case of a measurement start control this function implicitly generates a de-
fault start control (MODELTIME 0), if it is performed for the �rst time. An
empty box always indicates an existing measurement start or stop condition.
If there was no measurement start respectively stop control, i.e., the symbol \0"
respectively \1" is visible, a dialog box is displayed asking for a save before
performing the open operation.
Open is not selectable, if this window is already open.

� delete

deletes the start respectively stop controls.
A dialog box is displayed, asking for con�rmation to delete the start respectively
stop conditions. After clicking OK with the left mouse button, the conditions
are deleted and, if the start control symbol was selected, a \0" is written into
the symbol, or, if the stop control symbol was selected, the symbol contains a
\1" now.
Delete is not selectable, if no start respectively stop control exists, i.e., if the
symbol contains a \0" respectively a \1", if the start respectively stop window
is open or, if the corresponding evaluation is locked by another user or released.

Figure 4.73: Menu on Simulation Stop Control

� width

Only the width condition for the con�dence interval is used for simulation stop
control, whereas the updates condition is ignored.
Selection of width is not correct if CONFIDENCE LEVEL is not selected as
estimator.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� updates

Only the updates condition is used for simulation stop control, whereas the
width condition is ignored.

� width or updates

The simulation stop control will be composed of the width and updates condi-
tion connected by a \logical or". The operator is displayed in the box.
Selection of width or updates is not correct if CONFIDENCE LEVEL is not
selected as estimator.

� width and updates

The simulation stop control will be composed of the width and updates condi-
tion connected by a \logical and". The operator is displayed in the box.
Selection of width and updates is not correct if CONFIDENCE LEVEL is not
selected as estimator.

4.9 The Start/Stop Window

The start/stop window is used to specify simulation stop conditions (called from
the STOP symbol within the evaluation window) as well as measurement start and
stop controls (called from the evaluation object window). They only make sense in
combination with simulation.

The speci�cation principle of this window is as follows:

Single conditions are composed via conjunction/disjunction to form one boolean ex-
pression. The conjunctions are listed in columns that are composed in a disjunctive
fashion.

The resulting expression serves as control, because the measurement or simulation
starts or stops as the corresponding boolean expression becomes true. This principle
of control speci�cation holds for the start as well as for the stop control. Di�erent
boolean expressions are available, depending on the application of the control con-
dition. If in the current window start conditions are speci�ed, only the pullright
entriesMODELTIME and EVENTS are selectable. If simulation stop conditions are
speci�ed, only the entries EVENTS and CONFIDENCE LEVEL are selectable. For
measurement stop conditions all entries are available.

In the following we describe the criteria without consideration of these restrictions in
order to simplify the explanation.

In Figure 4.74 an example of a measurement stop control is given. It graphically
presents the boolean expression

(CONFIDENCE LEVEL . . . and MODELTIME 5000) or (EVENTS 10000).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

/

Figure 4.74: Start/Stop Window

4.9.1 Global Functions

Figure 4.75: Menu on the Title of the Start/Stop Window

� save

saves the current start respectively stop conditions.
If the entered values of the conditions are correct, the save operation is executed.
For the duration of this operation the popup menu remains visible on the display.
The start/stop window is redrawn, after the operation has �nished.
An error message is displayed, if any values are not correct.
Save is not selectable, if the corresponding evaluation is locked by another user
or released.

� save & quit

saves the current start respectively stop conditions in the same way as save does
and, if no errors have occurred, quits the start/stop window.
Save & quit is not selectable, if the corresponding evaluation is locked by another
user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� quit

quits the start/stop window.
If any changes were made since the last save operation, you are asked for con-
�rmation.

4.9.2 Speci�cation of Start respectively Stop Conditions

Generating OR Conditions

Figure 4.76: Generating OR Conditions

� new OR-condition {>

connects the existing \or conditions" with a new \or condition", that has the
criterion . . .

{ MODELTIME

. . . reached modeltime (default: 0)

{ EVENTS

. . . number of events (default: 0, hierarchy default: all)

{ CONFIDENCE LEVEL

. . . con�dence interval width (level default: 95, degree default: 10, width
default: 10, measure default: POPULATION, hierarchy default: all)

The new start respectively stop condition is appended at the right end of the
existing conditions. Parts of the window are redrawn.
This entry is not selectable, if the corresponding evaluation is locked by another
user or released.

Functions on Conditions

Figure 4.77: Generating AND Conditions

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

/

� new AND-condition {>

appends a new \and condition" to the current column. The new \and condition"
has the criterion . . .

{ MODELTIME

. . . reached modeltime (default: 0)

{ EVENTS

. . . number of events (default: 0, hierarchy default: all)

{ CONFIDENCE LEVEL

. . . con�dence interval width (level default: 95, degree default: 10, width
default: 10, measure default: POPULATION, hierarchy default: all)

This entry is not selectable, if the corresponding evaluation is locked by another
user or released.

� delete

deletes the selected condition.
A dialog box is displayed, asking for con�rmation to delete the condition. After
clicking OK with the left mouse button, the condition is deleted. If this was
the last condition in a column, the whole column is deleted and the window is
redrawn. Clicking Cancel aborts the delete operation.
Delete is not selectable, if the corresponding evaluation is locked by another
user or released or if there is only one condition at all.

4.9.3 Speci�cation of Values

Criterion MODELTIME

Figure 4.78: Changing the Modeltime

Valid values for modeltime are non-negative values (default: 0), which can also be
entered in exponential form. The values are checked, when the save operation is
performed.

The value cannot be changed, if the corresponding evaluation is locked by another
user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Criterion EVENTS

Figure 4.79: Changing the Number of Events

Valid values for events are non-negative integer values (default: 0). The values are
checked, when the save operation is performed.

Figure 4.80: Changing the Hierarchy

Clicking the right mouse button on the hierarchy �eld displays a popup menu, show-
ing a list of the hierarchies which belong to the corresponding model respectively
component. A hierarchy can be selected with the left mouse button. The name of
the selected hierarchy is then displayed in the hierarchy �eld.

The number of events cannot be changed and hierarchies cannot be selected, if the
corresponding evaluation is locked by another user or released.

Criterion CONFIDENCE LEVEL

Figure 4.81: Changing the Con�dence Level

The criterion con�dence level requires three integer values, a stream and the name of
a hierarchy. The value for the level must be in the interval [90,99] (default: 95), the
degree value in the interval [1,20] (default: 10) and the value for the relative width
of the con�dence interval in the interval [1,50] (default: 10) given in percent. In the
simulation the di�erence between any of the bounds of the con�dence interval and the
estimated mean value should become lower than the given percent value that relates

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

/

to the estimated mean. The entered values are checked, when the save operation is
performed.

Figure 4.82: Changing the Stream for the Con�dence Level

Clicking the right mouse button on the stream �eld displays a popup menu, showing
a list of the streams which belong to the type of the corresponding model respectively
component. A stream can be selected with the left mouse button. The name of the
selected stream is then displayed in the stream �eld.

Figure 4.83: Changing the Hierarchy for the Con�dence Level

Clicking the right mouse button on the hierarchy �eld displays a popup menu, show-
ing a list of the hierarchies which belong to the corresponding model respectively
component. A hierarchy can be selected with the left mouse button. The name of
the selected hierarchy is then displayed in the hierarchy �eld.

Values cannot be changed and streams and hierarchies cannot be selected, if the
corresponding evaluation is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.10 The Hierarchy Survey Window

The hierarchy survey window is called from the evaluation window and is associated
with a component. It provides the user with basic functions to specify self de�ned
hierarchies that end in the associated component.

All user de�ned hierarchies are displayed in a list and o�er operations via a popup
menu.

Figure 4.84: Hierarchy Survey Window

In Figure 4.84 a hierarchy survey window is displayed showing the two hierarchies
\secr 1 join" and \secr 1 prep".

4.10.1 Global Functions

Figure 4.85: Menu on the Title of the Hierarchy Survey Window

� new hierarchy

creates a new hierarchy.
A dialog box is displayed, requesting a name for the new hierarchy. After
entering a correct name and con�rming it the new hierarchy is inserted in the
alphabetically sorted list of hierarchies.
An error message is displayed, if the entered name already exists as a hierarchy
in the current window.
New hierarchy is not selectable, if the corresponding evaluation is locked by
another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� save

saves the hierarchy survey window.
Save is not selectable, if a hierarchy window started from this window is still
open or if the corresponding evaluation is locked by another user or released.

� save & quit

saves and quits the hierarchy survey window, if the save operation has been
successful.
Save & quit is not selectable, if a hierarchy window started from this window
is still open or if the corresponding evaluation is locked by another user or
released.

� quit

quits the hierarchy survey window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
Quit is not selectable, if a hierarchy window started from this window is still
open.

4.10.2 Functions on Hierarchies

Figure 4.86: Menu on Hierarchies

� open

opens the corresponding hierarchy window.
If the current hierarchy is just created, a dialog box is displayed asking for a
save before performing the open operation.
This entry is not selectable, if this hierarchy window is already open.
No modi�cations of the hierarchy are possible if the corresponding evaluation
is locked by another user or released.

� rename

allows you to rename the selected hierarchy.
A dialog box is displayed, asking for the new name of the hierarchy. After en-
tering a correct name and con�rming it the hierarchy is renamed and reinserted
in the list. If this hierarchy is used in evaluation object windows or start/stop
windows of the current environment, it is renamed there, too.
An error message is displayed, if the entered name already exists.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Rename is not selectable, if the hierarchy window of the selected hierarchy is
open or if the corresponding evaluation is locked by another user or released.

� copy

copies the selected hierarchy, i.e., copies all load paths of this hierarchy.
A dialog box is displayed, requesting the name for the copy. After entering a
correct name and con�rming it the new hierarchy is created and inserted in the
list.
An error message is displayed, if the entered name already exists.
Copy is not selectable, if the corresponding evaluation is locked by another user
or released or if the hierarchy window of the selected hierarchy is open.

� delete

deletes the selected hierarchy, i.e., deletes all load paths of this hierarchy.
A dialog box is displayed, asking for con�rmation to delete the selected hier-
archy. After clicking OK with the left mouse button, all load paths of this
hierarchy are deleted and the hierarchy is removed from the list of hierarchies.
If this hierarchy is used in evaluation object windows or start/stop windows of
the current environment, it is replaced there by the hierarchy \all", if it was the
only hierarchy selected there. Clicking Cancel aborts the delete operation.
Delete is not selectable, if the hierarchy window of the selected hierarchy is open
or if the corresponding evaluation is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.11 The Hierarchy Window

The hierarchy window is designed for the modelling of hierarchies via the concept
of load paths. A load path speci�es a special load �ltering for measurement within
a model, that ends in an associated component. The set of load paths de�ned in a
hierarchy window is composed internally to form the entire hierarchy. The composed
hierarchy may be used by its name within the start/stop or the evaluation object
window.

The speci�cation of a load path may be performed hierarchically on three levels. The
�rst step is done on the component view, where only components are displayed. An
example is given in Figure 4.87, which shows a unique path on the component level
leading from \eva 4" of type \o�ce 4" to the component \link" of type \server".

Figure 4.87: Hierarchy Window: Component View

When a load path speci�cation on the component level describes a distinct component
path after selection of appropriate components or paths, the additional service and
used service views are accessible, which allow for a more detailed speci�cation. In
Figure 4.88 the previously shown path is displayed in the used services view showing
all existing services and used services on the corresponding path.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

In the hierarchy window each load path is saved separately. So you will not �nd a
save operation for the complete set of load paths in the menu on the title. You will
�nd the save operation for a load path on the background menu.

