FIT and
FlII-SLANG

An
Int T@gjvmﬂ%]m@tﬂ Or

the
Hierarchical Evaluation Tool

Version 3.1.000

HIT AND HI-SLANG: AN INTRODUCTION

Norbert Weil3enberg (Editor)
Achim Wilde (Editor)

Bruno MUller-Clostermann
Salwa Shaban
Wolfgang Dittrich

Part of the material has been taken from publications of the HIT staff. The document
has been typed by Brigitte Adunola, Nathalie Minter and mainly by Iris Koch and the
editor. Bruno Miiller-Clostermann was the main author and editor of former versions of
this paper, called "HIT. An Introduction”.

Many updates have been considered for the current document version 1.1.00. For main
changesto HIT version 3.1.000 please see Appendix D.

Copyright © 1990-99 : Universitét Dortmund, Informatik V.
ALL RIGHTS RESERVED.

Abstract:

The system evauation tool, HIT, is a software tool for model-based performance
evaluations of computing systems during all phases of their life cycle. The hierarchical
model description language, HI-SLANG, allows the construction of deeply structured
models in a highly modular fashion. Quantitative model evaluations can be performed
using simulative or avast range of analytical methods.

HIT has been developed at the chair of Prof. Dr.-Ing. H. Beilner, Fachbereich
Informatik, Universitét Dortmund in cooperation with Nixdorf Computer AG and with
partial support of the BMFT (German Federal Ministery of Research and Technology).
Thetool, HIT, isinindustrial use at computer manufacturing companies since mid
1985. It is operational in Siemens BS2000, IBM VM/CMS, IBM MV S and several
Unix environments (Sun/3, Sun/4 and Apollo workstations, PC '386, WX 200, ...).

This document is the primary source for the HIT beginner. Corrections, comments,
criticisms and suggestions for improvements relating to this document are welcome.
For a complete language description the reader isreferred to the HI-SLANG Reference
Manual. Additionally the document on the HIT-OMA Object Management System and
the graphical interface HITGRAPHIC will be helpful.

Address:

Universitét Dortmund
Informatik 1V

Prof. Dr.-Ing. H. Beilner
D-44221 Dortmund

Telefon: (Germany)-(231) 755-2411

Telefax: (Germany)-(231) 755-4730
E-Mail: hit@ls4.informatik.uni-dortmund.de

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

Contents - -
I.LAFIRST LOOK ON HIT ..o i 1
0. Introducing the Big ldea ... 3
0.1. Motivation and Main 1deas..........cccveuiiuiiiiiiiiiiiee e 3
0.1.1. TheModelling Tool HIT and the Language HI-SLANG........... 3
0.1.2. Areasof APPlICAIONouineiiii e 5
0.2. Sketchingthe HIT Mode Worldcooiiiii 5
0.2.1. Machinesand LoadSccvviieiiiiiiiiei e 5
0.2.2. Layers, Modelsand Components...........covevvieiieiiinennnnnnnn. 5
0.3. Quantitative Evaluation Techniquesin HIT ..o, 6
0.4. HowthisDocument isOrganizedccooeiiiiiiiiiiiiiiiiiiaenen, 8

Il. SUBSET FOR SEPARABLE MODELS AND THEIR
EXTENSIONS. . 9
1. First Steps with HIT ... 11
I T @ 1V = Y 11
1.2, A BaSIiCMOAEl......oooeii 11
1.2.1. TheLoadcoiniiiiii e 11
1.2.2. TheMaChineouieii e 12
1.2.3. ReferringtheLoadtotheMachine...............ccoooiiiiinnnn. 13
1.2.4. Building the Complete Model...........ccooviiiiiiiiiiiinn. 14
1.2.5. Describing an Experiment...........ccocoviiiiiiiiiiiiiiiiinen, 15
1.2.6. TheWholeModeccooiiiiiiii 16
1.3. Handling the HIT System........cccoiiiiiiiiii e 18
1.3.1. Howto Call HIT ..o 18
1.3.2. HIT OULPUL...oee e 18
1.4. Performing First EXperimentS.........c.ooeieiiiiiiii i 19
1.4.1. PeformancelndiCeS.........cooviiiiiiiiiiiiiiiee e 19
1.4.2. SomeWhat-If QUESHIONScoviiiiiiiiiii i 20
1.5. Solversfor Separable Models and their Extensions..............ccc........ 21
15,1, DO e 21
1. 5.2, LN . 21

2. HI-SLANG Subset for Flat Models ...t 23
2 N O LV 23
2.2. Component Control Procedures...........ccooueeiiiiiniiiiiiiiineeenn 23
2.2, A CCCEP it 24
2.2.2. Schedule..... ..o 24
2.2.3. DISACN . 25
2.2, O 26
2.3. Examplesfor the Use of Servers.........ccovviiiiiiiiiiiiiiiincee, 27
2.3.1. Modelling CPUs (Sharing Service Capacity)........ccccceueennn.. 27
2.3.2. Modeling Didog Users (Infinite Servers)c.cooevvinnnnn. 27
2.3.3. Modelling Input/Output Devices (Queueing)................eee.... 27
2.3.4. Modelling Multi-ProCcessors..........ccocueviiiiiiiiiiniiineiaennn. 28
2.3.5. Modelling of Degradation due to System Overhead............... 28
2.8, SBIVI LS. . ittt 29
2.5, MOl TYPOS. . et 30
2.6. Spendand Holdcooiuiii i 30
2.7. Distribution FUNCLIONS.......cciiiiii e 31
2.7 0 NEOEXP et 31
2.7.2. DIAW. e 31

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

Contents

2.8. CoNntrol StatemeNntsS.........ouiiuiiiiiiie 32
2.8.1. TheInfinite LOOP...c.coviriiiiiieee e 32

2.8.2. The TIMES LOOP.....icuiiiiiiiiiiiie e 32

2.8.3. The WHILE LOOP....iuiiiiiiiiiiiie e 32

2.8.4. TREUNTIL LOOP . .cviiiiitiiee e 32

2.8.5. ThelF StAemMeNtcovviriiiiiie e 33

2.8.6. The BRANCH Statement............ccoovuiviiiiiiiiineineinens 33

2.8.7. TheCHAIN StaementS.......cocvvviiieiiiiiiiieeieieee 33
Hierarchical Model Specification.....................oooiiiiiiinnnn . 35
T @ AV = o PP 35
3.2, AHierarchicd ModE ..o 37
3.2.1. TransformingaModd intoaComponent 37

3.2.2. A Two-Level Model........coouiiiiiiiiiiice 37
3.2.2.1. Component TYPE CS...vuvuiniiiiiiiiiiiiiieieieneenn, 38

3.2.2.2. Model Type example2..........ccccoveeiviiieininnnnnnnn. 39

3.2.2.3. The Experiment experiment2............c.c..cceuueens 40

3.3. Refinement of a Component TYPe........ccceuvvriviieiiieeiieiiieeeeennnn 41
3.3.1. Horizontal Refinement.............cooouiviiiiiiiiiinies 41
3.3.1.1. The Refined Component TypeCS........cccceeeevenen. 41

3.3.1.2. Inclusonof csinexample2............cccceevvinnnnn. 43

3.3.2. Vetical REfINEMeNtcoooviiiii e 43
3.3.2.1. The Component Type io_subsystem................... 44

3.3.2.2. Inclusion of io_subsystemincs................c........ 45

3.4. HI-SLANG Subset for Hierarchical Models...............ccoevviiinnnnne. 46
3.4.1. Components and Component TYPES.......ccceveevuereeneeennnnns 46

3.4.2. Enclosed COMPONENTS........ccvuiiniiiieiiieieeeieeeeeene e 47

3.4.3. Load Filtering Hierarchies.............ccocoeeviieiiiiiiiieceenn, 49
Hierarchical Model Analysis (Aggregation) 53
I © AV = o P 53
4.2. Principles of Hierarchical AnalysSiS........ccocuvvviiiieiiiiciiiiecieeeian, 53
4.3. ApplYING AQregalionovie et 54
4.4. HI-SLANG Subset for Model Aggregation.............ccoccevvvevinnnenns 56
4.4.1. Aggregate Staementc.vviiiii 56

4.4.2. Restrictionsin AgQregationccvvveeeeieiieiieieeieieinanans 57
Extensions and Limits of Separable Models.......................... 59
ST I © Y1 Y T P 59
5.2. An Extension of Separable Models...........ccooveiviiiiiiiiiiiiceen, 59
5.2.1. Approximate Solution of a Class of Non-Separable Models.....59

5.2.2. FCFSSChedulingocvviiiiiiiii e 59

5.2.3. PrioritiES. . 59

5.3. What Cannot be Treated by DOQ4 or LIN2........ccovvveviiiiiiiiinaennns 61
5.3.1. Non-Exponentia Distributions..............ccccoviviiiiiiiinnn.n. 61

5.3.2. General State Dependent Service Speeds............ccevvvvvvnnnnn. 61

5.3.3. Multiple Resource Holding........ccoccovvviiiiiiiiciicceeee, 61

5.3.4. Blocking and LOSSES........c.vvueiiiiiiieiiiiieiieeeieeeeeenean 61

5.3.5. Synchronizationccoooviiii i 62

HIT and HI-Slang. An Introduction

Contents - i -

I1l. SUBSET FOR MARKOV MODELS ... 63
6. Introduction to Numerical Evaluation....................ooonet. 65
B.1. OV IV W . ittt 65

6.2. Basic Concepts of Markov Models.........ccoooiviiiiiiiniiiiiiiiceeen, 65

6.3. Hintsand WarningsS.c.ouiiiuiiii e 65
6.3.1. ON AQQregation........couuiuiiiiiiiieee e 65

6.3.2. On State Space EXplosion...........cooooviiiiiiiiiiiiiinieen, 66

6.3.3. Trace Your Models........ccovvuiiiiiiiiiiieee e, 66

6.3.4. Functional ANalysSiS.......ccooviiiiiiiiiii 66

6.3.5. OpenChaiNS......citiiii i 66

7. HI-SLANG Constructs for Markov Models..................cooeeen, 67
A% S © 1V =T 1 = 67

7.2. How to Specify Numerical Evaluation...............ccoovvviiiiiiineeennnnn. 67

7.3. Scheduling DiSCIPIINES........cciiuiiiiiiiieie e 68
7.3.1. Priority Scheduling.........ccooviiiiiii e, 68

7.3.2. Random Scheduling..........coooviiiiiiiiiiie, 68

7.4. Servers with Restricted Capacity.........cccoevviiiiiiiiniiiiiiiiiineieen, 68

7.5. Distribution FUNCLIONS.......c.oiiiii e 69
7.5.1. Coxian Distributions............cooiiiiiiiii, 69

7.5.2. General Coxian Distributions...........cc.ccovveiiiiiiiiniinnnnnnn. 69

7.5.3. Other Distributions..........ccoviiiiiii e, 69

7.6. Synchronization FEatUres............oeuiiiiiiiiiiiiiiiiei e 70
7.6.1. The Concept of COUNLErS.......c.ovviiiiiiiiiiiieiieeeee e, 70