Figure 4.88: Hierarchy Window: Used Service View

The speci�cation principles of this window are restricted by some phenomena due to
certain model structures, for instance component arrays or shared components. A
detailed discussion of the speci�cation procedure as well as for the handling of the
non-trivial model structures is presented in the tutorial (cf. Section 7.4.5).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4.11.1 Global Functions

Figure 4.89: Menu on the Title of the Hierarchy Window

� new load path

appends a new load path at the end of the list of load paths.
If this is the only load path in the current window you get a look on the reduced
object structure which ends in the component corresponding to this hierarchy.
If a new load path is displayed (e.g., after a load path switch) a dialog box is
displayed requesting the originator of the load path.
After selecting an object (performing the select operation with the right mouse
button) the components without interest are cut out and the area between
model and the originator turns grey.
Furthermore the paths (respectively part of these paths) between originator
and basic component without any bound services (and consequently without
any possibility to call) will be eliminated. Now the load path can be speci�ed
by sequentially activating the select operation. If no admissible path can be
speci�ed the load path will be deleted and an error message will be displayed.
If you want to switch to another (for example a new) load path and there are
unsaved changes within the current load path, the switch must be explicitly
con�rmed. Clicking OK with the left mouse button aborts the modi�cation of
the current load path; after clicking Cancel no load path switch is done.
New load path is selectable at any time, except the corresponding evaluation is
locked by another user or released.

� quit

quits the hierarchy window.
If any changes have been made in the current load path since the last save
operation respectively the very �rst displaying, you are asked for con�rmation.

4.11.2 Functions Referring to Load Path Selection

Load paths can be accessed directly selecting an area of the load path survey with the
left mouse button. Consequently the \black box" is moving to this selected area and
in the load path subwindow the corresponding load path will be displayed. Further
switches are possible at any time.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

If any changes were made since the last save in the current load path the message
\Switch without save?" is displayed. Clicking OK aborts the modi�cation of the
current load path; after clicking Cancel no switch is done.

4.11.3 Functions Referring to the Selection of Views

The various views COMPONENTS, SERVICES and USED SERVICES enable the
speci�cation of a load path with di�erent degree of detail.

Note the following points:

� Initially the COMPONENTS view is chosen.

� Switching to another view is only possible if a single component path is de�nitely
speci�ed and saved in the COMPONENTS view.

� Before switching the view from COMPONENTS to another view it is checked
whether the current load path is empty, i.e., whether there is no connection
between provided and used services along the component path. If the load path
is empty (in this sense) the switch is aborted and an error message is displayed.

4.11.4 Functions Referring to the Current Load Path

Functions on the Background

Figure 4.90: Background Menu on the Load Path

� save

saves the current speci�cation of a load path.
For the duration of this operation the mouse cursor is displayed as a clock
symbol. The window is refreshed when the operation is �nished. In case of an
empty load path an error message is displayed.
If the save is done in the view COMPONENTS an automatic switch to the view
SERVICES is performed because at this time the component path is de�nitely
speci�ed and no more modi�cations can be done in this view (COMPONENTS).
Save is not selectable if the load path is not speci�ed de�nitely or if the corre-
sponding evaluation is locked by another user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� undo

undoes the last update (i.e., the last selection).
Undo can be called repeatedly until the last saved state is reached.
Undo is not selectable for a new window or immediately after a save operation.
Furthermore this function is not selectable if the corresponding evaluation is
locked by another user or released.

� delete

deletes the current load path speci�cation.
A dialog box is displayed asking for con�rmation to delete the current load
path.
After the deletion the cyclically next load path speci�cation is displayed. The
load path survey is updated appropriately. If the last load path has been deleted,
an empty hierarchy window is displayed. The load path survey is empty, too.
Delete is not selectable if the corresponding evaluation is locked by another user
or released.

Functions on Components and Edges (View: COMPONENTS)

Figure 4.91: Menu on an Edge

� select

selects a component respectively an edge.
The load path will be restricted appropriately due to the selection.
The selection may cause that indices of arrays on the component path have to
be speci�ed, because these indices cannot be determined at the points of usage
of the hierarchy. Dialog boxes may be displayed asking for these indices.
This function is not selectable if the corresponding evaluation is locked by an-
other user or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Functions on Services (View: SERVICES)

Figure 4.92: Menu on a Service

� select

selects a service.
The load path will be restricted appropriately due to the selection.
This function is not selectable if the corresponding evaluation is locked by an-
other user or released.

Functions on Used Services (View: USED SERVICES)

Figure 4.93: Menu on a Used Service

� select

selects a used service.
The load path will be restricted appropriately due to the selection.
This function is not selectable if the corresponding evaluation is locked by an-
other user or released.

4.12 The Experiment Window

The experiment window serves as the basis for the complete experiment speci�cation.
It allows the user to specify the evaluations and their actual parameters, the solution
method to be applied as well as the body of the experiment, which de�nes the course
of experiment execution.

An example of an experiment window is given in Figure 4.94. It shows that the
window is subdivided into three areas.

The �rst part entitled METHOD allows for the selection of the analysis method to be
applied for the current experiment. For each method, some additional speci�cations
can be made. The sample window displays the selected method SIMULATIVE and
some stop conditions for each evaluation of the experiment run.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.94: Experiment Window

The next subwindow is entitled EVALUATIONS. It displays an alphabetically sorted
list of evaluations, that may be run and analysed within this experiment. To enter an
evaluation, the insert evaluation operation of the title bar menu is activated, which
causes a message box to be displayed. After the selection of the desired evaluation
within the environment window the evaluation is inserted into the list of the subwin-
dow EVALUATIONS. Note that only evaluations being displayed in this subwindow
may be analysed within the current experiment. In Figure 4.94 the evaluation \eva 1"
is imported.

The last subwindow, OUTPUT, allows for the selection of the output representation
of the analysis' results. The default selection is TABLE, which is the most common
form of output representation.

Two additional operations should be mentioned. The open operation on the ti-
tle bar opens a text editor, which allows for the speci�cation of the experiment
body. Note that evaluations, which are referred to, are written in the form
\EVALUATE my_evaluation;" in a separate line.

Finally, the popup menu on evaluations provides the operation actual parameters.
It opens a text editor, which allows to specify actual parameters for the evaluation
respectively for the corresponding model type.

4.12.1 Global Functions

� open

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 4.95: Menu on the Title of the Experiment Window

opens the HITGRAPHIC text editor with three subwindows to specify the fol-
lowing parts of an experiment:

{ CONTROL

This editor subwindow serves for the speci�cation of the HI-SLANG control
part.
Do not forget the \%END" at the end of the control part.

{ LOCALS

This editor serves for the speci�cation of the declaration part.

{ BODY

This editor serves for the speci�cation of the instruction part.
Evaluations used in the instruction part must be referred to in a special
statement (e.g., EVALUATE eva_1;).
If an evaluation is used in the instruction part which is not listed in the
EVALUATIONS area an appropriate message will be displayed during the
transformation and the transformation will be aborted.

Open is not selectable if the text editor is already open.
The �les are only readable if the experiment is locked by another user or released
or if �le permissions are not su�cient for write mode.

� insert evaluation

inserts an evaluation into the list of evaluations in this experiment in alphabet-
ical order.
A dialog box is displayed asking for the selection of an evaluation in the en-
vironment window using the left button. After clicking OK the evaluation is
inserted into the list. If the experiment body is not currently open and can be
edited, another box is displayed asking to append an EVALUATE statement
for the inserted evaluation at the end of the experiment body. After clicking
OK the experiment body is automatically updated.
An error message will be displayed if anything but an evaluation has been se-
lected (e.g., a component type) respectively if the evaluation already exists in
the list.
Insert evaluation is not selectable if the experiment is locked by another user
or released.

� save

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

saves the actual state of the experiment window (i.e., the experiment speci�ca-
tion).
An error message will be displayed if any values are incorrect.
Save is not selectable if the experiment is locked by another user or released or
if a subwindow of the experiment window is still open.

� save & quit

saves the actual state of the experiment window as the save operation does. If
saving has been successful, the experiment window is closed.
Save & quit is not selectable if the experiment is locked by another user or
released or if a subwindow of the experiment window is still open.

� quit

quits the experiment window.
If any changes were made since the last save operation, you are asked for con-
�rmation.
Quit is not selectable if a subwindow (i.e., a text editor) is still open.

4.12.2 Operations in the Method Area

In the method area the user may choose between the methods SIMULATIVE, DOQ4,
LIN2 or MARKOV by clicking with the left mouse button. The default method is
SIMULATIVE.

Changing the method is not possible if the experiment is locked by another user or
released.

Additionally for the method SIMULATIVE it can be speci�ed whether a trace should
be generated for the current experiment or not. If TRACE ALL is clicked with the
right button a popup menu is displayed showing the value on respectively o� . The
default value is o� .

Figure 4.96: Menu on the Trace Switch in the Experiment Window

� TRACE ALL on/TRACE ALL o�

causes a trace generation for this experiment respectively resets the option.
Switching is not possible if the experiment is locked by another user or released.

For the method SIMULATIVE the additional speci�cation of the maximal runtime
(CPU time) or modeltime for an evaluation is possible. Default values are 10000. The
value 0 means an ignoration of this stop criterion. But you cannot set both values to
0. The values can also be given in exponential form (i.e., two values separated by an
'E' or 'e').

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The complete simulative stop control of an evaluation within the experiment will be
composed by a \logical or" of up to four conditions:

1. the MODELTIME condition of the experiment window, if enabled,

2. the CPUTIME condition of the experiment window, if enabled,

3. a \logical or" of all simulation stop conditions attached to evaluation objects in
the evaluation window (cf. Sections 4.7 and 4.9), if any are speci�ed,

4. a \logical and" of all simulation stop conditions in evaluation objects described
in evaluation object windows (cf. Section 4.8.2), if any are speci�ed.

Additional to the methods LIN2 and MARKOV accuracy values (ACCURACY) for
the results can be speci�ed. The LIN2 accuracy value refers to performance bounds
and must be an integer value between 0 and 4, the MARKOV accuracy must be
speci�ed by a real value between 0 and 1. The values can be inserted directly into the
corresponding text �elds. Default accuracy values are 1 (LIN2) and 0.1 (MARKOV).
A (syntactical and semantical) check will be done during a save operation.

Changing the values is not possible if the experiment is locked by another user or
released.

4.12.3 Functions on Evaluations

Figure 4.97: Menu on Evaluations in the Experiment Window

� actual parameters

opens the HITGRAPHIC text editor with two subwindows to display the formal
model parameters in read-only mode and to specify the actual parameters of
the model for this experiment.
If the formal parameters have been changed or deleted within the corresponding
model type, the actual parameters have to be updated in this window by the
user himself. Do not forget to change the experiment body and the locals, too.
The operation is not selectable if the text editor with the same �le is already
open.
The actual parameters are only readable if the experiment is locked by another
user or released or if �le permissions are not su�cient for write mode.

� remove

removes the selected evaluation from the list.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

It is not checked whether this evaluation is still used in the (experiment) in-
struction part. Possibly an interruption is forced during transformation (cf.
above: open operation).
Remove is not selectable if the current experiment is locked by another user or
released.

4.12.4 Output Area

In the output area the result presentation can be selected respectively the selection
can be reset with the left mouse button. The selected parts are indicated by a right-
pointing, small arrow.

To insure that at least one result form is speci�ed a reset of the last selection will
force the selection of TABLE, which is the default output form.

If an interactive observer is used within the model actually being solved, one output
direction should be SYSOUT, which pipes the table output to the protocol window
of the HIT run.

Changing the result form is not possible if the experiment is locked by another user
or released.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 5

Teamwork with HITGRAPHIC

5.1 Modes of Modelling Objects

In general many questions may arise in the context of teamwork, like

{ How can modelling objects being in progress permanently be protected against
unauthorized or ignorant changes even after the end of a HITGRAPHIC session?

{ How can completely modelled objects be released for general use?

Therefore, cooperating modellers (modelling by teamwork) wish to get as much help
as possible. If every user accepts the rules for using the system the problem can be
solved in a really simple and e�ective manner. At every time every modelling object
is in a mode which has to be set explicitly by the user. Each mode de�nes a scope
for the operations permitted.

The operation mode on modelling objects within the environment window is used to
set a mode. After you have done this the following window will appear.

Figure 5.1: Mode Box

The modes can be classi�ed and described as follows.

� free

A locked object can become unlocked by the free operation, which is executable
only by the owner.