7.6.2. The Component Type COUNtEr..........ccevuuieuniiiniiiiniiiieennnes 70

7.6.3. Examplesfor theUseof Counters.............cvvvvviiiiinnnnnnn. 71

7.6.3.1. A Binary Semaphore...........cooooviviiiiniinnennannes 71

7.6.3.2. Memory ConstraintS........cccceeeevenieniinniiniineannes 71

7.7. Fault TOlerant SEIVEISo 73

IV. FEATURES FOR SIMULATIVE MODELS 75
8. On Simulative Evaluationc i 77
S I O V4= 77

8.2. Inherent Problemsin Simulative Evaluations...............ccccccceeeeeee. 77

8.3. Extensions for Simulation..........ccccvviiiiiiiiiiiii e 79
8.3.1. ESimMatorS......cuiriiiiiiiii e 79

B.3.2. SIrBaAMS. ..ot 80

8.3.2.1. Types of Streams..........cocoviiiiiiiiiiiieiiennns 80

8.3.2.2. More Predefined Streams..............ccooevvevnnnnnnn. 80

8.3.2.3. User-Defined Streams............ccocevvvvviiieinnnnnnnn. 81

8.3.3. A Simulative EXperiment...........cccocoveuieiiiiniineiieeieaneenn, 82

8.3.4. Results from the Simulation.............ccccoeeviiiiiiiinciieenn 83

8.3.5. The CONTROL Statementccevviriiriiiiiiniiiieneeienennn 84

8.3.5.1. Start and Stop Conditions............ccovvevnvvnnnnnn.. 84

8.3.5.2. TheTRACE OpPLONcovvviiiiiiiiiiiiiieeen 85

8.3.6. Measurement Intervals...........ccocoveviiiiiiiiiiiie e, 86

8.4. Hintsand WarninNgsS.cc.ouiiiuiiiiie e aaens 87
8.4.1. Wide Range of Parameters...........cccoveviiieiieeiinieiennenn, 87

8.4.2. Hierarchical Models..........cocoovviiiiiiiiiii e, 87

8.4.3. Length of Simulation RUNS.............ccovviiiiiiiiiiieeee, 87

8.4.4. Tracing SIMUlationS.........ccc.vviiiiiiei e, 87

8.4.5. Influence of the SEED Parameter.............cccoeeveveeeennnennn. 87

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-iv - Contents

9. The Model World for Simulationciiiina.. 89
S I O V=V 89

9.2. Basic HI-SLANG Data Structures and Statements................c..eveees 89

9.2.1. SIMPleDaaTYPES ..ot 89

9.2.2. Structured Dala TYPES . .. vvereeeee et e e aaeaen, 90

0.2. 2.1 ATTAY St 90

90.2.2.2. DYNAMIC AITAYS c.uvvieniiiiieeeieeieeeeaneeenaanas 90

0.2.3. ASSIgNMENES ...ttt e 91

9.3. Handling of Filesand TextS........coccveiiiiiiiiiiiiieeeee e 92
9.3.1. OPEN and CLOSE........ccouiiiiiiiiiiiieie e 92

9.3.2. WRITE Statement.........cccooviiiiiiiiiiiee e 93

9.3.3. READ Statement........cc.ouviiiiiiiiiiiir e 94

9.3.4. Eof, Lagtitemand EOINcooiiiiiiii e, 94

9.4. More Control StatementsS..........ceuviriiieiiiie e 95
9.4.1. The CASE Statement...........ccoceeeviiiiiiiieiieieeeeeaeen, 95

9.4.2. The FOR LOOP...iuitiiiiiiiiiiieie e aeen 95

9.4.3. The CONCURRENT Statement............ccooevvvveiineiinneennn. 96

0.5, IMOIE ON SEBIVICES. . euiuitit ettt e e aenenas 97
9.5.1. The CREATE Statement...........ccccovvviiiiiineieiieneeneenn, 97

9.5.2. The SUBMIT Statement..........ccccoeuveiiiiiiiniiniiiiiiieenenn, 98

9.5.3. Static Process Declaration...........ccocvevveiiiiniiieiineeneenn, 98

0.5.4. SEIVICE ATTAYS. . ittt ie e e aaenas 99

9.5.5. Services Supplying Results...........ccooeviiiiiiiiiiince, 99

S G T (0100 1 == 100
9.6.1. More Random Drawing Procedures.............c..cccuvuveerennnn. 100

9.6.2. Predefined Procedures............coovvviiiiiiiiiiieicieeeeneenn, 101

9.6.3. User-Defined Procedures..........ccoeeeviiieiiiiiiiineiieiennnn, 101

9.7. An Extensive Mini EXxample.........ccccoveviiiiiiiiieen 103

10. More Predefined Component TYpPesSooviririiiiiiiiinianannn. 105
10,1, SeMAPNOr. ... 105

10.2. TOKENPOOL. ... 106

10.3. SYNCRSENG.o 107

104, NOWAITSEN .. . eas 108

10.5. ODBSEIVEr. ..t 109

V. APPENDICES ... 111
APPENDIX A. How to Run HIT ... 113
AL GUIde FOr UNIX .o 114
A.2. Guide for BS2000.o 115
A.3. GUIdeTOr VM/CMS. .. e 115
APPENDIX B. Handling of the HIT System.................ooiiiis 116
B.1. Some Compiler Control Statements...........ccooveieiiiiiiiiiiiiii e 116
B.2. The Control/Configuration File...........c.ooiiiiiiiiiii e 117
B.2.1. %PARM. Compilation and Analyzer OptionS...........ccvvvvvuiiennnnnnn. 117
B.2.2. %BIND. Binding and Linking..........cccccoviiiiiniiiiniineeceen 118
APPENDIX C. HIT Experiment Syntax Sketch........................... 120
APPENDIX D. More HI-SLANG Features...........coooviiiiiiiininnn... 122
APPENDIX E. RefereNCeS. .o 123
APPENDIX F. TN e X oo 124

HIT and HI-Slang. An Introduction

Part |

A FIRST LOOK
ON HIT

Chapfter

0

0. Introducing the Big Idea -3-

0. Introducing the Big Idea

0.1. Motivation and Main ldeas

The development of computing systems is associated with many problems due to the
fact that both the performance requirements and the technological progress are
increasing rapidly. It is impossible to master the increasing complexity of system
architectures, the integration speed in the hardware, as well as the diversification in the
software area without employing tools to analyse both planned and existing computing
systems quantitatively and qualitatively.

In particular, modelling and evaluation should be done by the designer, consultant,
salesman or engineer himself without being an expert in simulation, statistics, queueing
theory, numerical analysis and related techniques for quantitative system evaluation.

Consequently, it was an important requirement for the HIT system, that a modelling
problem can be solved by these persons themselves and must not be passed to a
modelling specialist, thus eliminating the enormous communication overhead.

0.1.1. The Modelling Tool HIT and the Language HI-SLANG

HIT is aperformance modelling tool which allows the structured specification and the
quantitative evaluation of computing system models.

Nowadays system design and development are usually based on a layered model with
functional abstraction. HIT employs therefore hierarchicd modelling techniques
allowing the separate specification and analysis of models, model components and their
evaluations.

The software tool, HIT supports

= the specification of (models of) dynamic, discrete-event, stochastic systemsusing a
particular model description language, HI-SLANG, for the description of model
structures and the eval uation to be performed;

= the (performance) analysis of correspondingly specified models using a variety of
techniques of the smulative, anaytic-agebraical and analytic-numerical type.

Although originally developed for evaluating computing system performance, HIT also
lends itself to the analysis of "similar”" systems such as communication and office
systems, transport and logistic systems and others of the specified (dynamic, discrete-
event, stochastic) type.

Universitdt Dortmund, Informatik 1V Version 1.2.00, July 1999

-4- I. A FIRST LOOK ON HIT

The HIT model world is tailored upon the prevailing view of computing system
structures which partitions a system

= vertically, into asequence of layers and levels, communicating via function calls,
and jointly representing a hierarchy of virtual machines,

< horizontally, into independent, mutualy well-protected, information-hiding
modules each one realising some subset of functionsto be provided at a particul ar
level.

The corresponding HI-SLANG specification maintains as far as possible the
conventional, high-level-language (HLL) approach, assumed to be well-known to and
convenient for the envisaged user community of the tool:

= Conventional functiong/procedures (termed SERVICES) serve as "patterns' for
process/subprocesses "to-be-run”. They are described in terms of traditional HLL
control and data structures.

= SERVICES can be packaged into modules (termed COMPONENTS). These services
can be called upon by other (higher layer) SERVICEs, situated within other (higher
layer) COMPONENTSs. Imported (USEd) and exported (PROVIDEd) names of
SERVICEs are explicitly linked in order to increase the independence of partia
designs.

= Options for initiating processes in time-controlled or event-controlled mode
complete the desired specification capabilities for describing systems of paralléel
processes.

From a software engineering point of view, HI-SLANG specification supports various
design styles such as top-down, bottom-up and (realistically) ping-pong/yo-yo. From a
modelling point of view, digoint specifications of models (to be anaysed) and
experiments (to be performed with these models) greatly increase the flexibility of use.
Additionally a modelling base is offered by HIT to support storage and retrieval of
(partial) models and analysis results. This option eases to combine previous modelled
partsinto larger models as well as the devel opment of team devel oped models.

HIT evauation techniques include the following approaches:

= gtochastic discrete-event smulation with appropriate, statistical result evaluation

= exact result evaluation for "separable networks" (with product-form solution) and
approximate evaluation techniques for both "large" separable and certain "non-
product-form™" networks

= numerical evauation of Markov chain representations of general models
= sub-model analysis and aggregation with the objective of generating "equivalent”

higher level representations, to be used in structured and/or heterogeneous (total
model) evaluation.

It must be emphasized that a HIT model specification is not directly influenced by the
particular evaluation technique to be employed. There does, of course, exist an indirect
influence whereby certain models will turn out not to be tractable by one or the other
analysis technique, with smulation clearly offering the largest spectrum.

HIT and HI-SLANG. An Introduction

0. Introducing the Big Idea -5-

0.1.2. Areas of Application

HIT isatool for the performance evaluation of computing systems during most phases
of their life cycle.

= During the design of computers, computer components and operating Systems,
model evaluations can answer many of the arising questions. Design studies are
usually undertaken by the producer of a system rather than by its users.

= During sdlection and configuration of systems, model evauations can help to
choose among the various available alternatives, for example, the most convenient
aternative to a given application.

= During the operation phase of computing systems, model evaluations are helpful for
tuning and upgrading purposes.

Apart from computing system modelling, HIT can be used for the modelling of
communication systems, office systems, flexible manufacturing systems and others.

0.2. Sketching the HIT Model World
We sketch very briefly the most important features of HIT.

0.2.1. Machines and Loads

In each model layer, a usable machine and a using load face each other. A machineis
composed of a set of components. Each of them provides certain usable services. The
total set of services (of all machine components) defines the level upon wich alayer
may be built. A load consists of a set of process patterns. Each one specifies a
particular prescription for the dynamic use of any (usable) services. Processes which
are obeying the rules of specific service can be instantiated in time-controlled or event-
controlled mode within the load. Returning to the machine, components are normally
declared as instances of certain component types. Predefined standard types are
available, amongst them the component type, server, which provides a basic service,
regquest (amount: real). The parameter amount indicates the temporal duration of the
service, request.

0.2.2. Layers, Models and Components

A model layer isformed by referring aload to a machine. This step includes an explicit
linking of the various used services (of the load) to specific provided services (of the
machine). The resulting, linked machine/load complex is termed a model. If the
machine consists exclusively of standard server components, the traditional non-
hierarchical model will be achieved, consisting only of asingle layer. A model can be
transformed into a component by declaring certain of itsinternally specified services as
externally accessible, usable services. We thereby arrive at (part of) the next higher
level, i.e, at (part of) the basis of a next higher layer. Consequent application of this
concept results in arbitrarily multi-level/multi-layer models, which can be developed
top-down or buttom-up or, more readlistically, in a ping-pong strategie.

Universitdt Dortmund, Informatik 1V Version 1.2.00, July 1999

-6- I. A FIRST LOOK ON HIT

0.3. Quantitative Evaluation Techniques in HIT

HIT users do not have to bother about the analysis and the evaluation of their models.
Thisisautomatically done by HIT! The user must merely specify the experiments to be
performed and the analysis technique to be used. Experiment specifications describe the
results demanded from model or component analysis. As for model analysis, a
corresponding experiment specification encloses

= instantiation of amodel (of an earlier defined model type) inclusive of the setting of
any parameters,

= gpecification of the model analysis technique;

= indication of all evaluation objects, i.e., model components, where measurements
areto be taken;

< indication of all measurement streams, i.e., performance variables, of the above
evaluation objects, for which evaluation is demanded,;

= gpecification of measurement specifics; and

< indication of data gathering starting rules (if smulation is the selected analysis
technique) and evaluation stopping rules.

Depending on whether the analytical or the simulative method is specified, the HIT
system will transform the HI-SLANG representation of the model to anaytical
algorithms or to a simulation program. The figure depicted below shows the different
solvers of the HIT system. At the tree’s leaves the method names used by HIT are
given.

Please note that due to historical reasons there are different names for the same solution
method. Some of these names refer to different algorithms used in that solver, since
most solvers implement a collection of algorithms. The most appropriate one is selected
at run time, and the reasons for this selection are given on the HIT listing.

Solution Method

ANALYTICAL

Simulation

Algebraica

SIMULATIVE SEPARABLE DOQ4 PERFORMANCE LINZ2 NUMERICAL
BCMP NONSEPARABLE- BOUNDS LINEARIZER MARKOV
PRODUCTFORM APPROXIMATE SEPARABLE- MARKOVIAN
DOQ3 APPROXIMATE MARK

Figure 0.1: HIT Solvers

HIT and HI-SLANG. An Introduction

0. Introducing the Big Idea -7-

In the following we will use the method names DOQ4, LIN2 and NUMERICAL.

The anaytic-agebraica algorithms can treat the so-called separable networks or
product form networks, which form an important model class for quantitative
performance eval uation. Separable models can either be solved exactly (viathe DOQ4-
algorithm) or approximately (viathe Linearizer LIN2-algorithm). The second choice
should be made in case of very large models. It may also deliver lower and upper
bounds for performance values, called performance bounds.

A class of non-separable models including FCFS-scheduling with different service
requests as well as priority scheduling disciplines can also be treated by the DOQ4-
algorithm (which is obviously an extension of the older DOQ3!).

Models based on Markov chains can be evaluated by numerical techniques. These
models include more general distribution functions, priority scheduling disciplines and
features for the modelling of synchronization mechanisms.

The simulative method is based on the discrete event simulation concept of the host
language, Standard SIMULA.

Asa result of model evaluation we obtain performance values for selected model
components or pre-analyzed component types. Pre-analyzed components are
components that are analysed without being influenced by the rest of the model. This
process leads to a flow-equivalent substitute of a component in the form of a state
dependent server component. It can later be included in a model, replacing the original
component, yielding (under certain conditions) approximately the same results as the
original. Currently only the DOQA4-agorithm can be used for aggregation.

HIT offers the performance indices population, turnaround time, utilization, occupation

and throughput. Additionally self-defined performance indices as well as scheduling
and preemption rates can be evaluated simulative.

Universitdt Dortmund, Informatik 1V Version 1.2.00, July 1999

-8- I. A FIRST LOOK ON HIT

0.4. How this Document is Organized

We will gradually introduce various HI-SLANG subsets and the pertinent modelling
possibilities followed by examples and genera explications. We dedicate specia
sections to the following subsets of HI-SLANG:

= Subset for separable models and some extensions. There are two solution methods
for this class of models:

- METHOD ANALYTICAL "DOQ4" for the exact evaluation (and aggregation) of
separable models as well as for the approximate evaluation (and aggregation) of
extended separable models

- METHOD ANALYTICAL "LIN2" for the approximate evauation of large
separable models (including performance bounds)

= Subset for METHOD ANALYTICAL "NUMERICAL" for the evauation of
Markov chain based models, which includes the subset for separable models (with
some few exceptions)

= andthe METHOD SIMULATIVE which is the most comprehensive model class. It
includes both of the above subsets (with some few exceptions). But simulation in
general needs much more cpu time than analytical solvers and the results are only
estimated.

It is not our intention to give an exhaustive description of HIT, although we try to be
complete in the parts which are of central importance.

Detailed information can be found in the HI-SLANG Reference Manuad (/Weis92/)
and, concerning the use of a modeling base, in the HIT-OMA User's Guide
(/Weis9l/). Moreover the graphical interface of HIT is described in the HITGRAPHIC
User's Guide (/Heck91/).

In the next part of this manual (Part 11) we deal with the subset of separable models.
We recommend the HIT beginner to restrict himself to this subset. Numerical and
simulative evaluation of HIT models should be postponed until the first modelling
experiences with the HIT system have been made. They are described in Parts 111 and
IV respectively.

The last part consists of severa appendices. Appendix A. is devoted to the handling of
the HIT system on different computer systems and should be used as reference material
if necessary. Appendix B. summarizes the HI-SLANG syntax for experiments and
Appendix C. lists HI-SLANG features not treated in this introduction. Some references
and an index conclude this document.

HIT and HI-SLANG. An Introduction

Part |1

SUBSET FOR
SEPARABLE MODELS
AND THEIR EXTENSIONS

Chapters

1-5

1. First Stepswith HIT -11-

1. First Steps with HIT

1.1. Overview

The objective of this chapter is:

= to become acquainted with the basic el ements of modelling with HIT;

= to become conversant with handling the HI-SLANG compiler;

= to answer, by performing experiments, some "what-if" questions, which will typi-
caly arise while evaluating several design alternatives and

= to comprehend the HI-SLANG features for the evaluation of "flat" (i.e., non-
hierarchical) models.

To use HIT as soon as possible, we postpone an examination of isolated language
constructs and start with a complete example.

1.2. A Basic Model

We consider a computing system, which satisfies the service requirements of certain
tasks. The computing system is called the machine. The tasks to be processed are called
theload. In HI-SLANG we address the tasks as processes. They are created according
to aprocess pattern, called a service.

1.2.1. The Load

The load our computing system has to face behaves as the process pattern depicted
below. After its creation it fulfills an initial computing requirement. Then it repeats a
loop 9 times on the average. Within this loop read or write accesses to files are
performed, followed by more calculations. Finally the process finishes.

cacu-

Figure 1.1: Simple Process Pattern

After describing the load in an informal manner we have to trandate the informal
description into aformal HI-SLANG service declaration. We use four service requests,
one for calculations and three for file accesses. But before we can use them we have to
name them in the USE declaration part of the corresponding service named batch_task:

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-12 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

TYPE batch_task SERVICE;

USE SERVICE
caculate (amount: REAL);
read_file_a(amount: REAL);
read file b (amount: REAL);
write file ¢ (amount; REAL);
END USE;

After we have finished this step, we can determine by control statements how the
services are used.

BEGIN
calculate (negexp(5.0));
AVERAGE 9 TIMES
LOOP
BRANCH
PROB /3 : read file a(negexp(1/0.1));
PROB /3 : read file b (negexp(1/0.2));
ELSE . write file ¢ (negexp(1/0.4));
END BRANCH,;
calculate (negexp(1/0.2));
END LOOP;
END TYPE batch_task;

We have refined the file accesses by a BRANCH construct now. Thefilesa, b and c are
accessed with identical probabilities 1/3. The rest of the process pattern was directly
trandated into HI-SLANG.

Please note that we have used the random distribution function negexp to specify the
amount of required service. Its parameter gives the rate R of a negative exponential
distribution with mean 1/R.

1.2.2. The Machine

After specifying the load, the machine has to be described by means of units. We
assume a CPU and three disk units. From now on, we refer to them as components.
These components can accept and process tasks, and finally offer them to the
environment. In the given context we don't intend to refine these components any
further. Thus they are called elementary components or standard components of type
server. You can think of them as the machine. A server provides a basic service request
(amount: real), the parameter indicating the temporal duration of the service.

The progress of the service is governd by rules which can be specified by parameters of
the components shown below. See also Section 2.2. for more information.

COMPONENT cpu: server
(LET accept := aways,
LET schedule:= immediate,
LET dispatch:= shared,
LET offer:= all);

COMPONENT disk_a, disk_b, disk_c: server (LET schedule :=fcfs);

HIT and HI-SLANG. An Introduction

1. First Stepswith HIT -13-

The parameterization of the CPU has the following meaning (in the order of
appearance):

= Serviceregquests are always accepted without conditions.
= Scheduling isimmediate, i.e., there is no waiting time.
= The processing capacity is shared between all processes.
All completed processes are offered.

The parameterizations of the disks are different. Note that fcfs (first-come-first-
scheduled) has been chosen as scheduling discipline. The other parameters have their
default values, which are always, equal (1.0) and all, respectively.