Free is the default mode of a modelling object. Modi�cations including changes
of the mode are possible for all authorized users.

129

� locked

By the lock operation the user gets the exclusive permission to change a mod-
elling object. In this mode the modelling object is coupled with the user, who
now becomes \owner" of the modelling object. His identi�cation is generally
known by all users (it is the user name in UNIX). The duration of the lock does
not depend on a session or process so that the lock operation is valid even after
the end of a HITGRAPHIC session. Read and write permissions for the owner
remain unchanged, but all other users can use this modelling object only for
reading purpose.
By the lock operation all data belonging to the modelling object are locked and
cannot be changed by anyone else than the owner. It might be desirable to lock
all other modelling objects being concerned in it as well, e.g., for component
types: the used component types and their interfaces. But as a consequence
only bottom up design would be possible. Therefore the lock operation has
only the e�ects described above. It is up to the user to get a more extended
lock operation, i.e., he has to lock or release the additional modelling objects
himself.

� released

After �nishing the speci�cation of a modelling object the modeller changes its
mode into the released mode. But be careful because a released modelling object
cannot be changed anymore, not even by the modeller himself. He becomes the
\owner" of the object and his user identi�cation will be linked to it.

The system allows all users to use or copy the modelling objects. The users can
be sure that there will be no modi�cation of this objects, because no changes
are allowed. The only possible operation beside the copy operation is the delete
function that can only be performed by the owner. After releasing a modelling
object changes are only possible on copies of that released modelling object.

The domain of the release is the same as that of a lock.

Note that the released mode can never be set back to free or locked , not even
by the owner of the modelling object.

5.2 General Hints for Teamwork Support

In Section 5.1 the term \modes of modelling objects" has been discussed. The ob-
jective of this section is to give some guidelines how to work with HITGRAPHIC in
general, respectively how to use the presented features for teamwork support.

� In general working with HITGRAPHIC should be done in a somewhat sequen-
tial or reasonable manner. Performing parallel changes in several component
type graphic windows should be performed carefully.

� If the save operation is performed in the component type graphic window, the
changes will be documented within the database immediately. This fact should

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

lead to a somewhat careful style of modelling. The same holds for some more
operations, especially for the delete operation within the environment window.
These operations may cause a lot of elements to disappear from the database.

� Because displayed data may become obsolete in comparison to the state of the
database, you should consider an update from time to time, for example by a
refresh, save or quit and subsequent reopen operation.

Some more hints should be observed concerning the teamwork with HITGRAPHIC:

� The speci�cation of interfaces should be done carefully and in early stages of
the modelling task.

� If modelling objects are still under development, not tested or in any other
\unreliable" state, they should be locked.

� The access and change of modelling objects in the free mode should be avoided
when working in a team.

� The information �le of modelling objects should really be used for documen-
tation purposes in a reasonable manner. At least interfaces, respectively their
changes, should be documented.

These hints should be acceptable for any user. As a result, a basis for common use
and teamwork is formed.

5.3 Documentation Support

HITGRAPHIC supports documentation by providing a print function for several
windows. A PostScript �le is generated which can be included in papers or used
for demonstration. The print function is available within the object structure of the
survey window, the component type graphic window and the evaluation window.

Figure 5.2: Print Box

To manipulate the settings for the PostScript output a subwindow is displayed. The
related functions are explained in the following.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

� Orientation

The button will toggle the output orientation between portrait and landscape.
The default orientation is portrait .

� Frame

A rectangular frame consisting of the border of the output can be requested.
The button will toggle between on and o� .
The default is o� .

� Maximum �t

The button will toggle between on and o� .
If the default on is selected the generated �gure is displayed with the maximum
size �tted on an A4 paper. If o� is selected the size depends on the speci�ed
magni�cation value.

� Magni�cation %

The magni�cation value can only be changed if no maximum �t is requested.
The default value 100% results in a size of the �gure approximately to the
displayed window size.
It is guaranteed that the use of the same magni�cation value produces the same
picture size even if you are working on di�erent displays.

� Filename

A �lename for the output is generated depending on the corresponding name of
the element to be printed. It is editable by the user. Filenames can be absolute
or relative to the current working directory of the HITGRAPHIC call.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 6

Questions and Answers

A collection of frequently appearing problems during the use of HITGRAPHIC is
built up in this chapter. The �rst section contains a list of problems and questions,
the second section o�ers solutions. This partitioning allows to quickly browse through
the problems.

6.1 List of Questions and Problems

1) The quit operation is deactivated, but I want to quit HITGRAPHIC.

2) I cannot perform open because the modelling object is busy.

3) Which operations a�ect the database and when?

4) For which operations do I have to expect a rather long execution time?

5) I have inserted a new service in the component type but I cannot �nd it at an
instantiated object of that type.

6) How does the HI-SLANG code of a self de�ned control procedure look like?

7) What is the di�erence between measurement and simulation stop control?

8) How can I change a stop control in a stop control window, e.g. from con�dence
level to events?

9) How does a CONTROL part of an experiment look like?

10) Can I set the seed for random drawing?

11) How can I describe experiment series?

12) Why does the transformation to HI-SLANG fail?

13) What can I do if I get compile errors from the HI-SLANG compiler?

14) Can I add debugging code during the development phase of a component
type?

133

Q

15) The HI-SLANG listings are getting too large!

16) Why does my database require so much disk space?

17) Results are unde�ned!

18) Can I get intermediate results of a simulation?

6.2 Solutions

1) The quit operation is deactivated, but I want to quit HITGRAPHIC.

The quit button is only activated, if all subwindows of the window are closed.
A subwindow appears as the result of an operation in the window. For example,
an experiment window is a subwindow of an environment window.

Due to a program error or a process kill a subwindow may not terminate cor-
rectly. Then there may be another option to quit the window, dependent on
the X environment and window manager you use. Some window managers have
an operation to terminate in the menu of the window. They cause a con�rm
box to appear, that warns you about a possible damage of your database. If
any window of HITGRAPHIC is terminated without the usual quit operation,
the program \unset busy" should be executed, cf. Chapter 2.

2) I cannot perform open because the modelling object is busy.

Under normal circumstances modelling objects (model types, component types,
aggregation descriptions, evaluations, experiments) are busy if they are opened
for editing or used in an experiment, that is actually running.

If you can make sure that this is not the case and the modelling object is
still busy, you can use the program \unset busy" to reset the busy locks, cf.
Chapter 2.

3) Which operations a�ect the database and when?

Within the environment window all operations a�ect the database directly. The
same holds for the deletion of load paths within the hierarchy window. Other-
wise the database is only modi�ed by save respectively save & quit operations.
Some operations require the actual data to be saved. In that case you are
asked to con�rm the save operation. If you select Cancel both the save and the
activated operation will not be performed.

A new retrieve in the database is performed with the save operation. An excep-
tion of this rule is the case that illegal input values have been detected, because
you should have the chance to correct without performing all changes again.
Changes in the database made in other windows can only be seen after a new
retrieve. The survey window has a refresh operation, because there is nothing
to be saved.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4) For which operations do I have to expect a rather long execution time?

All operations that directly access the database take a bit more time. Copy-
ing between environments lasts long because a lot of data is a�ected. Save
operations may take a longer time, especially if they require internal delete
operations. They are complex, because the integrity of the database must be
ensured.

The transformation to HI-SLANG may last longer, because all information ref-
erenced in the experiment must be retrieved from the database to compose the
HI-SLANG source.

5) I have inserted a new service in the component type but I cannot �nd it at an
instantiated object of that type.

Firstly, you have to check that the service is provided. This is indicated by a
small arrow at the left of the service. Activate the provide operation in the
menu of the service, if the arrow is missing. Then make sure that the changes
of the component type are stored in the database by performing a save in the
component type graphic window containing the description of the service. Then
you still do not see the new provided service at the object of the type, because
the changes in the database are not automatically updated in the windows.
You have to perform a save in the component type graphic window containing
the object. Alternatively you can quit and open that window again. Now you
should �nd the provided service at the object.

6) How does the HI-SLANG code of a self de�ned control procedure look like?

The HI-SLANG code of self de�ned control procedures, that is entered in the
text editor window, is an exception concerning BEGIN-END pairs. It is divided
in two parts, the local declarations and the statement part. The parts are
separated by a BEGIN. The corresponding END is not part of the user's input, it
will be generated automatically.

For a detailed description of HI-SLANG control procedures please refer to the
corresponding chapter in the HI-SLANG Reference Manual. Here we repeat the
description of the last-come-�rst-scheduled preemptive resume schedule proce-
dure, but only the part that is entered in the text editor of HITGRAPHIC.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Q

VARIABLE found : BOOLEAN DEFAULT FALSE;

BEGIN

INSPECT ENTRY_AREA WHILE NOT found LOOP REVERSE

SELECT;

found := TRUE;

END LOOP;

IF found THEN

INSPECT SERVICE_AREA LOOP

SELECT;

END LOOP;

END IF;

7) What is the di�erence between measurement and simulation stop control?

Stop controls can be used for measurements and for complete evaluations.

Measurement stop controls are stop conditions that are entered in a start/stop
window and opened from within an evaluation object window. They inuence
the gathering of data for streams activated in the evaluation object window.
The gathering stops if the stop condition becomes true. This only works when
using the simulative solver. If the stop condition has become true, the estimated
measures will no longer change, although the simulation may continue.

As indicated by the name, simulation stop conditions are only of interest to
the simulative solver. They control the stopping of the simulation run for the
actual evaluation of the experiment. There exist two kinds of simulation stop
conditions.

The �rst kind is related to the determination of measured results. Simulation
stop conditions of the �rst kind are therefore speci�ed in the evaluation object
window, only the criteria WIDTH and UPDATES are available for them. Note
that the measurement for an evaluation object containing such a simulation stop
condition will stop with the end of the simulative evaluation, not necessarily
when the condition becomes true. The condition inuences the decision whether
to stop the simulation, see below.

Simulation stop conditions of the second kind are created and opened at eval-
uation objects in the evaluation window. They are determined independently
from the estimation of results.

The complete simulative stop control of an evaluation within an experiment is
composed by a \logical or" of up to four conditions:

(a) the MODELTIME condition of the experiment window, if not disabled by
the value 0,

(b) the CPUTIME condition of the experiment window, if not disabled by the
value 0,

(c) a \logical and" of all simulation stop conditions of the �rst kind, if any are
speci�ed,

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

(d) a \logical or" of all simulation stop conditions of the second kind, if any
are speci�ed.

For stationary analysis it should be su�cient to apply measurement start con-
ditions to reduce the inuence of the initial state of the simulation, simulation
stop conditions of the �rst kind to request a certain accuracy of the results, and
a CPUTIME condition, that can limit the simulation in some way, so that it �ts
in your personal time table. Other stop conditions are less useful for stationary
analysis.

8) How can I change a stop control in a stop control windows, e.g. from con�dence
level to events?

There is no direct way to change the kind of a start or stop condition. The only
way to achieve this is to create a new condition and delete the old one. Please,
note that there must at least be one condition in a start/stop window, so you
cannot delete the last condition.

9) How does a CONTROL part of an experiment look like?

The CONTROL part is described in a chapter of the HI-SLANG reference man-
ual. You should avoid %BIND directives, especially for prede�ned link names.
A quite useful CONTROL part for a simulative experiment is the following:

%COMPILER

%PARM = XREF,INDENT=|1

%ANALYZER

%PARM = UPDATES,MINMAX

%END

The %END at the end is necessary, although earlier versions of HITGRAPHIC
behave di�erently than described. For details of each option, please refer to the
HI-SLANG Reference Manual.

10) Can I set the seed for random drawing?

The seed is an implicit parameter of each model type. It can be set with the
actual parameters at an evaluation in the experiment window. As an example
we regard a model type with one formal parameter:

arrival_rate : REAL

The actual parameters given for the corresponding evaluation including the
setting of the seed may look like this:

2.5, LET seed := 23

In the context of experiment series, the use of the procedures \set seed" and
\last seed" may be of interest. Have a look at the next solution.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Q

11) How can I describe experiment series?