1.2.3. Referring the Load to the Machine

We have described the machine by a set of components and the load by a set of
services. Now we can specify from which machine components the load requirements
ought to be fulfilled. Obviously the computing requirements should be referred to the
CPU and the 10 requirements should be referred to the disk units.

We say, that aload isreferred to a machine for execution by explicit binding the various
used services of the load to specific provided services of the machine. In HI-SLANG
this has to be done by a REFER part, depicted below. Remember that the basic service
of cpu and disks is request.

REFER batch _task TO cpu, disk_a, disk_b, disk_c
EQUATING
batch task.caculate =~ WITH cpu.request;
batch task.read file a WITH disk_arequest;
batch task.read file b WITH disk_b.request;
batch_task.write file ¢ WITH disk_c.request;
END REFER;

The figure below shows the HITGRAPHIC equivalent of the former REFER part.

caculate

e file a
batch_task [read file b ?

read_file ¢ b

4 P)

cpu disk a disk b disk ¢
‘server :server ;server :server

Figure 1.2: HITGRAPHIC Representation of a Component Type

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-14 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

1.2.4. Building the Complete Model

A complete model type is formed by concatenating the load, the machine and the
REFER part, followed by a CREATE statement within a block which describes the
arrival pattern of batch tasks, e.g., of processes of type batch task. Note the parameter
tasks per_second of the model examplel

The parameterization of amodel is not necessary. But it is advantageous in order to
perform many similar experiments with different parameters. For exampleit is now
possible to investigate which load our model cannot handle any more.

TY PE examplel MODEL (tasks per_second: REAL);

{ description of load}
{ description of machine}
{referring load to machine}

BEGIN
CREATE 1 PROCESS batch_task EVERY negexp (tasks per_second);
END TYPE examplel,

The CREATE datement leads to the instantiation of individual processes of type
batch task at exponentidly distributed inter-instantiation times with mean value
l/tasks per_second.

Note that the model examplel consists exclusively of standard server components. The
following figure illustrates the "flatness" of the model. Aside from flat models HIT
offers also hierarchical models. Their construction and advantages will be shown in the
succeeding chapters.

disk ¢ disk b disk_a cpu
.server -server :server .server

Figure 1.3: Model Structure

Up to now we have specified amodel type only. In order to measure its performance
indices, i.e., to perform an experiment we have to add an experiment block. This block
specifies the lacking actual parameter tasks per _second and determines the evaluation
method to be used as well as the performance indices of interest.

HIT and HI-SLANG. An Introduction

1. First Stepswith HIT -15-

1.2.5. Describing an Experiment

We have |learned in the previous section that the parameters of a model type will be set
in an experiment block. It consists of a declaration part and a statement part. The former
may contain declarations of constants, variables and procedures. The latter describes the
performance indices to be determined by means of an EVALUATE statement. In our
example we are going to declare the variable arrival _rate of type REAL in the
declaration part.

The EVALUATE statement generates an analysable model object by setting the actual
model parameters and describes all performance indices of interest. An experiment
block for our sample model is depicted below.

EXPERIMENT experimentl METHOD ANALYTICAL "DOQ4";
VARIABLE arriva_rate: REAL;

BEGIN
FOR arrival_rate := 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
LOOP

EVALUATE
MODEL mode 1: examplel (arrival_rate);

EVALUATIONOBJECT
cpu VIA model1.cpu,
disk VIA modell.disk_a;
BEGIN
MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT cpuy;

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT disk;
END EVALUATE;

END LOOP;
END EXPERIMENT experiment1;

Concerning the experiment block we emphasize the following points:

= The FOR loop embraces an evaluation, starting with EVALUATE MODEL, which
will be repeated for different model objects. We specified an evauation series.

= The different models (all named model1) have the same type, namely examplel
They only differ in the actual parameter values.

= The EVALUATIONOBJECT construct defines evauation objects (cpu and disk) via
model components. The MEASURE statements refer to these eval uation objects.

= As performance estimator the mean value is chosen (by ESTIMATOR MEAN).
Indeed MEAN isthe only choicein case of separable networks.

= Theoutput is directed to atablefile, asisthe default. Otherwise an OUTPUT part
has to be added (see Reference Manual).

< |If you like you can simply switch to another evauation method by replacing
ANALYTICAL "DOQ4" by, eg., ANALYTICAL "LIN2".

= Notethat all HI-SLANG statements can be used for writing experiment bodies,
independent of the evaluation method used.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-16 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

1.2.6. The Whole Model

We now present the model and experiment in total. The following source text can be fed
to the HIT system:

TY PE examplel MODEL (tasks per_second:REAL);

TYPE batch_task SERVICE;
USE SERVICE
caculate (amount: REAL);
read_file_a(amount: REAL);
read file b (amount: REAL);
write file ¢ (amount: REAL);
END USE;

BEGIN
calculate (negexp(5.0));

AVERAGE 9 TIMES
LOOP
BRANCH
PROB 1/3 : read file a(hegexp(1/0.1));
PROB 1/3 : read file b(negexp(1/0.2));
ELSE . write file ¢ (negexp(1/0.4));
END BRANCH,;

caculate (negexp(1/0.2));
END LOOP;
END TYPE batch_task;

COMPONENT
Cpu: server
(LET accept = aways,
LET schedule := immediate,

LET dispatch:= shared,
LET offer := al);

COMPONENT
disk_a,
disk_b,
disk_c: server (LET schedule :=fcfs);

REFER batch_task TO cpu, disk_a, disk_b, disk_c¢
EQUATING
batch task.calculate WITH cpu.request;
batch task.read file a WITH disk_arequest;
batch task.read file b WITH disk_b.request;
batch_task.write file ¢ WITH disk_c.request;
END REFER;

BEGIN

CREATE 1 PROCESS batch_task EVERY negexp (tasks per_second);
END TYPE examplel,

HIT and HI-SLANG. An Introduction

1. First Stepswith HIT -17 -

EXPERIMENT experimentl METHOD ANALYTICAL "DOQ4";
VARIABLE arrival_rate: REAL;

BEGIN
FOR arrival_rate := 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
LOOP

EVALUATE
MODEL model1: examplel (arrival_rate);

EVALUATIONOBJECT
cpu VIA modell.cpu,
disk VIA modell.disk_g;
BEGIN

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT cpu;

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT disk;

END EVALUATE;

END LOOP;
END EXPERIMENT experiment1;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-18- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

1.3. Handling the HIT System

A model, which iswritten in HI-SLANG, will first be translated to Standard SIMULA
by the HI-SLANG compiler and will finally be translated to executable code by the
SIMULA compiler. In order to control the operation of the HIT system a control part
can be written, which is either a separate file or the beginning of the HI-SLANG
source. How to specify the control part is described in alater section.

Now we have to run the model described in the preceeding section. The evaluation of
our model examplel can be done without any control part.

1.3.1. How to Call HIT
After calling HIT in the operating system environment HIT responds with the line
Please enter name of Compiler SOURCE or CONTROL file:

demanding for the name of the control or the source file. Since we do not need a control
file we supply the name of the sourcefile.

HIT isnormally processed in dialog mode, so you can expect a response within a short
time (provided you use METHOD ANALYTICAL). At theend of aHIT run you return
into operating system mode. Of course, HIT can also be processed in batch mode. In
any case, when you use HIT the first time, we recommend to contact the administrator
of the HIT installation on your host system. Some advices are given in Appendix A.

1.3.2. HIT Output

Now you have activated HIT. But where are the results? By default all HIT output is
written to files named by the HIT file name generator by suffixing the control file name
with the kind of output. After a successful compilation from HI-SLANG viaSIMULA
to executable code, followed by the execution of the model, the required values for the
performance indices will be supplied in a separate file. The results are normally
represented as tables, but they can as well be given in asimple graphical form. Please
see the Reference Manual for more information.

If theinput file contains errors, (Syntax errors, logical errors) we recommend to inspect
thelisting file for finding and correcting these errors. In addition to your formatted HI-
SLANG source text you may find a cross reference listing (if demanded in the control
file) and the (let us hope empty) list of error messages. Moreover information about the
model solution processis appended to the listing.

HIT and HI-SLANG. An Introduction

1. First Stepswith HIT -19-

1.4. Performing First Experiments

We first explain the performance indices, which are provided by HIT as results of an
experiment. Then we introduce some questions which can be answered with the help of
amodd similar to examplel

1.4.1. Performance Indices

HIT provides standard performance indices for all components of a model. In case of
exampl el these performance indices can be determined for all used services of the
service batch _task and will be represented as a table in a separate file. Only those
performance indices will be given which are specified in the MEASURE statement of
the experiment block.

One can choose between the following performance indices, which are obtained by
evaluation of the so-called standard streams. Note that the results given by the analytical
method are mean values!

- THROUGHPUT

This isthe number of processes |leaving the considered component per time unit. If a
component provides several services, throughputs for the specific services can be
distinguished.

- TURNAROUNDTIME

This is the totd time a process spends in the component until it is completed.
Sometimes response time or system time is used as a synonym.

- POPULATION

Thisisthe number of processes present in a component. Another word for population
is filling. Sometimes the mideading term queue length is used in the literature.
Population includes the queued processes as well as the processesin service!

= UTILIZATION

This performance index is only permitted for components of type server and specifies

the use of that server on the average (utilization). Due to assigned service speed or the
simultaneous requests of different processes values greater than one may occur.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-20- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

1.4.2. Some What-If Questions

It isvery important for you to make your own modelling experiences. For that reason
we recommend to perform some experiments with the model of examplel This will
give you afirst impression how to handle some typical what-if questions appearing,
e.g., in system design and configuration.

Note that the model type or the experiment block have to be changed according to the
guestions imposed. Now try to solve the following problems on basis of examplel:

= What isthe maximum load intensity (given by the arrival rate) which the system can
still handle?

= Find the bottleneck of the system and examine whether increasing the speed of the
CPU or of the disk units will improve the system throughput or not. (How to
specify the speed of a standard component is described in Section 2.5.1.)

= How does a 30% faster CPU affect the system performance?

= How are the system performance measures affected if the access to the disk devices
is not uniformly distributed? Consider, for example, an unbalanced case where the
probabilities of disk accesses are given by 0.2, 0.3 and 0.5!

HIT and HI-SLANG. An Introduction

1. First Stepswith HIT -21-

1.5. Solvers for Separable Models and their Extensions

HIT offers mainly two possibilities for solving separable models, an exact and an
approximate technique.

1.5.1. DOQ4

By means of the analytic-algebraical solver DOQ4 separable models as well as certain
non-separable models can be analysed or aggregated. A check of restrictions will partly
be performed at run time. A choice between approximate or exact evaluation will be
automatically made during the execution of the experiment. Whenever possible the exact
solver will be chosen.

1.5.2. LIN2

The agorithm which cal cul ates approximate solutions of separable models called LIN2
is able to caculate the mean as well as the so-called performance bounds of
performance indices.

The agorithm for performance bounds caculates upper and lower bounds for
performance indices of separable models. Performance bounds are an appropriate alter-
native or supplement for exact and approximate eval uation methods, respectively. The
PBH method by Eager/Sevcik aswell asthe integral method by McKennaand Mitraare
implemented. Both can analyse separable models with state dependent and state
independent services.

The PBH method's state dependency is limited to monotonous increasing speed
functions and is dependent on the number of tasks in the concerning server. On the
other sideit isrequired for McKenna/Mitra's method that every closed chain has to
contain at least one infinite server, which must not be overloaded. The state dependency
islimited to the speed which is itself dependent on the number of tasksin a server.
Therefore both methods cannot manage state dependent servers which speed is
dependent on the population vector, i.e., they cannot handle aggregated components.
Open chains visiting state dependent servers are not allowed. Influence can be taken on
the quality of the boundsto be calculated by means of the stop condition ACCURACY
in the control block. For accuracy only values £ 4 are alowed. Dependent on the size of
your models LIN2 will decrease the accuracy automatically in order to limit the effort.
In such acase awarning will be given.

Real values for accuracy will be rounded to integer values. If accuracy is smaller than
0.5 or the ACCURACY stop condition is omitted, no bounds will be calculated. The
stop condition CPUTIME will be ignored.

Performance bounds will be selected if you choose the LIN2 solver. Use ESTIMATOR
BOUNDS in the EVALUATE statement and ACCURACY as stop condition.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

2. HI-SLANG Subset for Flat Models -23-

2. HI-SLANG Subset for Flat Models

2.1. Overview

The objective of this chapter is:

= to comprehend how a component deals with service requests;
= tolearn how server components are used for modelling;

= to become conversant with services and model types;

to get familiar with spend, hold, negexp and draw and

to learn HI-SLANG control statements

All thisis necessary to specify flat models with HI-SLANG.

2.2. Component Control Procedures

A component deals service requestsin the following manner:

progress denied progress granted activities finished
entry area service area exit area
o > — > —
A
- L »
accept schedule dispatch automatic offer
announce queue transfer

Figure 2.1: The Component Control Mechanism

= All service requests are stored in the so-called announce queue.

= First such requests will be accepted in the entry area. For a standard component
there are no limitations or restrictions concerning the acceptance capacity (LET
accept ;= aways).

= Then they are transported out of the entry area into the service area according to the
schedule strategy chosen.

= [ntheserviceareathey will be processed according to the dispatch procedure.

= Andfinaly, in the exit area, they will be offered. Note that a standard component
offers all tasksto its environment (LET offer := all).

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-24- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

The organization of the processes' progress is governed by four behavior rules: accept,
schedule dispatch and offer. Upon declaration every component is being parameterized
in accordance with the explications given below.

We now describe the function of these four rules and the possible parameter values

admitted for separable models. For numerical and simulative evaluation more behavior
rules are allowed.

2.2.1. Accept
The accept procedure describes under which conditions new service requests will be

accepted. The default value alwaysis the only possibility for the HI-SLANG subset
treated by METHOD ANALYTICAL.

2.2.2. Schedule
A schedule procedure describes under which conditions a new process will be

transferred into (and out of) the servicearea. The available scheduling strategies for
separable models are:

= fcfs: first-come-first-scheduled (LET schedule:=fcfs)

The processes will be transferred from the entry area into the service area in the order of
their arrival. Imagine that fcfs isrealized by a"queue”.

= |cfspr: last-come-first-scheduled-preemptive-resume (LET schedule:=Icfspr)

Priority is given to processes just arriving. Therefore processes, which were longer
present are preempted, e.g., they are driven out of the service area. The services of the
preempted processes will be continued ("resumed") at the "break point”. Imagine that
Icfspr isrealized by a"stack".

= immediate: immediate scheduling
Arriving processes will be directly (immediately) transferred into the service area

Therefore the processes do not suffer any waiting timein the entry area. The procedure
immediate is the default schedule procedure.

HIT and HI-SLANG. An Introduction

2. HI-SLANG Subset for Flat Models -25-

2.2.3. Dispatch

The digpatch procedure determines whether the service capacity is shared among all
processes present in the service area or whether each process is served with equal
Speed.

There are various options of dispatching strategies which are fixed by the following
parameter values.

= shared: sharing the service capacity

LET dispatch := shared
or LET dispatch := shared(S)

Each of the N processesin theservicearea is served with speed 1/N or with speed S/N,
respectively. Note that S may only have values > 0.0 .

= equal: equal servicefor al processes

LET dispatch := equal
or LET dispatch := equa (S)

All processesin the service area are served with the same speed 1.0 or with the same
speed S, respectively. It seems as if each process possesses its own processor
permanently. If a process does not have to spend some waiting time in the entry area

(immediate scheduling!), its service request time will beidentical to its turnaround time.
If m denotes the service request, the turnaround time will be given by myS.

= sdequal and sdshared: state dependent service speed
LET dispatch := sdequd (a, €)
or LET dispatch := sdshared(a, ¢)
"State dependent” means the service speed is a function of the component's population.

Thefirst parameter a of sdequal and sdshared is a 2-dimensional array, which has to be
specified asfollows:

[[N1,N2,...,Ni], [S1,S2,..., Skl
where N1,No,...,Ng denote the component populations and S;,S,,...,Sk denote the
associated speeds. Note that the following conditions must hold:

N;=1 N;<Ny;<N3z<..<N

and Sy, S, S3... S¢>0.0

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-26- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

If N denotes the actua population of a component, the associated speed is given
according to the following interpretation.

N1 £ N< Ny &
No £ N< N3: S

Nk1£ N < Ng: S

Ne £ N . Sk

This means that we don't have to specify speeds for all possible fillings. The gaps will
be filled according to the interpretation given above. Examples which demonstrate the
application of state dependent speeds are given in the following chapter.

The second parameter, c, specifies a norm speed. The default value of cis 1.0. The
service speed can be increased and decreased by increasing or decreasing this
parameter, respectively. Instead of LET dispatch := sdshared (a,c) we can also write
LET dispatch := sdshared (a, LET speed := c).

The parameter equal (1.0) isthe default value for the dispatch procedure.

2.2.4. Offer

The offer procedure describes under which conditions the finished processes will be
offered by the current component. The default valueis all, i.e., all "completed tasks"
are offered without any conditions. All isthe only offer parameter, trested by METHOD
ANALYTICAL.

HIT and HI-SLANG. An Introduction

2. HI-SLANG Subset for Flat Models -27 -

2.3. Examples for the Use of Servers

Predefined types are available, anongst them the standard component type server is the
most important. A server provides the basic service request (amount: REAL), the
parameter amount indicates the tempora duration of the requested service.

2.3.1. Modelling CPUs (Sharing Service Capacity)

We consider amodel of atime-sliced CPU. In this model we introduce the abstraction
that all processes are allowed to make progress, without having to wait for the
allocation of the CPU. Nevertheless they are sharing the service capacity equally.

The CPU can therefore be modelled as a standard component with the following
parameters, which denote processor sharing:

COMPONENT cpu: server (LET accept = aways,
LET schedule := immediate,
LET dispatch := shared,
LET offer := all);
or shortly, using defaults:
COMPONENT cpu: server (LET dispatch = shared);

2.3.2. Modelling Dialog Users (Infinite Servers)

Imagine alarge computer system with many terminals. A dialog task is running for each
terminal and spends a certain time at the terminal. This holding time is needed by the
user for thinking and typing of commands, followed by striking the return key, such
that processing isinitiated or continued. Indeed, we take the view that a dialog process
has a service request at a component terminal_pool which includes the terminas
hardware and software as well as the users themselves (a human sub-component, if you
like!)

Thedialog users of a computing system can therefore be modelled by a standard
component without parameters. These are infinite servers:

COMPONENT termina_pool: server;

2.3.3. Modelling Input/Output Devices (Queueing)

If tasks are not allowed to access a resource simultaneously, then the scheduling
discipline must specify the criteriato be used for the selection of the next task.

For example adisk unit employing the discipline first-come-first-scheduled (fcfs) can
typicaly be defined asfollows:

COMPONENT disk: server (LET schedule := fcfg(1));
The parameter of the fcfs-scheduling discipline defines the number of processes which

can be in the entry area simultaneously. In the given example at most one process can
receive service. Oneis aso the default value for fcfs.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-28- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

2.3.4. Modelling Multi-Processors

A multi-processor can be modelled by selecting the speed proportional to the filling.
Thisisdone only up to a certain limit, which is governed by the number of available
Processors.

The following declaration defines a double processor system.

COMPONENT
multiprocessor : server (LET dispatch := sdshared ([[1,2],[1.0,2.0]]));

If you like to model the total service rate of n processors which can be significantly less
than n times the rate of a single processor because of competition for software locks and
interference in accessing main memory, you should specify the effective service rate for
each possiblefilling.

See for example the following "four-processor system” component declaration.

COMPONENT
quad_processor : server
(LET schedule = immediate,
LET dispatch:= sdshared ([[1,2,3,4],[1.0,1.7,2.2,2.6]]);

In both examples, multiprocessor and quad-processor, we omitted the norm speed
parameter for the dispatch procedure. If we want to change the norm speed from 1.0 to,
e.g., 1.5 we can write:

... LET dispatch := sdshared (..., LET speed := 1.5);

Instead of LET speed := 1.5 areal variable or areal constant can be used as actual
parameter, too.

2.3.5. Modelling of Degradation due to System Overhead

There are systems which suffer from performance degradation due to heavy work load.
Typical examples are thrashing in paging systems and Ethernet-like protocols under
heavy traffic. In the following example we consider the Ethernet protocaol.

The Ethernet protocol permits simultaneous access to the bus. The resulting conflicts
are regulated by repeating the access after a certain delay time. First the throughput will
increase with the load (number of packets to transmit) to a certain threshold (which
depends on the Ethernet parameters), but will then drop sharply to alevel of very poor
performance.

To model this phenomenon, state-dependent speeds can be used in the following way:
COMPONENT
bus: server
(LET dispatch := sdshared ([[1, 2, 3,4, 5, 6, 7, 8, 9, 10],
[1.0,1.8,2.7,3.5,4.2,4.5,4.6,4.6,3.0,1.5]]));

Thisisonly an example; the values given do not stem from a measurement.

HIT and HI-SLANG. An Introduction

2. HI-SLANG Subset for Flat Models -29-

2.4. Services

Services are used for the instantiation of processes obeying identical load patterns.
Services may have parameters which are specified in alist of formal parameters.