It is possible to describe experiment series within one experiment description.
To clear up the main idea we regard an example. A model type has the following
formal parameter:

arrival_rate : REAL

Simulative evaluations should be performed for a parameter range from 2.0 to
5.0 with step width 0.5 and for the values 10.0 and 50.0. For each parame-
ter value two evaluations should be performed with di�erent sequences of the
random number generator assuming that its period is large enough.

The �rst step is to introduce a local variable in the experiment for each formal
parameter of the model that should be modi�ed, in our case:

VARIABLE act_arrival_rate : REAL;

This variable is used as actual parameter at the evaluation in the experiment,
that corresponds to the model type. In our example the evaluation is called
\eva mod". For the seed we use the prede�ned procedure \last seed". This
guarantees that the random number sequence will not be reset, but continued
to avoid overlapping as far as possible. The actual parameters at the evaluation
are:

act_arrival_rate, LET seed := last_seed

The setting of the actual parameter via the local variable and the activation of
the evaluation are described in the experiment body:

set_seed (13);

FOR act_arrival_rate := 2.0 STEP 0.5 UNTIL 5.01 LOOP

EVALUATE eva_mod;

EVALUATE eva_mod;

END LOOP;

FOR act_arrival_rate := 10.0, 50.0 LOOP

EVALUATE eva_mod;

EVALUATE eva_mod;

END LOOP;

The extension of this concept for multiple parameters or multiple evaluations
should be obvious.

12) Why does the transformation to HI-SLANG fail?

There may be several reasons for a failure of a transformation. Firstly, nothing
that is referenced by the experiment/aggregation description may be opened
for editing. The referenced evaluations should contain evaluation objects. A

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

frequent error is to forget or misspell an evaluation name in the experiment
body. Note that after a rename of an evaluation the name is not automatically
changed in experiment bodies.

You get more information about your problem in the transformation errors
window, that is popped up automatically (cf. Figure 4.19) displaying message(s)
in case of transformation errors.

13) What can I do if I get compile errors from the HI-SLANG compiler?

Compile errors usually indicate errors in the HI-SLANG code you have entered
in a text editor.

First of all, a lot of syntactical errors can be avoided early by applying the check
operation in text editors for HI-SLANG.

If you still get errors from the compiler, you can apply the errors operation in the
submenu of show on the experiment or aggregation in the environment window.
Based on the information in the generated listing it tries to relate the errors
of the HI-SLANG compiler to the corresponding elements of the speci�cation
in HITGRAPHIC (cf. Figure 4.22), where they usually can be corrected. You
should note that a single error may cause multiple error messages.

If the automated reverse mapping is not successful, please try to apply the
following scheme.

To localize the problem you open the protocol of the experiment. In one subwin-
dow you �nd the list of errors, in the other a listing of the generated HI-SLANG
code. You should position the listing to the line of the �rst remaining error.
The context of the line, especially some automatically generated comments and
page titles should help you identifying the part to be corrected. Then you have
to open the corresponding HITGRAPHIC windows and correct there. After
this you may continue with the next error.

If you have an old control part without %END at the end, this could be the
problem (cf. question 9). This will not be corrected by the database format
conversion. It will produce compilation errors of module FAN. A manual inser-
tion of %END at the end of the control part cures the problem.

14) Can I add debugging code during the development phase of a component type?

First of all, if you use the simulative method, the trace options can be very
useful. You can turn on the trace globally in the experiment or for selected
components in the evaluation window. In the control part the format of the
trace can be selected, e.g., by a line containing %PARM = TRACEFORMAT=3.

The trace output can be deactivated respectively activated by the prede�ned
procedures trace_off and trace_on. But be careful, you are programming
concurrent processes. If you turn on the trace output at the start of a service
and turn it o� at the end of the service, you cannot be sure that all events
from start to the end of a service execution are traced, because in the meantime
another process may have turned o� the trace output.

Additionally, the trace�le is accessible from within HI-SLANG by the prede-
�ned procedure tracefile. You can use writeln statements to add additional

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Q

output to the trace�le, for example the value of variables or the state of the
component.

But before you start to add debugging code you should think about a strategy. A
simple solution is to add the code and delete it if the component is successfully
tested. A more sophisticated strategy is to use conditional compilation. For
each component type you de�ne a compiler switch whose name is composed by
the pre�x DEBUG_ and the component type name. The debugging code is only
compiled if the switch is set:

%IF DEBUG_component_type_name THEN

trace_on;

WRITELN FILE tracefile, ... ;

%FI

The switch can be set in the control part of the experiment after(!) the %END

by a %SET directive. The advantage of this strategy is that the component can
remain unchanged after the tests and the debugging code is still available if
problems occur later.

15) The HI-SLANG listings are getting too large!

This may be caused by the multiple use of component types within di�erent
component types. These component types are generated and listed for each
component type that contains an object of that type. There is an opportunity
to control the generation of the listing by compiler directives.

As an example we regard the large body of a service called \compute", that
should only be listed once. By convention we use a compiler switch named
\service compute listed". This name should be unique within the complete
model. Adding the following compiler directives at the begin and the end of
the body will result in the desired listing output:

%IF NOT service_compute_listed THEN

%SET service_compute_listed

%ELSE

%NOSOURCE

%FI

< large body of service "compute", HI-SLANG >

%SOURCE

16) Why does my database require so much disk space?

The most disk space consuming parts of the database are output �les of the
HIT system, especially traces and listings. A hint to reduce listing size is given
in the previous solution. If you must be economical with disk space, delete
experiments as soon as possible, use the move to �le operation for output �les
you do not need any longer.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

17) Results are unde�ned!

There may be serveral reasons for an unde�ned estimator. Have a look on
the solver information automatically appended at the listing if not explicitly
disabled via %PARM = NOSOLVERINFO in the CONTROL part. After the \eval-
uation trace" you �nd \information about estimators".

For example no con�dence interval is given, if the con�dence interval is wider
than the mean value itself. Or the estimator mean is unde�ned because the
measure interval has length zero.

For more information concerning the solver information please con�rm to the
HI-SLANG Reference Manual.

In case of simulation a �rst step to solve your problem is to get information
about the number of updates for the corresponding stream. You should use the
control part of the experiment to demand for the number of updates:

%PARM = UPDATES

%END

Of course, the number of updates depends on the model behaviour, the stream
de�nition, and the load �ltering hierarchy, but usually the measurement start
and stop condition at the evaluation object and all simulation stop conditions
controlling the experiment run should be considered.

Check whether the measurement start condition has become true too late or
the measurement stop condition has become true too early. If the measurement
stop condition has not become true you may increase the experiment run length
by changing the simulation stop conditions at or in the evaluation objects or
in the experiment window. Again have a look on the solver information for the
reason of the end of the experiment.

Note that all the conditions, measurement start, measurement stop, and sim-
ulation stop, are evaluated independently. For example, if you have set the
measurement start condition to a high modeltime or event value the updates
for the estimation of the result are not regarded before the start condition be-
comes true. For a measurement stop condition, e.g., the width of a con�dence
interval, all the data is taken into account. So it may be possible that the stop
condition becomes true before there is enough data for the estimation.

Please, note that in a stationary analysis there are usually no reasons to use
measurement stop conditions.

18) Can I get intermediate results of a simulation?

The standard component type \observer" is designed for this purpose. Please,
read its information.

If you want to use an \observer" in interactive mode, you should additionally
select SYSOUT for output in the experiment window. Your xterm should be
con�gured with a scrollbar and a su�ciently large scrollbu�er (via resources of
X).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Part II

Tutorial

142

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Chapter 7

A Tutorial

7.1 Introducing Remarks and Perspective

A single example will be used throughout the tutorial to clarify the most important
features of a HITGRAPHIC session. For reasons of readability and clearness only
main concepts and functions are depicted in order to provide for a certain \feeling"
for the work with HITGRAPHIC. The Chapters 2 and 3 of the reference part should
be read before starting the tutorial. For information about text editing you can
consult Section 4.5.

The tutorial is structured into two main parts. The �rst one deals with model spec-
i�cation, presenting re�nement steps of a sample model. The second one is about
evaluation and experiment speci�cation based on the previously speci�ed models.

The example goes as follows: Some company considers the introduction of computer
support for its o�ce work. Considerations start at supporting certain decisions and
their preparations. Basically, one such decision activity is planned, per day per de-
partment. The company is, in a restructuring phase, moving from �ve towards ten
departments; eventually twenty departments are to be catered for. The activities un-
der consideration each consist of preparing three initial documents and subsequently
joining these documents into some master report, which is later examined and even-
tually �nished o�.

7.2 How to Start a HITGRAPHIC Session

The �rst steps to create your own HITGRAPHIC environment are described in Chap-
ter 2. If you have not yet created a database, please go to that chapter and return,
if you have one.

The syntax of the HITGRAPHIC call is given by

hitgraphic <your database>

HITGRAPHIC prompts with an empty environment window and the startup window
(cf. Figure 7.1).

145

Figure 7.1: Startup Window of a HITGRAPHIC Session

In a subwindow the list of available environments of the speci�ed database is dis-
played. You are required to select your working environment. The selection follows
the general principles of operations as introduced in Chapter 3.

If you start with a new database, the list of available environments is obviously empty.

7.3 Examples of Model Speci�cation

7.3.1 Model 1

After having started HITGRAPHIC (cf. Section 7.2) the name of the working envi-
ronment is requested. Since a new environment should be created for the examples,
the button new environment is selected with the left mouse button. As a consequence
of this selection a dialog box is popped up allowing to enter the necessary name of
the new environment (cf. Figure 7.2). By clicking the OK button, the displayed text
string is con�rmed and (if syntactically correct) accepted. The environment window
is redrawn (cf. Figure 7.3) and the modelling may begin.

Figure 7.2: A Dialog Window

If there already exist environments and if you know the name of your current working
environment, you may abbreviate the startup procedure by calling the program with
two parameters:

hitgraphic <your database> <your environment>

In this case the environment window is displayed immediately without the startup
window.

The new model type \o�ce 1" is created by performing the new model type operation
on the label MODEL TYPES. After entering the mentioned name and clicking the
OK button in the dialog window, the name of the new model type is displayed in the
list of model types.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.3: The Environment Window

To protect the new model type against unauthorized changes by other users, the next
step is to perform the mode operation on the model type. A dialog box is displayed
showing the current mode (free) and the current owner (no owner). The dialog box
is given in Figure 7.4. To protect the model type the button locked is selected and
con�rmed by clicking the OK button. As a result, your login name is set for the mode
locked as depicted in Figure 7.5, indicating that other users may open this model type
in a read mode only.

Figure 7.4: The Free Mode

Figure 7.5: The Locked Mode

Up to now the preparatory steps are �nished and the modelling of the model type
\o�ce 1" may start. Performing the show survey operation on the model type pops
up the survey window. It displays a single box labelled \o�ce 1" for the object
structure as well as for the type structure.

To modify the model type \o�ce 1" the open operation on the model type in the
environment window has to be performed. Then the component type graphic window
appears (which is opened for model types as well as for component types). The
\empty" model type is displayed in form of an empty graphical area with the activities
symbol being located at its lower left corner.

The present total scenario is given in Figure 7.6.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.6: A HITGRAPHIC Scenario

Keeping the rough example description in mind, the �rst step to be performed in the
component type graphic window is the creation of a service \report", since the load
of the o�ce is given in terms of reports. Selecting new service from the background
menu and giving the service the name \report" results in the �rst symbol to be
displayed, which is the service \report" (cf. Figure 7.7).

The load is known at this point and additionally it is assumed that the services
representing the load will not be parameterized. For these arguments it is reasonable
now to think about how to generate the load. Following these thoughts immediately
leads to the opened activities of the model type.

The text editor corresponding to the activities of model type \o�ce 1" is depicted in
Figure 7.8 showing the statement which is responsible for the load to be CREATEd.
It is assumed that there are always 20 reports to be worked on. Having entered the
text it is good practise to activate the check operation on the ACTIVITIES bar. This
operation gives hints about errors or problems of the current HI-SLANG code. In our
case it is a message about the locally unknown identi�er \report". Since this cannot
be avoided, editing can be �nished and you initiate a save all & quit operation on

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.7: The Service \report" is Created

Figure 7.8: The Activities of \o�ce 1"

the title bar of the editor window. The text editor will then disappear.

So far it is known, that a certain load is created. But it is still unknown what the
load will do, in terms of HIT, the load pattern of, i.e., using services (being provided
somewhere by somebody else) needs to be speci�ed. From the rough description of
the sample model (cf. Section 7.1) four di�erent subactivities are obvious, which will
be named \prepare", \join", \examine" and \archive". Following the structuring
principles the used services will be declared �rst, then their usage within the service
\report" will be given.

Performing the new used service operation on the service \report" yields a new used

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

service, which is named \prepare" in the usual manner (cf. Figure 7.9).

Figure 7.9: The Used Service \prepare" is Created

Before this service is e�ectively used a thought should be addressed to the way of
usage, especially the parameters of \prepare". Following the rough description of the
o�ce example (and remembering that at �rst a simple model is to be developed) the
used service \prepare" as well as the (still missing) \join", \examine" and \archive"
models a simple time consumption.

Figure 7.10 depicts the corresponding formal parameter editor. It is opened via
the formal parameters operation on a used service and allows the speci�cation of
parameters and results.

The advantage of completely specifying the used service \prepare" becomes obvious
when the still missing used services are to be generated. Since they have identical for-
mal parameters (in the model type \o�ce 1") a simple copy on \prepare" is su�cient
not only to generate each of them, but to copy the formal parameters automatically
as well. Repetition of the copy operation and applying the move operation lead to
the component type graphic window as shown in Figure 7.11. After activating a move
on a used service the new position is selected with the left mouse button.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.10: Formal Parameters of \prepare"

Figure 7.11: The Completed Service \report"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The �nal step of the load description is to specify what the service \report" will do,
in other words editing the body of the service \report". The statements shown in
Figure 7.12 stem from the assumption that a report consists of three subdocuments.
The subdocuments are prepared separately one after another, joined, examined and
archived, where each of these steps takes a certain amount of time.

Figure 7.12: The Body of Service \report"

At this point the speci�cation of the load is �nished. Two parts of the speci�cation
of a model/component type are still missing, the speci�cation of the machine and the
reference between load and machine.

Starting with the description of the machine, the question arises which components
of which component type are to be instantiated. The answer is simple, two service
stations of type \server" (named \secretaries" and \clerks") are available in \o�ce 1".
The standard component type \server" provides a single service \request", which
models a time consumption.

The instantiation of the \secretaries" proceeds as follows: the operation new compo-
nent of the background menu of the component type graphic window is applied �rst.
A con�rm box pops up requesting a component type to be selected. The cursor is
moved to the required component type (here: \server") in the environment window,
where the left mouse button is clicked. To con�rm this selection the OK button
inside the dialog box is pressed. After having named the new component (here: \sec-
retaries") it is drawn in the component type graphic window including its provided
services. They are graphically represented as towards-the-top-pointing arrows. Re-
peating this procedure for the component \clerks" leads to the scenario depicted in
Figure 7.13.

In the model type \o�ce 1" the components of type \server" are instantiated as in�-
nite servers without any competition for resources, which is the default instantiation

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.13: The Machinery is Inserted

for components of type \server". For this reason no speci�cation of control procedures
is necessary.

The �nal points to be made concern the reference of load and machine. By placing
a dot at the crossing of a used and a provided service these are bound, the used one
being associated with the provided one. The way to bind services is to click the right
mouse button at the corresponding crosspoint and perform the set operation.

In the example \prepare" and \join" are to be carried out by secretaries, so they are
bound to the provided service \request" of component \secretaries". The used services
\examine" and \archive" are bound to the \request" of component \clerks". The
resulting graphical representation of the model type \o�ce 1" is given in Figure 7.14.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Note that each used service may at most be bound to one provided service, whereas
a provided service may be bound to multiple used services.

Figure 7.14: The Model Type \o�ce 1"

The speci�cation of the model type \o�ce 1" is �nished at this point. A �nal appli-
cation of the save operation in the title bar popup menu followed by a quit �nishes
the work within the component type graphic window and closes it.

To get an updated view in the survey window, an activation of refresh in the title bar
is necessary. The new type and object structures are given in Figures 7.15 and 7.16,
respectively.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.15: Type Structure of Model Type \o�ce 1"

Figure 7.16: Object Structure of Model Type \o�ce 1"

7.3.2 Model 2

The �rst step towards a more detailed model is to re�ne the machinery doing the
work of the secretaries. For this purpose a new component type \handling 2" (the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

number refers to the example) is created. As far as the necessary user actions were
already described in the preceding section they will not be repeated.

Create and open the new component type \handling 2" in the column of self de�ned
component types. In the �rst model it was the secretaries' job to \prepare" and \join"
the subdocuments. A new service named \edit" is to be created for this purpose.
A component of type \handling 2" is providing the service \edit" to be used from
outside. For this, we select the menu item provide in the service menu. For reasons
which will be given later, this service is left parameterless. Instead of just modelling
a simple time consumption, the service \edit" is re�ned. It uses the four services
\fetch", \think", \change" and \store" as shown in Figure 7.18 and Figure 7.19.

Now these four used services model a time consumption (parameter amount: REAL),
too, but the time is spent on a lower level. Some pages of a document are to be
modi�ed one after another. So each page is fetched via a communication link �rst.
After thinking some time, some minor or major changes are made, until the document
is stored (cf. Figure 7.19). From this description the necessary machinery can be
concluded in a simple manner (cf. Figure 7.18 and Figure 7.20).

Now thoughts should be addressed towards the procedures controlling the compo-
nents. Up to now all components were instantiated as in�nite servers to model the
fact that enough secretaries respectively clerks are available, one for each document.
This assumption does not hold for the communication link, since it is not owned by
a single secretary/clerk but used by all of them. So the component \link" should be
instantiated with a processor sharing discipline. For this reason the control procedures
operation is applied on the component \link". After con�rming the save operation
the control procedure window pops up allowing the desired speci�cation. To specify
the processor sharing discipline the dispatch strategy is set to \shared" via the cor-
responding popup operation on the label dispatch. The resulting control procedure
window is given in Figure 7.17.

Figure 7.17: Control Procedures of Component \link"

The description of the completion of the component type \handling 2" is omitted
here, the �nal result is given in Figures 7.18, 7.19, 7.20.

The re�nement of the secretaries' job results in a new component type, which is
to be embedded in the o�ce model. As a �rst step the model type \o�ce 1" is

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.18: The Component Type \handling 2"

Figure 7.19: The Body of Service \edit"

copied within the environment window, the new model type is named \o�ce 2". The
following changes are to be performed on \o�ce 2" in order to re�ne the secretaries'
job.

Starting with the components, the existing component \secretaries" of type \server"
is deleted by performing and con�rming the delete operation on it. Instead, a new

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.20: Object Structure of \handling 2"

component \secretaries" of type \handling 2" is instantiated. The used services \pre-
pare" and \join" are referred to the provided \edit" service of the new component
\secretaries". Using set with transfer instead of set will transfer the parameters of
the provided service to the parameters of the used service. Because \edit" has no
formal parameters the formal parameters of the used services are deleted after a
con�rmation.

Figure 7.21: The Model Type \o�ce 2"

Stopping at this point would cause an error when compiling the generated code, since
the load pattern within the body of service \report" must be changed, too. The actual
parameters at the calls of the used services \prepare" and \join" have to be deleted,
e.g., by selection and a Ctrl-w keystroke. After this is done, the speci�cation of the
model type \o�ce 2" is �nished. The corresponding component type graphic window

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

as well as the resulting type and object structures are depicted in Figures 7.21, 7.22
and 7.23.

Figure 7.22: Type Structure of \o�ce 2"

Figure 7.23: Object Structure of \o�ce 2"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

7.3.3 Model 2a { Aggregation

The main subject of the last section was the re�nement of the component \secretaries"
of type server, which led to the component type \handling 2". Remember, that the
service \edit" was re�ned from a simple time consumption to the use of four used
services within nested loops (cf. Figure 7.19). This re�nement follows the top-down
development style, which is also widespread within the modelling discipline.

From the viewpoint of analysis techniques, this re�nement is of no advantage. Ana-
lytical techniques have to face more stations and classes, which makes numerical so-
lutions worse especially. Simulation has to deal with used service calls within nested
loops instead of a single time consuming call. Hence, the runtime is expected to grow.

For these reasons, it is sometimes desirable to reduce the complexity of analysis
by aggregating some submodels. If certain requirements hold, an aggregation of
component types is accurate. In other words a ow-equivalent representation may be
constructed, that exactly provides the same results as the original component type
(concerning time consuming service calls/delay).

Considering the component type \handling 2", the requirements from the theory of
aggregation are ful�lled. The automated aggregation of \handling 2" is the topic of
this section. The necessary steps for speci�cation and execution as well as integration
into the model type will be discussed next.

The �rst step is to create an aggregation description within the environment window.
Selecting the entry new aggregation from the corresponding title bar displays a con�rm
box with the text \Please select component type". After selecting \handling 2" from
the component type list and clicking theOK button, the new aggregation is inserted in
the aggregation list. Aggregations are always named as the original component type,
since they are just substitute representations. This principle of naming is performed
automatically by HITGRAPHIC, even when the entry in the component type list is
renamed. From now on, the component type entries are referred as original component
types, whereas the aggregations are referred as aggregates or aggregated component
types (after performing the aggregation).

Performing the open operation on the aggregation \handling 2" opens the aggrega-
tion description window. This window displays the provided services of the original
component type, as they are displayed in the component type graphic window. It
allows for the speci�cation of the maximum population of each service, for which the
aggregation is to be performed.

In our example, 20 processes are generated. For this reason, it is su�cient (for the
given framework) to specify a maximum population of 20 (cf. Figure 7.24).

At this point the aggregation speci�cation is completed.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.24: The Aggregation Description Window of \handling 2"

The next step is to perform the aggregation with HIT. This is done by selecting the
entry transform & run from the popup menu of the aggregation \handling 2" within
the environment window. When the transformation (source code generation for HIT)
is �nished, the HIT run control window appears. Here you start the aggregation
with the run operation on the title bar popup menu. A terminal window is displayed
to show the progress of the HIT call. After the execution of these steps, the ter-
minal window disappears and the aggregation is well done. Selecting the show {>
entries of the popup menu allows the user to inspect some information concerning the
aggregation execution:

protocol: the protocol of the aggregation execution, containing all messages of the
HIT system in the upper part and the source listing of the HI-SLANG code
used for the aggregation in the lower part (cf. Figure 7.25);

aggregate: the source code of the aggregate, which is the substitute representation as
a load-dependent server, given in HI-SLANG code (cf. Figure 7.26).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.25: Protocol and Listing of the Aggregation \handling 2"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.26: The Source Code of the Aggregate \handling 2"

The �nal step is the integration of the aggregated component type into the existing
model type. To guarantee the availability of both model versions, the model type
\o�ce 2" is copied to the model type \o�ce 2a". The changes that are necessary to
use the aggregate instead of the original component type are quite easy. They are
performed within the component type graphic window of the model type \o�ce 2a"
(cf. Figure 7.27), which is opened in the environment window.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.27: The Copied Component Type \o�ce 2a"

All that is needed is to perform the use aggregate operation on the component \sec-
retaries" of type \handling 2". To represent the use of the aggregate graphically in
the component type graphic window, the string \AGGREGATED" is displayed un-
derneath the corresponding component (cf. Figure 7.28). Switching to the aggregated
type causes the control procedures to be reset to default values (accept := always,
o�er := all).

Figure 7.28: The Component Type \o�ce 2a" Using the Aggregate

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

After the save & quit operation, the refreshed type structure of the survey window
changes as illustrated in Figure 7.29. In contrast to Figure 7.22, which displays the
type structure of the model type \o�ce 2", the line between the component types
\handling 2" and \server" disappears now.