Due to restrictions imposed by METHOD ANALY TICAL service parameters must not
be used in conditions of control statements. And moreover you can use only the control
statements listed below and service callsin your services. Y ou have aricher choice of
possibilities in simulation of course. We refer to Section 9.5. for more information. A
service, which due to historical reasonsis specified as a service type, has the following
syntactical structure:

TYPE service_name SERVICE (forma_parameters);

USE
SERVICEservicel (...);
service? (...);
END USE;
BEGIN

{brocess pattern composed of control statements and}
{cdlsof servicel, service2,...}

ENI.D“TY PE service_name;
Services can be seen as "service types’, as indicated by the HI-SLANG notation. Then
"service objects" are processes which are generated dynamically during run time by
means of:

CREATE 1 PROCESS service_name (...) EVERY negexp (1/m);

or

CREATE n PROCESS service_name (...);

In the first case processes are generated continuously according to atemporal pattern
specified by negexp (I/m), i.e.,, a new process is generated with exponentialy
distributed inter-instantiation times (mean m).

Note that the body of the service declaration must not contain an infinite loop, otherwise
the population grows to infinity. In the second case, n processes are generated in the
same time instant and have to remain in the system permanently provided their process
pattern is of the infinite loop type.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-30- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

2.5. Model Types

A model type forms the uppermost level of amodel. It is an analysable unit, which
looks like a component type except that a PROVIDE block is missing. Remember that a
model does not provide services! Consider the following example of amodel type:

TYPE model_type name MODEL (formal_parameters);
.{.c.iefi nition of the load, composed of one or more services}

{ definition of the machine, composed of one or more component objects}
{of lower levels}

REFER.. { service names}...TO...{ component names}...EQUATING
{Ir.eferri ng the load to the machine}
END REFER;
BEGIN
{initial statementsto create processes}

END TYPE model_type name;

A model object is generated in the experiment block (more precisely inthe EVALUATE
statement) by:

MODEL model_object name: model_type name (...{actual parameters}...);

2.6. Spend and Hold

The normal way to specify (either implicitly or explicitly) time durationsin aHIT model
isto use services from lower levels which finaly lead to time consumption at the
standard servers

Another way to describe time delays is given by the predefined services hold and
spend. For these callsthe HIT system implicitely introduces server components. A call
of hold causes the process to pause for a certain time interval. Note that the
interpretation of hold is left to you! Hold, e.g., models the execution of a service or the
passivation of the calling process. To ensure the treatability within separable models the
parameter of hold is restricted to the negexp function.

The spend service works in a smilar way. The main difference is that spend is
controlled by the dispatch procedure of the component embracing the calling service. If
the calling service islocated at highest level, e.g., in the model type, spend has the
same effect as hold.

Some examples will demonstrate the use of spend and hold:

hold (5); {the process sleeps for 5 time units}
hold (negexp (1/2)); {mean slegping timeis 2 time units}
sgend (5); { depending on the dispatch procedure of the embracing}

{ service there may occur contention for spend}

HIT and HI-SLANG. An Introduction

2. HI-SLANG Subset for Flat Models -31-

2.7. Distribution Functions
2.7.1. Negexp

In order to model the random variation of the processing time, e.g., "service duration”
or "time between process creations' the function negexp will be used. It has the form:
negexp (R)

The parameter R denotes the rate (number of events per time unit) of a negative
exponential distribution with mean M=1/R. The expressions negexp (R) and negexp
(M) are equivalent. The result of negexp is a positive real value, which is randomly
chosen according to a negative exponential distribution. If R £ 0, arun time error will

appear.
We give two examplesfor typical applications of negexp:

= Negexp must be used to specify arandom pattern of arrivals (or pattern of creation)
of temporary processes, for example as follows

CREATE 1 PROCESS batch_task EVERY negexp (0.1);

This statement has two interpretations which are completely equivalent:

- batch jobs of service batch_task are created and "appear” in the model at arate of
0.1, or

- the time between two successive creationsis in the average 10 time units.

= Negexp must be used to specify the amount of required service from a standard
component.

The statement read_file (negexp (5.0));
or equivalently read file (negexp (1/0.2));

requires the use of a provided service bound to read_file for 0.2 time units on the
average. Because in general several processes compete for a single component, the

mean turnaround time (composed of waiting time and service time) for the read file
process will be larger than 0.2.

2.7.2. Draw
The function draw is used to choose in a probabilistic manner between different
alternatives, e.g., access to disk units or as a second example alternative routingsin a
communication network.
draw is a boolean function with a parameter p of type REAL:

If O<p<1, thevaluewill be TRUE with probability p, FALSE with probability 1-p.

If p=0, thevauewill bealways FALSE.
If p=1, thevauewill be always TRUE.

The function draw is typically used within the conditions of control statements.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-32- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

2.8. Control Statements

2.8.1. The Infinite Loop

Syntax: LOOP {statements} END LOOP,

An infinite LOOP statement is used when we wish to repeat the same sequence of
statements forever. A typica use of this LOOP construct is the modelling of processes
moving permanently through the system. These processes are sometimes caled

permanent processes or cyclic processes. The type declaration for such processes
usualy contain an infinite LOOP construct without exit!

2.8.2. The TIMES Loop

Syntax: AVERAGE n TIMES LOOP { statements} END LOOP;

The TIMES loop causes the repetition of a sequence of instructions. The mean number
of repetition is given by n. It can be areal expression with value >= 0.0. The LOOP
and END LOORP act as a paranthesis and bracket the group of statements to be repeated.
The distribution behind AVERAGE is geometric; it isinterpreted as

X :=n/(n+1); WHILE draw (X) LOOP { statements} END LOOP,

2.8.3. The WHILE Loop
Syntax: WHILE draw (prob) LOOP { statements} END LOOP,

The WHILE clause decides whether or not processing is to continue. If the value of the
random drawing procedure draw is true, the sequence of statements between L OOP and
END LOOP will be executed. The boolean procedure draw (p) returns the value TRUE
with probability p, 0£p£1, or the value FAL SE with probability 1-p. The mean number
of iterationsis p/(1-p). For p=1theloop isendless.

Note: Don’t use service parameters within expression prob. This adviceisvalid for all
control statement conditions.

We should add, that in case of simulative evaluation other forms of the WHILE loop are

possible. The restriction to the draw function and the service parameters is due to
propertiesof METHOD ANALYTICAL.

2.8.4. The UNTIL Loop

Syntax: LOOP {statements} END LOOP UNTIL draw (prob);

The condition stipulated in the UNTIL clauseis evaluated and, if it isfalse, the loop
will be repeated. Otherwise execution will be terminated at this point. Unlike the

WHILE loop, the UNTIL loop is at least executed once. The mean number of iterations
is /prob. For prob=0 we have an infinite loop!

HIT and HI-SLANG. An Introduction

2. HI-SLANG Subset for Flat Models -33-

2.8.5. The IF Statement
Syntax: IF draw (prob) THEN {statements} ELSE { statements} END IF;

The IF statement enables the choice between two dternative courses of action.
According to the value of draw (p) the appropriate course is selected. The statements
after THEN or the statements after EL SE are executed, depending on whether or not
draw (p) istrue. The ELSE clauseis optional.

2.8.6. The BRANCH Statement

The BRANCH statement enables the user to choose between many alternative courses
of action:

BRANCH
PROB p1 : {statements}

PROB p2 : {statements}

PRCSB Pn: {statements}
ELSE . {statements}
END BRANCH;

The statements to be executed are chosen depending on probability values p1,p2,...,Pn
given after the keyword PROB. The sum of these probability values must be less or
equal one. The ELSE clause isoptional. If it exists, it will sum the probabilities to one,
otherwise the body of the BRANCH statement will be skipped with probability 1-p;-

P2-...-Pn.
We provide a ssmple example which illustrates the BRANCH statement.

BRANCH
PROB 0.1: cdculate (....);
store (orr);
PROB 0.5: cdculate (....);
ELSE . store (oer)s
END BRANCH,;

With probability 0.1 the sequence "calculate-store” will be chosen, with probability 0.5
and 0.4 calculate and storewill be used, respectively.

2.8.7. The CHAIN Statements

Note that each HI-SLANG service describes a chain of a corresponding queuing
network. If a queuing network is given as astart point it might be difficult to construct
the corresponding HI-SLANG model. Therefore a recent addition to HI-SLANG, the
CHAIN statements allow to describe queuing systems directly in the following way:

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-34- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

OPEN_CHAIN
QNODE node_name
PROB p1: node nameg
PROB p2: node namep

PRéB pn: node namen
ELSE . node namen+1
QNODE node_namep
END OPEN_CHAIN:
The PROB parts describe the selection probabilities for the successor nodes and their
names. InaCLOSED_CHAIN they have to sum up to one, whilein an OPEN_CHAIN
statement the remaining probability isthe exit probability.

The service batch _task of examplel can now as well be specified asfollows:

Figure 2.2: Specification of a Service using the CHAIN statement

Please compare the figure above with Figure 1.1. Of course the nodes may be drawn
like stations of a queueing network, but here we preferred a more simple representation.
The corresponding HI-SLANG representation is stright forward:

TY PE batch_task SERVICE;
USE SERVICE
caculate (amount: REAL DEFAULT negexp(1/0.2));
reed file a (amount: REAL DEFAULT negexp(1/0.1));
read file b (amount: REAL DEFAULT negexp(1/0.2));
write file ¢ (amount: REAL DEFAULT negexp(1/0.4));
END USE;

BEGIN
OPEN_CHAIN
QNODE caculate
PROB 0.3: read file a;
PROB 0.3: read file b;
PROB 0.3 : write file c;
{else (prob 0.1) exit the chain}
QNODE reed file a
PROB 1.0: calculate;
QNODE read file b
PROB 1.0: calculate;
QNODE write file ¢
PROB 1.0: calculate;
END OPEN_CHAIN;
END TY PE batch_task;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -35-
3. Hierarchical Model Specification

3.1. Overview

The objective of this chapter is:

= tointroduce the concept of hierarchical modelling;

= to discuss horizontal and vertical refinement;

= toillustrate this concept by means of an example and
= to explain more on component types.

In order to gain an overall view, we present the following figures. They illustrate the
stepwise refinement of the model we are going to discuss in the following sections.

: example2
01
terminal_pool comp_system
: server :CS
cpu

. server

Figure 3.1: Gross Specification of a Two Level Model
The model, called example2, consists of a server and a component cs. The namecsis
an abbreviation of central server and consistsitself of a server.
The horizonta refinement of cs leads to a new component type named cs _ref_hor,

consisting of five servers, see Figure 3.2. Note that the depth of the hierarchy does not
change.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-36- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

: example2
terminal_pool comp_system
: server : cs_ref_hor
cpu disk4 disk3 disk2 diskl
: server : server : server : server : server

Figure 3.2: Horizontal Refinement of Figure 3.1

Finally this new cs component type cs ref _hor, respectively its disk4, isrefined
verticaly by changing itstype from server toio_system. See Figure 3.3.