Figure 7.29: The Type Structure of \o�ce 2a"

The reason for this changed type structure is, that the substitute representation of
\handling 2" does not have the structure of the original type, the internals are hidden
due to the aggregation.

Within the object structure of the survey window the aggregated component is dis-
played in the same way as in the component type graphic window. Again, the string
\AGGREGATED" is displayed underneath the corresponding component symbol (cf.
Figure 7.30).

Figure 7.30: Object Structure of \o�ce 2a"

As explained within this section, the aggregation of a component type is performed
in three steps:

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

1. Creation of the aggregation description; speci�cation of the maximal population
of each provided service within the aggregation description window.

2. Source code generation and execution of the aggregation with HIT via transform
& run.

3. Integration of the aggregate within existing model or component types via use
aggregate within the component type graphic window.

7.3.4 Model 3

The development of the third example starts with the modelling of a new component
type \supervision 3", which will re�ne the clerks' work. The �nal component type
graphic window of type \supervision 3" is depicted in Figure 7.31.

Figure 7.31: The Component Type \supervision 3"

It shows, that two services are provided. The �rst one, \examine", models the process
of fetching a document, selecting some pages of it and thinking about these pages.
The second provided service, \archive", models the �nal storage of the document
by use of the services \think" and \store". The bodies of \examine" and \archive"
should be �lled according to this description.

The machinery within the component type \supervision 3" consists of the components
\humans", \computer" and \link" of type \server". At this point, another feature is
demonstrated by the \link" component. It is drawn as a dashed box within a grey
area, indicating that the component is shared . The \link" models a communication
medium, which physically exists only once. For this reason the same \link" will be
used within component types \supervision 3" and \handling 3" in contrast to the
\humans" and \computer", which are distinct and individual for each component
type. So, applying the shared operation on the component \link" creates a reference

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

to a component \link" being instantiated somewhere in a higher component or model
type.

To share the component \link" within the secretaries' submodel, too, a new compo-
nent type \handling 3" is created. Since the only di�erence with respect to \han-
dling 2" (cf. Section 7.3.2) deals with the component \link", \handling 3" is created
via a copy operation on \handling 2" in the environment window. The shared mode
is set for the component \link".

Up to now two new component types, \handling 3" and \supervision 3" are available.
The corresponding \clerks" and \secretaries" will be instantiated and used within the
new model type \o�ce 3" as depicted in Figure 7.32 (the model type is not complete
yet). You may create the type \o�ce 3" as a copy of \o�ce 2", but then do not
forget to delete the formal parameters of the used services \examine" and \archive"
(directly within the editor window or using the function set with transfer provided at
the crosspoint) and the actual parameters of calls of these used services in the service
body, because they will no longer be bound to the \request" of a server.

The resulting type and object structures are given in Figures 7.33 and 7.34, respec-
tively.

Figure 7.32: The Model Type \o�ce 3" (preliminary)

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The object structure of the model type \o�ce 3" (as given in Figure 7.34) demon-
strates, why the speci�cation of the model type is not yet �nished. Two dashed
boxes entitled \link" are displayed, indicating that for each box no instantiation of a
component \link" of type \server" was found in a higher component. So the shared
components with name \link" are just references to uninstantiated components. For
this reason it cannot be predicted, that both references point to an identical instan-
tiation.

Figure 7.33: Type Structure of \o�ce 3" (preliminary)

Figure 7.34: Object Structure of \o�ce 3" (preliminary)

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

To complete the model type \o�ce 3", it is su�cient to instantiate a component
\link" of type \server". Remember to set the service discipline of this component to
\processor sharing" via its control procedures (cf. Section 7.3.2, Figure 7.17). This
component will not be used within the model type. The corresponding type and
object structures in Figures 7.35 and 7.36 show the �nal \o�ce 3".

Note that within the object structure no dot is displayed on the edge between \of-
�ce 3" and \link", since no service of \link" is used. On the other hand, the dashed
edges between \handling 3" and \link" as well as between \supervision 3" and \link"
respectively contain a dot, since within these components the service \request" of
\link" is used.

Figure 7.35: Type Structure of \o�ce 3" (�nal)

Figure 7.36: Object Structure of \o�ce 3" (�nal)

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

7.3.5 Model 4

The preceding sections reect the top-down design. In contrast to this re�nement
method this section puts emphasis on the bottom-up modelling style.

Following the story of the o�ce example, the company decides to take part in some
foreign transactions. To avoid a mix of documents, a second o�ce is installed to
deal with all export transactions, whereas the �rst o�ce works on import documents.
From the view of modelling two (sub)o�ces that are structured as described in the
preceding sections, must be united to form \the" o�ce.

The application of bottom-up design principles within the given context is done on
basis of the model type \o�ce 2" (cf. Section 7.3.2). The problem arising due to
the paradigm of hierarchical modelling is, that only component types may be used to
build \higher" component/model types. To allow the use of the model type \o�ce 2"
as a platform of bottom-up modelling, it must be converted into a component type.
This is done via the convert operation o�ered by the popup menu on \o�ce 2" within
the environment window. Its application pops up an input box asking for the name
of the (converted) component type. Entering the name \o�ce 2 cp" and pressing the
OK button starts the internal conversion from a model to a component type, which
is �nally displayed in the appropriate list.

Note that it is intended to use this component type later on. So it is necessary
to provide the service \report" to make it accessible within higher components, to
delete the CREATE statement in the activities of \o�ce 2 cp" and to remove the lines
containing \LOOP" and \END LOOP;" within the body of the service \report".

After these preparing steps the modelling of the new o�ce starts by creating the
model type \o�ce 4". Its internal structure, which refers to the component type
graphic window, will be discussed next.

In contrast to the preceding models the modelling of the model type \o�ce 4" is
presented in a di�erent order. First, the machinery will be inserted. As mentioned
above, the main part of the model type is already given (remember: bottom-up)
by the component type \o�ce 2 cp". A component, named \import export" of this
component type is speci�ed in the well-known manner.

To declare two components (import and export documentation) the concept of com-
ponent arrays is introduced as some kind of structured shorthand notation. Generally,
it would be possible (and allowed) to declare two components of the component type
\o�ce 2 cp" to distinguish both o�ces. Even in the case of two components the
modelling overhead would increase due to this procedure. A more structured way is
to declare one component array with two objects, for instance \import export[1..2]".
This declaration provides the advantage, that speci�cations concerning the compo-
nent \import export" are valid for all (internal) objects, so that they must be given
only once. The (internal) objects within a component array are distinguished by their
index as known from high level programming languages. Consequently, a component
array does not provide single services but service arrays.

After this short introduction to the concept of component arrays (for detailed informa-
tion see any standard documentation on HIT or HI-SLANG), the declaration of com-
ponent arrays within the component type graphic window is discussed next. Selecting

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

the array entry provided by the popup menu on the component \import export" dis-
plays a box that allows for the speci�cation of the array bounds mentioned above.
Following the example, the array bounds are speci�ed as \1" respectively \2" and
are con�rmed by clicking on the OK button. The representation of the component
changes as follows: First, the range of the array ([1..2] in our example) is appended
to the name of the component. Additionally, the component is displayed with a grey
shade, representing its �eld dimensions graphically (cf. Figure 7.40).

If there was no additional machinery, each o�ce (\import export[1]" and \im-
port export[2]") would use an own communication link internally. The component
\link" of type \server" is declared within the scope of the component type \of-
�ce 2 cp", thus one \link" component would exist for each object of the component
array. But the sample company has just started its expansion and money is running
short. To model its decision of installing one communication link for both (sub)o�ces,
the link must be declared shared within the component type \handling 4", which is a
copy of \handling 2" (the component \secretaries" within \o�ce 2 cp" must of course
be changed from type \handling 2" to \handling 4" by a delete, new component and
some set operations). To allow access to the component \link" of type \server" from
both (sub)o�ces, it is declared within the current model type. Component type
\handling 4" contains \link" as a shared component (see also model 3). Remember
to set the dispatch control procedure of \link" in the model type to \shared". The
control procedure name \shared" is not related to the fact, that \link" is used as
shared component. Finally, the speci�cation of the machinery is completed.

The current speci�cation covers the static structure of the model. It is known, where
and in which way reports are to be handled. Unfortunately, up to now there are
no reports at all; in other words, the load speci�cation is still missing. To complete
the speci�cation of the model type, the service \contract" is speci�ed, which will be
based on the used service \documentation". As mentioned above, the component
array \import export[1..2]" provides the service \report" as a service array. For
reasons of consistency, the used service \documentation", which is to be bound to
\report", must be declared as an array, too. This is done via the set array operation
of the used service. The next step is to specify the body of the service \contract".
The contents of the associated text editor is given in Figure 7.37. The �gure also
illustrates, in which way the use of service arrays is speci�ed.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.37: Body of \contract"

Finally, it is necessary to specify when and which processes are to be created. To allow
a comparison with the former models, the load of the �rst o�ce should be similar.
Therefore, it is speci�ed that 25 processes \contract" are to be created. Assuming
that both o�ces work identically quick and because of the probability 0.8 of calling
the used service \documentation[1]", this would result in a mean number of 20 reports
to be treated by the �rst o�ce. The resulting structures of the completed model type
\o�ce 4" are given in Figures 7.38, 7.39 and 7.40, respectively.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.38: Type Structure of \o�ce 4"

Figure 7.39: Object Structure of \o�ce 4"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.40: The Component Type Graphic Window of \o�ce 4"

7.4 Examples of Evaluation and Experiment Spec-

i�cation

After having introduced the models under study, it is possible now to address the
speci�cation of evaluations and experiments, respectively.

7.4.1 Evaluation 1

The �rst candidate for the speci�cation of an evaluation is the introductionary ex-
ample of model 1. Recalling its hierarchical structure, two servers were declared and
used within \o�ce 1" as depicted in Figure 7.14.

Suppose, that the goal of evaluation \eva 1" is to determine the turnaroundtime of
service calls to the server \clerks".

To reach the stated goal, the �rst step is the creation of the evaluation \eva 1" itself.
This is done by performing the new evaluation operation on the label EVALUATIONS
within the environmentwindow, selecting the model type \o�ce 1", entering the given
name and con�rming these steps by pressing the OK button in the dialog window.
As expected, the evaluation \eva 1" is inserted in the list of evaluations.

The next step is to open the evaluation window of \eva 1" via the open operation.
The result of this action is depicted in Figure 7.41.

So far, the basis for the evaluation speci�cation is created and displayed.

The next step is to specify, where the measurements should be performed. This is
done via the concept of evaluation objects, that are associated with the correspond-
ing components. To create an evaluation object for the intended measurements, the

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.41: The Evaluation \eva 1"

operation new evaluation object is selected from the popup menu provided by click-
ing on the component \clerks" with the right mouse button. After specifying the
requested name of the evaluation object as \clerks 1", the display changes as shown
in Figure 7.42.

Figure 7.42: The Evaluation Object \clerks 1" is Created

A small rectangular box is appended to the component for each created evaluation
object, providing a popup menu. The open operation allows to pop up the evaluation
object window, but before this, you are asked to con�rm a save operation, because
editing in the evaluation object window is only possible, if the evaluation object
exists in the database. The initial evaluation object window of \clerks 1" is given in
Figure 7.43.

The evaluation object window serves for the speci�cation of measurements that are
to be performed.

Since the turnaroundtime is to be measured in our example, the TURNAROUND-

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.43: Inside the Evaluation Object \clerks 1"

TIME entry is selected, the default POPULATION is deselected, both by clicking
with the left mouse button on the streams.

To prepare a reasonable simulative analysis, the estimators STANDARDDEVIATION
and CONFIDENCE LEVEL are selected, too. Note that in case of analytical exper-
iments these estimators are ignored.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

After these speci�cations the evaluation object window of \clerks 1" is displayed as
shown in Figure 7.44.

Figure 7.44: The Intermediate Evaluation Object \clerks 1"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Up to now, the speci�cation of the evaluation object is nearly completed. With respect
to the yet unknown analysis technique of the experiment, it is necessary to specify
when the measurement should start (the so-calledmeasurement start control) and
when the simulation should be stopped (simulation stop control). This information
is reasonable for simulative analysis only; it ensures, that statistically relevant results
are obtained. Note that for analytical experiments this part of the speci�cation is
ignored.

In order to specify the measurement start control, a start/stop window is opened by
performing the open operation on the corresponding symbol on the left side. The sign
\0" inside the symbol is automatically deleted to express that a user de�ned start
control exists.

The start/stop window and its initial contents are depicted in Figure 7.45.

Figure 7.45: The Initial Measurement Start Control of \clerks 1"

The speci�cation within this window is as follows:

A MODELTIME condition allows a precise speci�cation of the start control. From the
framework of the model under study it is estimated, that a MODELTIME of 10000
seconds would �t to reach a kind of steady state, i.e., the inuence of the initial state
is su�ciently reduced and measurement should start after that time. The result of
typing \10000" into the text �eld is shown in Figure 7.46.

The speci�cation of the start control is �nished by applying the save & quit operation.

The next step is the speci�cation of the simulation stop control. We want to stop
the simulation when the con�dence interval is smaller than an interval of �10%
around the measured mean value. Therefore, the item simulation STOP in the popup
menu on the box containing the in�nity symbol (\1") is selected. The simulation
stop condition can be directly speci�ed within the evaluation object window. A box

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.46: The Final Measurement Start Control of \clerks 1"

appears with input �elds for WIDTH and UPDATES, see Figure 7.47. A number of
at least 1000 updates on the stream is the initial stop condition. You change it by
the selection of width in a popup on the background of the box with the right mouse
button. The default value of 10 is already correct, so there is no need to edit it.

The �nal result is given in Figure 7.47.

At this point, the speci�cation of the evaluation \eva 1" is completed. The single
steps that were performed are listed as a brief summary of this section.

1. Creation of the evaluation in the environment window.

2. Determination where the measurement is to be performed by creation of the
evaluation object within the evaluation window.

3. Speci�cation of measurements themselves via the evaluation object window.

Optional steps, being meaningful only for simulation, are:

4. Speci�cation of measurement start and stop controls within start/stop windows.

5. Finally, speci�cation of the simulation stop control.

The next step, the speci�cation of the experiment, is presented in the following sec-
tion.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.47: The Final Evalution Object Window of \clerks 1"

7.4.2 Experiment 1

In this section the speci�cation of experiment \exp 1" is presented, that will allow the
analysis of evaluation \eva 1". Starting with the environment window, the experiment
is created by selecting new experiment on the title bar of the experiment list. The
name \exp 1" is typed into the dialog box and the experiment is inserted into the list
of experiments after pressing the OK button. Then the open operation is selected
from the popup menu of the experiment, and the experiment window is opened (cf.
Figure 7.48).

Remember, that a simulative analysis is intended, which is the default method. Two
speci�cations can be made for the method SIMULATIVE (see the preceding section,
too). The CPUTIME is set to 10005 seconds, which is the time the experiment should
run at most. The MODELTIME is set to the very large value of 1e10, a value we
do not expect to reach. Alternatively, a value of 0 could be used, which leads to the
complete ignoration of the MODELTIME stop criterion.

To enter evaluation \eva 1", the insert evaluation operation of the title bar menu
is activated, which causes a message box to be displayed. After selecting evaluation
\eva 1" within the environment window and pressing the OK button, \eva 1" is in-
serted and displayed in the subwindow EVALUATIONS. Additionally you are asked

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.48: The Initial Experiment Window of \exp 1"

whether an EVALUATE statement for this evaluation should be added to the ex-
periment body. You con�rm this with an OK . Note that only the evaluations being
displayed in this subwindow may be analysed within the current experiment.

To specify the experiment structure, an editor is provided for manipulation of the
so-called experiment body. It is opened via the open operation on the title bar menu.
The speci�cation of the experiment body of the current example is rather simple.
Evaluations, that are to be analysed, are simply given in EVALUATE statements.
Note that only imported evaluations may be referenced within the experiment body.
The state of the experiment body is given in Figure 7.49. In our case the EVALUATE
statement is already inserted, so there is no need for a change. In general, multiple
evaluations forming an experiment are possible.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.49: The Body of \exp 1"

Figure 7.50: The Final Experiment Window of \exp 1"

The experiment speci�cation is �nished now. The distinct steps of an experiment
speci�cation are summarized as follows:

1. Creation of the experiment within the environment window.

2. Selection of the analysis METHOD and speci�cation of its parameters.

3. Insertion/import of evaluations to be analysed.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

4. Selection of the OUTPUT form of the results.

5. Speci�cation of the experiment body.

The speci�cation work is �nished now. The model type, the evaluation and the
experiment are stored in the database. The last step towards analysis execution is the
transformation of the former speci�cations into HI-SLANG source code, which is the
input of HIT. To perform this transformation, it is necessary to close all subwindows
of the environment window, because all modelling objects related to the experiment
may not be changed during the transformation, and to select the transform & run
operation of the menu on \exp 1". After a successful transformation the run control
is displayed. Selecting run from the title bar menu �nally starts HIT.

The results of the simulative experiment will be discussed in Section 7.4.4.

7.4.3 Evaluation 2/2a

The speci�cation of the evaluations \eva 2" and \eva 2a" is almost identical. Since the
steps of speci�cation needed throughout this section were discussed in the preceding
section, just a summary is given instead of a detailed operation description.

Recalling the object structures of \o�ce 2" (Figure 7.23) and \o�ce 2a" (Figure 7.30)
shows, that the model types include an identical component \clerks" of type \server".
To allow a comparison of the experimental results as well as the runtime needed for
simulation (\o�ce 2a" contains an aggregated component type), this component is
(again) selected for measurement purposes.

As in \eva 1", the TURNAROUNDTIME is speci�ed as the stream of interest and
will be estimated by a CONFIDENCE LEVEL of 95% with a width of 10%. The mea-
surement start condition and the simulation stop control are speci�ed as in evaluation
\eva 1".

7.4.4 Experiment 2/2a

The speci�cation of the experiments \exp 2" and \exp 2a" is done analogously to
\exp 1".

Again, the method SIMULATIVE is selected with the same CPUTIME and MOD-
ELTIME values as in \exp 1".

Instead of repeating the speci�cation procedure a result discussion of the experiments
1, 2 and 2a is presented. The models under study reect the o�ce example on di�erent
stages of abstraction and model development.

A short characterization of the model types is given to recall their structure.

\O�ce 1" is the most abstract model type; it just contains two \server" compo-
nents.

\O�ce 2" contains the re�ned and more detailed component type \handling 2"; it
is the most complex model type under study.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

\O�ce 2a" is almost identical to \o�ce 2", but it contains the aggregated compo-
nent type \handling 2a".

The results are written in dump�les, tables (the default) or the protocol and can
be accessed via the show operation on the experiment in the environment window.
To allow a comparison of the experiments' results, the probabilities and time con-
sumptions were chosen appropriately. The results of the experiments performed on a
workstation are given in the following table.

Results
Experiment Mean CONF. LEVEL 95 % Runtime
exp 1 1257.4 � 9.51 % 3.0 sec.
exp 2 1178.0 � 9.50 % 165.4 sec.
exp 2a 1209.0 � 9.83 % 3.5 sec.

Table 7.1: Experiment Results

The table presents some interesting measurements, that may be viewed from two
points.

The measurements of minor interest within this discussion are the pure analysis re-
sults.

The more interesting results are given in the last column. Obviously, \exp 2" took the
very most time to compute the results, whereas the other experiments run in much
lower times. Recalling the model type structure, these relations could be expected.
Model type \o�ce 2" is the most detailed candidate. In contrast to the other model
types, it contains an additional submodel and therefore consumes additional runtime.

The runtimes of experiments \exp 1" and \exp 2a" are nearly identical compared to
\exp 2".

On another workstation or even in repeated experiment runs you may get di�erent
runtimes, but the relations between the runtimes of the experiments remain the same.

It should be noted that by selecting DOQ4 as the analysis method, the exact results
can be obtained with even less runtime. Of course simulation has been selected here
to demonstrate the additional features available especially for simulation.

7.4.5 Evaluation 4

The most complex evaluation speci�cation is addressed within this section. New
issues arising during the speci�cation of \eva 4" are constrained to the use of a shared
component and a component array in \o�ce 4".

The evaluation window of \eva 4" is displayed according to the object structure as
given in Figure 7.39.

The �rst step is the complete speci�cation of an evaluation object at the component
\clerks" of type \server". As done in the previous sections, the operation new eval-
uation object is selected from the corresponding popup menu. At this point the �rst

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

problem arises. After entering the name for the evaluation object (\clerks 4 at 1"),
the window is displayed as given in Figure 7.51.

Figure 7.51: Path Speci�cation

The explanation of the box asking for an \index of component import export[1..2]
: o�ce 2 cp" is simple. The declaration of component \clerks" is within the scope
of the component \import export" of type \o�ce 2 cp", which is declared as a com-
ponent array with two objects. From this point of view, there are two components
\clerks", one declared within \import export[1]" and another one declared within
\import export[2]". It is necessary for the creation of an evaluation object at the
component \clerks" to specify which of both components is meant. By accepting the
index \1" in the dialog box of Figure 7.51, the selection of the �rst component is
done. This speci�cation is the so-called component declaration path speci�cation,
because the path from the component of interest up to the model is speci�ed along
the main declarations until it is unique.

The status after the creation of the evaluation object \clerks 4 at 1" and a subsequent
save operation is depicted in Figure 7.52.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.52: The Evaluation Object \clerks 4 at 1" is Created

Note that the selected index is not displayed in the evaluation window directly. To
control or recall the path of a component object, the operation show path may
be used, which is provided on evaluation objects. The result of its application on
\clerks 4 at 1" is shown in Figure 7.53.

The point to be addressed next is the concept of hierarchies and their speci�cation,
respectively.

So far only the standard hierarchy \all" has been used within the evaluation object
window (cf. Figure 7.43), which means, that any load approaching the evaluation
object should be measured. Now it is focussed on means of explicit and detailed
speci�cation of (load �ltering) hierarchies. Load ow into a component is �ltered
according to its origins to allow distinguished measurements.

Within HITGRAPHIC, hierarchies are declared at their ending component (target
component) via the hierarchy survey and hierarchy window and may be used within
all evaluation objects at this component. Note that even in case of nested component
arrays load �ltering can distinguish between their components. Later on in this
section, it will be discussed how this can be speci�ed.

To access hierarchies the operation open hierarchies is performed on the component
\clerks", which displays an empty hierarchy survey window. The hierarchy survey
window provides the user with basic operations on hierarchies. After twice perform-
ing the new hierarchy operation of the title bar and thus creating the hierarchies
\clerks archive" and \clerks examine", the hierarchy window of \clerks" is displayed
as given in Figure 7.54.

The speci�cation of a hierarchy is demonstrated for \clerks archive". The open opera-

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.53: Object Path of \clerks 4 at 1"

Figure 7.54: The Hierarchy Survey Window of \clerks"

tion is performed on this hierarchy and after con�rming the save request the hierarchy
window without any load path is displayed (cf. Figure 7.55).

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.55: The Initial Hierarchy Window of \clerks archive"

The hierarchy window allows for the speci�cation of a set of load paths on distinct
levels of abstraction. The combination of the load paths forms the entire load �ltering
hierarchy.

The sample speci�cation of a load path is done in several steps. The �rst step is the
creation of a load path via the new load path operation on the title bar popup menu
which changes the displayed load path subwindow as shown in Figure 7.56.

Three notable changes follow this operation:

1. A small black rectangle is drawn next to the string \LOAD PATH" and the
numbering \1/1" is displayed additionally. This area serves as a kind of album.
Each load path is represented by a small box, the actual (displayed) load path is
inverted (�lled black). The user may switch between load paths by clicking on
their symbols with the left mouse button. The string of the form \n/m" at the
right-hand side denotes, that the n-th of m load paths is currently displayed.