: example2
terminal_pool comp_system
: server : cs_ref_hor
cpu ios disk3 disk2 diskl
: server :io_system : server . server : server
disk_x1 tape disk_x2
: server : server : server

Figure 3.3: Vertica Refinement of Figure 3.2

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -37-

3.2. A Hierarchical Model

In order to ease the design of multi-level/multi-layered models and to enable a piecewise
specification by different people, the HIT system provides some features for organizing
amodel into vertical levelg/layers.

In this chapter we are primarily concerned with these features. They are best discussed
in terms of an example. Before we define our model, let us briefly consider the
following HIT features.

3.2.1. Transforming a Model into a Component

We have learned that if a machine consists exclusively of standard components, we will
attain aflat model (see examplel). In order to build hierarchical models of arbitrary
height we must create components. One way to do thisisto transform amodel typeinto
acomponent type by declaring certain of itsinternally specified services as externally
usable. Initial statements (e.g., CREATE) can, but must not be removed. We thereby
arrive at the basis of a next higher layer. Consequent application of this concept |eads to
arbitrarily deep multi-level/multi-layered models with an uppermost layer and a
lowermost layer. The former consists of aload/machine complex without any externally
accessible services. The latter is directly based on standard components.

3.2.2. A Two-Level Model

In our example, called example2, we deal with atwo-level model, which is defined as
follows:

= Theload consists of two different kinds of tasks, which are described by the
servicescmdl and cmd2, respectively. Users submit these tasks (dialog jobs) after
some thinking time.

= The machine is composed of the components terminal_pool and comp_system
(abbreviation for computer system). The component terminal_pool will be directly
represented in the model by the standard component type server, whereas the
component comp_system forms a further hierarchical level, providing the services
cmdl_processing and cmd2_processing as externally usable.

We will write down this model in HI-SLANG. We describe the component
comp_system in agross way neglecting any detailsfirst. In a second step, presented in
the next sections, comp_systemwill be refined in atop-down manner.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-38- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

3.2.2.1. Component Type cs

The following example is a gross specification of user-defined component type cs. This
component forms a higher layer. It declaresits internally specified services
cmdl_processing, and cmd2_processing as externally usable.

TYPE cs COMPONENT;

PROVIDE
SERVICE
cmdl_processing;
cmd2_processing;;
END PROVIDE;

TYPE cmdl_processing SERVICE;
USE SERVICE
compute (M:REAL);
END USE;
BEGIN

AVERAGE 10 TIMES
LOOP

compute (negexp(1/0.045));
END LOOP;

END TYPE cmdl_processing;

TYPE cmd2_processing SERVICE;
USE SERVICE
compute (m:REAL);
END USE;
BEGIN

AVERAGE 20 TIMES
LOOP

compute (negexp(1/0.135));
END LOOP,

END TYPE cmd2_processing;

COMPONENT cpu: server (LET schedule := immediate,
LET dispatch:= shared);

REFER cmd1_processing, cmd2_processing TO cpu
EQUATING
cmdl_processing.compute WITH cpu.request;
cmd2_processing.compute WITH cpu.request;
END REFER;

END TYPE cs;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -39-

3.2.2.2. Model Type example2

The model type example2is ahierarchical model of adialog system with two services.
The model has two parameters, giving the number of processes for each service in the
model.

The load pattern is described by the two services cmdl and cmd2. They describe the
view point of adialog system user: After thinking and typing acommand, thetask is
executed (run) and the result is returned to the user'sterminal. These think-run-cycles
are modelled using an infinite loop construct.

Note that a component comp_system of typecsis declared in the following model type.

TY PE example2 MODEL (n1,n2:INTEGERY);

TYPE cmdl SERVICE;
USE SERVICE
think (thinktime : REAL);
run;
END USE;
BEGIN
LOOP
think (negexp(1/5));
run;
END LOOP;
END TYPE cmdi,;

TYPE cmd2 SERVICE;
USE SERVICE
think (thinktime : REAL);
run;
END USE;
BEGIN
LOOP
think (negexp(1/10));
run;
END LOOP,
END TYPE cmd2;

COMPONENT
terminal_pool: server
(LET accept := aways,
LET schedule:= immediate,
LET dispatch := equal,
LET offer := all);

COMPONENT
comp_system: c¢s
(LET accept := aways,
LET offer := al);

REFER cmd1, cmd2 TO terminal_pool, comp_system
EQUATING
cmdl.think WITH terminal_pool .request;
cmdl.run WITH comp_system.cmdl_processing;
cmd2.think WITH terminal_pool.request;
cmd2.run WITH comp_system.cmd2_processing;
END REFER,;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-40 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

BEGIN
CREATE n1 PROCESS cmd1;
CREATE n2 PROCESS cmd2;
END TY PE example2;

3.2.2.3. The Experiment experiment2

A corresponding experiment is simple. We are interested in population and turnaround
time of both kinds of processesin comp_system for the case that 20 processes cmd1
and 2 processes cmd2 are executed by the user:

EXPERIMENT experiment2 METHOD ANALY TICAL"DOQ4";
BEGIN

EVALUATE MODEL model2 : example2(20, 2);

EVALUATIONOBJECT
computer VIA model2.comp_system;

BEGIN

MEASURE POPULATION, TURNAROUNDTIME
AT compuiter;

END EVALUATE;

END EXPERIMENT experiment2;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -41 -

3.3. Refinement of a Component Type

In the preceeding section, our aim was to get an overall structure of our model before
we get bogged down in too much detail. For ssmplicity, we ignored some of the more
complicated aspects of HI-SLANG. But now it is convenient to consider some of these
aspects. As mentioned before, the model example2is ahierarchical model because the
component comp_system is not of the standard component type server. It isitself
composed of several components.

3.3.1. Horizontal Refinement

It should be noted that HIT provides, in addition to the vertical model structure, a
horizontal structuring within ahierarchical layer. In order to fully understand and
appreciate this feature, we are going to refine the component comp_system horizontally.
We model the processing of tasksin comp_system in amore detailed fashion, such that
computing-and I/0-activities will be distinguished.

It isimportant to realize that refining the component comp_system horizontally only
affects the implementation of the layer, whereas the interfaces between the layers remain
unchanged!

3.3.1.1. The Refined Component Type cs

The following example gives the refined specification of the user-defined component
type cs. The comp_system component is refined horizontally. The task processing is
modelled in adetailed manner.

TYPE cs COMPONENT;
PROVIDE SERVICE
cmdl_processing;
cmd2_processing;
END PROVIDE;

TYPE cmdl processing SERVICE;
USE SERVICE
compute (m: REAL);
accessl (m: REAL);
access?2 (m: REAL);
access3 (m: REAL);
accessA (m: REAL);
END USE;
BEGIN

AVERAGE 10 TIMES
LOOP
compute (negexp(1/0.045));
BRANCH
PROB 0.25 : accessl (negexp(1/0.035));
PROB 0.25 : access?2 (negexp(1/0.035));
PROB 0.25 : access3 (negexp(1/0.035));
ELSE . accessA (negexp(1/0.035));
END BRANCH,;
END LOOP;

END TYPE cmdl1_processing;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-42 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

TYPE cmd2_processing SERVICE;
USE SERVICE
compute (m: REAL);
accessl (m: REAL);
access?2 (m: REAL);
access3 (m: REAL);
access4 (m: REAL);
END USE;
BEGIN

AVERAGE 20 TIMES
LOOP
compute (negexp(1/0.135));
BRANCH
PROB 0.25 : accessl (negexp(1/0.035));
PROB 0.25 : access2 (negexp(1/0.035));
PROB 0.25 : access3 (negexp(1/0.035));
ELSE : access4 (negexp(1/0.035));
END BRANCH,;
END LOOP,

END TYPE cmd2_processing;

COMPONENT
cpu: server (LET schedule = immediate,
LET dispatch := shared);

COMPONENT
diski,
disk2,
disk3,
disk4 : server (LET schedule:= fcfs,
LET dispatch:= equal);

REFER cmdl_processing, cmd2_processing
TOcpu, diskl, disk2, disk3, disk4

EQUATING
cmdl_processing.compute WITH cpu.request;
cmdl processing.accessl WITH diskl.request;
cmdl_processing.access?2 WITH disk2.request;
cmdl processing.access3 WITH disk3.request;
cmdl processing.access4 WITH disk4.request;

cmd2_processing.compute WITH cpu.request;

cmd2_processing.accessl WITH diskl.request;

cmd2_processing.access?2 WITH disk2.request;

cmd2_processing.access3 WITH disk3.request;

cmd2_processing.access4 WITH disk4.request;
END REFER;

END TYPE cs;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -43-

3.3.1.2. Inclusion of cs in example2

To incorporate the refined version of comp_system in the source text of example2 we
can of course replace the "gross specification™ by the "refined specification” textualy.
Fortunately HIT provides a better facility. The control statement

%COPY "link_name"

enables us to insert source text files, e.g., component types or services. The %COPY
command requires as parameter alink name. The files can be declared in the control part
(i.e., configuration part) by means of:

%COMPILER
%BIND "link_name" TO file_name
%END

Alternatively the control part can be omitted. In this case the HIT systems responds
with

%BIND "link_name" TO ?

and you have to type the corresponding file name. See also Appendix B.

3.3.2. Vertical Refinement

In the preceeding section we have considered the horizonta refinement of the
component type cs. Now we intend to vertically refine the same component type cs, by
refining one of its components with the help of anew component type.

Let us assume that disk4 will be replaced by a subsystem, which is composed of two
disk units and atape unit. Accordingly, the used service access4 will not be bound
anymoreto disk4.request but toio_operation which is provided by the component of
typeio_subsystem.

For reasons given later we decide that io_operation in contrast to request should not
have any parameters. However, the time consumption of io_operation is now
completely determined hierarchically and more natural by the pattern of service calls
within its body.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-44 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

3.3.2.1. The Component Type io_subsystem

The vertical refinement of disk4 within cs can be specified asfollows:

TYPE io_subsystem COMPONENT;

PROVIDE SERVICE
io_operation;
END PROVIDE;

TYPE io_operation SERVICE;
USE SERVICE
write file a (m:REAL);
read file b (m:REAL);
save file (m:REAL);
END USE;
BEGIN

IF draw (0.5)
THEN
write file_a(negexp (30));

ELSE
IF draw (0.1)
THEN
save file (negexp (0.1));

ELSE
AVERAGE 5 TIMES
LOOP
read_file_b (negexp (200));
END LOOP;
END IF;

END IF;

END TYPE io_operation;

COMPONENT
disk x1,
disk_x2,
tape : server (LET schedule := fcfs,
LET dispatch := equd);

REFER io_operation TO disk_x1, disk_x2, tape
EQUATING
io_operation.save file WITH taperequest;
io_operation.read_file b WITH disk_x2.request;
io_operation.write file a WITH disk_x1.request;
END REFER;

END TYPE io_subsystem;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -45 -

3.3.2.2. Inclusion of io_subsystem in cs

Note that the component type cs (refined version) must be changed dightly for this
vertical refinement:

= Thedeclaration of component disk4 must be changed into:
COMPONENT ios: io_subsystem;

(We suggest to change the name disk4, e.g., into i0s).
= |Inthe REFER part the binding of access4 must be changed.