2. Within the graphic area a part of the object structure/evaluation structure is
displayed. It is exactly the path from the model (the root component) down
to the target component (that component, which is associated with the cur-
rent hierarchy/load path). Note that the index of the component array \im-
port export" is denoted by an asterisk. This symbol represents a so-called
bound index, which can neither be speci�ed nor manipulated. Bound indices
occur exactly at those positions, that need to be speci�ed during the generation
of evaluation objects within the evaluation window. When a hierarchy is used

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.56: The First Load Path of \clerks archive" is Created

in combination with an evaluation object, the bound index is replaced by the
associated index from the component declaration path of the evaluation object
for this usage.

3. A message box with the text \Please select origin of load path!" is displayed.
The \originator" is the component, at which the load path should start, i.e.,
the load generated by CREATE statements in this component is �ltered by this
load path. It is selected by performing the select operation within the symbol.

In the current model the load is generated (via a CREATE statement) within the top
component \eva 4". Selecting this component and pressing the OK button completes
the speci�cation at the COMPONENTS level, since the path between the model and
the target component \clerks" is unique. After the save operation provided by the
background menu the display automatically switches to the SERVICES view, which
is depicted in Figure 7.57.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.57: The SERVICES View

The SERVICES view is based on the unique path of the COMPONENTS view. For
each level the corresponding component is drawn justi�ed to the left side. Within
each component symbol all services are visible, that somehow allow a load ow into
the target component and are used by still visible higher levels. So, the only load
ow within the current example is from service \contract" of component \eva 4"
via service \report" of component \import export" to the service \request" of the
component \clerks".

Since there is a unique path again (just one possible service at each component), the
switch to the USED SERVICES view is performed by pressing the USED SERVICES
button with the left mouse button (cf. Figure 7.58).

As indicated by its name, the USED SERVICES view is based on the SERVICES
view extended by information about the associated used services. Again, only those
used services are of interest, that are on the actual path from the originator to the
target component.

In this sample speci�cation it is obvious now for the �rst time why these speci�cations
are necessary in certain cases. As illustrated by Figure 7.58, two used services are
visible initially within the service \report" of the component \import export". As
a consequence, two distinct paths are possible at the current level of detail, both
following the same components/services.

If the speci�cation of the hierarchy \clerks archive" is �nished at this point (one load
path covering two alternative routes), this hierarchy would produce the same load
�ltering as the standard hierarchy \all" for this evaluation object. But, as illustrated
by the name \clerks archive", this hierarchy should specify the path to the target
component \clerks" via the used service \archive". To complete this speci�cation, the
used service \archive" is selected via the select operation. The result of this selection

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.58: The USED SERVICES View

on the USED SERVICES view, which is saved from the menu on the background of
the scrollable region and thereby �nishes the speci�cation of this hierarchy, is given
in Figure 7.59.

Figure 7.59: The Final Hierarchy \clerks archive"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Almost the same procedure of speci�cation is executed for the second created hierar-
chy \clerks examine". Obviously, the used service \examine" must be selected at the
USED SERVICES level (cf. Figure 7.58).

Returning to the evaluation window (cf. Figure 7.52), the next step is to specify the
evaluation object \clerks 4 at 1" itself. The open operation displays the correspond-
ing evaluation object window as illustrated in Figure 7.60.

Figure 7.60: The Evaluation Object \clerks 4 at 1"

Note that the initial state of the evaluation object window has changed in comparison
to the previous examples. Additionally to the hierarchy \all", the previously speci�ed
hierarchies \clerks examine" and \clerks archive" (speci�ed at the target component
\clerks") are provided in the HIERARCHY list. Hierarchies are selected or deselected
by a click with the left mouse button.

The completed speci�cation is given in Figure 7.61.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.61: The Completely Speci�ed Evaluation Object \clerks 4 at 1"

The speci�cation of the evaluation object \clerks 4 at 1" as given in Figure 7.61
includes two aspects, that should be mentioned.

1. From the speci�cation of ESTIMATOR (only MEAN is selected) and
START/STOP (no control speci�cation) it is obvious, that an analytical ex-
periment run is intended. To perform a simulative analysis, the additional
speci�cation of the CONFIDENCE LEVEL and start/stop controls is recom-
mended.

2. The second point of interest is, that the self speci�ed hierarchies
\clerks examine" and \clerks archive" are selected.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

The next step is the creation of a second evaluation object. To demonstrate some
new aspects, the evaluation object \link 4" is installed at the component \link" of
type \server" (cf. Figure 7.62). During this procedure, no additional speci�cation of
array indices is necessary, since the component is declared within the model type as
a single component.

Figure 7.62: The Evaluation Object \link 4" is Created

The hierarchies \secr 1 prep" and \secr 1 join" are created next (speci�ed at the
component \link"). Figure 7.63 shows the resulting hierarchy survey window.

Figure 7.63: The Hierarchies at Evaluation Object \link 4"

The load path speci�cation is discussed for the hierarchy \secr 1 prep". The hierarchy
window is opened and a new load path is created. The result of this speci�cation is
summarized in Figure 7.64.

Note that the direct path from the model type \o�ce 4" to the component \link"
is not displayed. The reason for this restriction of the graphics is obvious. The

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.64: The Initial Load Path of Hierarchy \secr 1 prep"

component \link" was declared but not used within the model type \o�ce 4" (no
connections between used and provided services were set). Consequently, no direct
load ow is possible between these components.

Returning to the scenario of Figure 7.64 the model \eva 4" is selected as the originator
(only components/models with CREATE statements are useful, otherwise the load
path is empty). In comparison with the load path speci�cation as given in Figure 7.56,
the array bounds of the component \import export" must be speci�ed now (they are
not written as an asterisk). The array indices of components, that cannot be derived
from the declarations of the evaluation objects the hierarchy may be applied to, are
called free indices. Their speci�cation is necessary, whenever the component path of
a load path becomes unique.

In the given example the index \1" is selected for the current load path. After the
save operation the SERVICES view is displayed as depicted in Figure 7.65.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.65: The SERVICES View of \secr 1 prep"

Since no additional speci�cations are possible on this level, the display is switched to
the USED SERVICES level. A snapshot of the actual scenario is given in Figure 7.66.

At the USED SERVICES level four used services are presented, whose selection would
cause an e�ect on the graphics (\prepare" and \join" of \report" on the second level;
\fetch" and \store" of \edit" on the third level). If any of these used services would
be selected, the other used service on the same level would be hidden, but the other
levels would not be changed.

Following the intentions as indicated by the name of the hierarchy, the used service
\prepare" is selected. The displayed structure changes as given in Figure 7.67 and is
saved as depicted.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.66: The USED SERVICES View of \secr 1 prep"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.67: The Completed USED SERVICES View of \secr 1 prep"

The speci�ed load path covers any load at the target component \link", that is caused
by the service \contract" at the top level and is directed via the used service \prepare"
of the component \import export[1]".

The hierarchy \secr 1 join" is created and speci�ed analogously to the discussed spec-
i�cation of \secr 1 prep" with the exception, that the used service \join" is selected
in the last step.

To complete the evaluation speci�cation the speci�cation of the evaluation object
\link 4" is discussed briey. The streams THROUGHPUT and TURNAROUND-
TIME are selected for all available hierarchies. The �nal speci�cation is given by the
corresponding evaluation object window in Figure 7.68.

Again, the speci�cation is done preparing an analytical analysis by only select-
ing the ESTIMATOR MEAN and omitting the speci�cation of start/stop controls.
To demonstrate the concept of self de�ned hierarchies, \all" is selected as well as
\secr 1 prep" and \secr 1 join".

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Figure 7.68: The Complete Evaluation Object \link 4"

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

7.4.6 Experiment 4

The speci�cation of the experiment \exp 4" introduces the usage of analytical meth-
ods for the �rst time. Instead of SIMULATIVE the method ANALYTICAL DOQ4
is selected. For this method no additional speci�cations are necessary.

The import of evaluation \eva 4" and the speci�cation of the body are not discussed,
because they are similar to the previous experiment speci�cations. Con�rm Fig-
ure 7.69 for the complete speci�cation.

Figure 7.69: The Completely Speci�ed Experiment \exp 4"

The results you get after performing transform & run are summarized in Table 7.2.

Results
Evaluation object Hierarchy Turnaroundtime Throughput

(Mean) (Mean)

clerks 4 at 1 all 1200.00
clerks archive 600.00
clerks examine 1800.00

link 4 all 9.38 0.25
secr 1 join 9.38 0.05
secr 1 prep 9.38 0.15

Table 7.2: Results of Experiment 4

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

7.5 Epilogue

If you have worked through the tutorial up to its end you have reached some kind of
familiaritywith the usage of this tool. Besides this the main ideas of model structuring
and evaluation and experiment description have been demonstrated.

You are prepared to start your �rst real modelling project with HIT. But surely
you extensively will have to use the HIT documentation and other references, e.g.,
for aspects of solution methods, details of HI-SLANG or the meaning of some menu
items. Modelling is too complex to be done just by intuition.

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

Index

accept, 70, 73
accuracy, 126
activities, 81
actual parameter, 79
aggregation, 160
aggregation description, 29, 35
aggregation description window, 18, 92
all, 103
area, 104
area of a component, 102
array, 47, 59

batch, 37, 43
bind services, 153
body, 80, 82
busy, 134

call HITGRAPHIC, 8
change environment, 27
check, 88
component, 152
component array, 170
component type, 28, 33, 54
component type graphic window, 15, 50
con�dence level, 112
con�rm box, 13
connection, 51, 68
control, 82, 124, 137
control part, 82, 124, 137
control procedure, 52, 156
control procedure window, 16, 70
copy environment, 26
CPUTIME, 126, 136

database conversion, 8
db admin prg, 9
DB DIR, 7
debugging code, 139
declaration, 76
delete environment, 27
dialog, 37, 43

dialog box, 12
dispatch, 70, 75
DOQ4, 125
dump�le, 45

editor window, 17, 76
environment, 23
environment window, 14, 24
estimator, 103, 105
evaluation, 30, 39, 174
evaluation object, 95, 104, 174
evaluation object window, 19, 102
evaluation window, 18, 95
events, 112
experiment, 30, 41, 122, 180
experiment series, 138
experiment window, 22, 122

formal parameter, 79
free, 129
frequency, 82, 105

get, 57
globals, 79

HI-SLANG, 1, 36, 42, 78, 139
HI-SLANG control procedure, 70, 81,

135
hierarchy, 103, 106, 186
hierarchy survey window, 20, 114
hierarchy window, 21, 117
HIT, 1, 36, 42

information, 78
input box, 12

LIN2, 126
load, 148
load path, 21, 117, 188
locals, 80
locked, 130

machine, 152

203

MARKOV, 126
measurement start control, 106, 178
measurement stop control, 106, 136
menu, 11
message box, 12
method, 122
mode, 129
model type, 28, 31, 52
modelling object, 23, 129
modeltime, 111, 126, 136

normal, 47, 50, 59

object structure, 48
observer, 141
o�er, 70, 75
output, 123, 127

PostScript, 131
print, 131
provided procedure, 62
provided service, 50, 62, 152
put, 61, 65

re�ne, 155
released, 130
result parameter, 79

schedule, 70, 73
search, 88
seed, 137
selection, 11
self de�ned component type, 28
service, 148
service array, 170, 171
shared, 47, 50, 59, 166, 168
simulation stop control, 96, 136, 178
simulative, 125
single, 47, 59
standard component type, 28
start/stop control, 103, 106
start/stop window, 20, 108
startup window, 24
stream, 52, 67, 102, 104
survey window, 14, 46

table, 45
text editor, 17
trace, 45
type default, 71

type structure, 47

unde�ned result, 141
unset busy, 9, 134
updates, 107
used procedure, 66
used service, 51, 66, 149
user database, 23

width, 107

Universit�at Dortmund, Informatik IV Version 3.6.00, April 1996