= acces4 isnow parameterless, cf. the serviceio_operation above, since the amount
of time used for an io_operation is now completely determined by theio_subsystem
itself. Therefore the USE blocks of the services within cs and the service calls of
access4 must be changed.

The following points are worth considering:

= Parameterization of serviceio_operation is possible, but service parameters must not
be used as a parameter of the procedure draw or the BRANCH statement. More
genera: Service parameters must not occur in the conditions of control statements of
service bodies.

= Note also that the vertical refinement does not require any change in the experiment
part (if we are not interested in performance indices of the new components).

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 46 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

3.4. HI-SLANG Subset for Hierarchical Models

In this section the syntactical structure of elements of the HI-SLANG model world,
which was aready presented in terms of examples, is presented in more detail.

Notice, that all structured objects, i.e., components and models, are generated using the
type concept.

3.4.1. Components and Component Types

A component type has the following syntactical structure. Note that names and
parameters of externally accessable services are givenin aPROVIDE part. You can
imagine these services as exported from the component.

TY PE comp_type name COMPONENT (...{formal parameters}...);
PROVIDE
SERVICEservicel (...);
service? (...);
END PROVIDE;

.{'(.:iefi nition of the load, composed of some services}
{ definition of the machine, i.e., some component objects of lower levels}

.F.\’.EFER servicel, service?, ... TO componentl, component2,...
EQUATING
servicel.usel WITH componentl.providel;
service2.use2 WITH component2.provide2;
END REFER;
.{.c.)ptional static definition of process objects}
BEGIN
.{.(.)ptional initial statements, like dynamic creation of processes}

EN D TYPE comp_type_name;

In the body of acomponent type, aload will be referred to amachine. Thisis done by
binding the used services of the load to the provided services of the machine. In a
higher layer, objects of type c_type name will be declared asfollows:

COMPONENT comp_object_name: comp_type name (...);

Even ARRAY s may be used:
COMPONENT comp_object_array: ARRAY [1..4] OF comp_type name(...);
Only one-dimensiona static component arrays are alowed. At the creation of the

component object, theinitial statementswill be executed exactly once. For more
information about component arrays see the HI-SLANG Reference Manual.

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -47 -

3.4.2. Enclosed Components

HI-SLANG alows for using services of the same component in different layers of a
model. Such components are called enclosed. Enclosed components will be recognized
by using the keyword ENCL OSE instead of the keyword COMPONENT, e.g.,

ENCLOSE cpu : server;
in place of

COMPONENT cpu : server;

Additionally there must be amain declaration in the latter style somewhere elsein the
model. Only here the parameters of the component type may be set. The ENCLOSE
declaration can be seen as areference to that component generated by the main
declaration.

The following example which is based on atwo-layer modd illustrates the use of
enclosed components. The model is composed of three components, namely disks,
connections and the control unit cu. In this example, the component cu plays a specia
role. It is physically only once available but is actually accessed from severa parts of
the model.

This shared access is necessary for both the realization of the provided services of the
componentsdisks and connections as well as the realization of the load processes
transactionsl and transactions2. This model can be represented graphically, asfollows:

:model_type
disks connections
:disk_type :connections_type
cu
:cU_type

Figure 3.4: A Two-Layer Mode

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-48 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

An (incomplete) HI-SLANG description of model_type follows, showing only the
important parts with respect to the enclosed component cu.

TY PE cu_type COMPONENT;

{provides three services, namely: rcu_const, skam req and skam_access}
{asexternaly usable services}

END TYPE cu_type;

TY PE connections_type COMPONENT;
{the load uses the provided service rcu_const of cu}
COMPONENT plc, Itg : server;
COMPONENT places : sever;
ENCLOSE cu I cu_typs;

END TY PE connections_type;

TYPE disks type COMPONENT;
{theload uses al provided services of cu}

COMPONENT dsk1, dsk2 : server;
ENCLOSE cu . Ccu_type;

END TYPE disks type;

TYPE model_type MODEL;
{Theload is described by the services transactionsl and transactions?}
COMPONENT connections : connections_type;
COMPONENT disks . disks type;
ENCLOSE cu . CU_type;

END TYPE model_type;

COMPONENT cu : cu_type (LET schedule :=fcfs); {themain declaration}

An alternative congtruction isto move the line TY PE model_type MODEL to the top of
the example. In this case the main declaration of cu (the last line) can replaceits
ENCL OSE declaration within model _type.

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification - 49 -

3.4.3. Load Filtering Hierarchies

The HIT evaluation concept permits detailed specification of desired results for
hierarchical models. Thisis done by identifying a so-called load filtering hierarchy:
Service calsin higher layers, which have an effect on components of lower layers, can
be distinguished and evaluated separately.

Such aload filtering hierarchy is described by the concatenation of triples, which define
acalling hierarchy aong the hierarchical structure of the model. The triples consist of:

= the component or model name
= the service name within the component
= the USE name within the service

Note that either the USE name or the service and the USE name may be omitted, with
the meaning, that all services of the component or al USE names of the service are
concerned. Consider the following concatenation

(m.cl, st1, ul).(c2, st2)

This notion addresses the effect of st1-processes generated (by CREATE statements) in
component c1 of model m on the component c2, caused by calls of st2 via USE name
ul of stl.

Note that if the root of the load filtering hierarchy (the first element of the first triple)
liesin the uppermost layer of the model, the model name must be specified in place of
the component name, otherwise dot notation (starting with the model name) has to be
used to identify the load originating component (containing the respective CREATE
statements).

By the use of load filtering hierarchies performance indices (streams as, e.g.,
THROUGHPUT) can be thought of being composed of a set of different performance
values, from which only some might be of interest. Consider, e.g., a component c2
providing two services s21, s22, which are used by three different services s11, s12,
s13, of acomponent c1 within the next higher layer, itself being part of amodel m. The
following non-standard graphic may help:

ol 727
/LN

y L
VRN

2 B oy | | L7

Figure 3.5: lllustration of Load Filtering Hierarchies

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-50- I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

Then the throughput for c2 caused by processes generated in ¢l is composed of, e.g.,
the following throughput values, which are filtered by the hierarchies given below:

for all servicesof c2 (m.cl).(c2)

for s21 only (m.cl1).(c2, s21)

for s22 only (m.cl).(c2, s22)

for s21, caused by s11 (m.cl, s11).(c2, s21)
for s22, caused by s13 (m.cl, s13).(c2, s22)

There are even more possibilities, e.g., those throughput portions caused by processes
generated in m. These can be filtered by hierarchies with root m like

(m, 5).(c1, s11).(c2, s21)

Load filtering hierarchies are specified in HI-SLANG by:

HIERARCHY hierarchy_name DEFAULT triple_concatenation ;

Hierarchies will mainly be used in the MEASURE statement as follows:

MEASURE stream_namel,
stream_name, ...
AT evaluation_object
DUE TO hierarchies name list;

The DUE TO construct specifies the hierarchy (or hierarchies) for which the desired
measures are to be evaluated. Y ou can also specify the predefined load filtering
hierarchy all. In this case no filtering is performed. It is even possible to omit the DUE
TO congtruct at al, because DUE TO all is used as default.

The hierarchy declaration is best illustrated by means of an example. Consider the
following alternative experiment block of example2

EXPERIMENT experiment2 METHOD ANALYTICAL "DOQ4";
BEGIN
EVALUATE
MODEL model2 : example2 (20, 2);

EVALUATIONOBJECT
computer VIA model2.computer_system;

HIERARCHY hl1 DEFAULT
(model2, cmdl, run).(computer_system);

HIERARCHY h2 DEFAULT
(model 2, cmd2, run).(computer_system);

BEGIN

MEASURE POPULATION, TURNAROUNDTIME
AT computer DUE TO h1, h2, al;

END EVALUATE;
END EXPERIMENT experiment2;

HIT and HI-SLANG. An Introduction

3. Hierarchical Model Specification -51-

Two digoint load filtering hierarchies, which end in the same component, can be
merged to anew hierarchy by:

HIERARCHY hierarchy _name MERGE hierarchy name 1, hierarchy name 2, ...;

The new hierarchy contains the union of load paths of al individual hierarchieslisted.
The predefined hierarchy all exists for any evaluation object. It can be seen asamerge
of all possible hierarchies ending in that component.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

4. Hierarchica Moddl Anaysis (Aggregation) -53-

4. Hierarchical Model Analysis (Aggregation)
4.1. Overview

In this chapter we introduce a HI-SLANG feature which is important for different
reasons. The so called technique of pre-analysis or aggregation. It helpsto simplify
complex models by reducing their size and therefore improves the solution speed.

In short the objective of this chapter isto

= discussthe principle of hierarchical analyss;
= illustrate the aggregation technique by an example and
= explain the associated HI-SLANG constructs.

4.2. Principles of Hierarchical Analysis

In the preceeding chapter, we became acquainted with the concept of hierarchical model
construction by means of horizontal and vertical refinement.

We learned that machine and load consist of components and services, respectively.
The separation of their specifications strongly supports the goals "division of labour”
and "reusability”. And it allows therefore the systematical development of complex
models.

Structuring amodel in componentsis also greatly advantageous from the analysis point
of view. Under certain conditionsit is possible to analyse a component type totally
separate from its environment and to use the results of this pre-analysisin other models
and/or other environments afterwards. This means that HIT supports hierarchical model
specification aswell as hierarchical model analysis.

We sketch the principle of pre-analysis and finally consider its advantages. Assume a
component type providing anumber of externally usable services. In performance
modelling, we are specially interested in the time needed by the component to process a
service. How this service is processed by the component isirrelevant when posing
guestions of macroscopic nature. E.g., when inquiring about the response time of
dialog tasks, the duration of asingle |O-CPU-cycle isnot of interest.

As a consequence, from the performance modelling point of view, the performance
behavior of acomponent is determined essentially by the processing duration of its pro-
vided services. The explicit modelling of numerous detailsis absolutely not necessary
and is also not desirable in the analysis.

HIT provides an option for transforming detailed, deeply structured component types to
aggregated component types having a very simple structure. Aggregated component
types are substitute representations for the original component types and provide con-
sequently the same services.

Dueto the fact that a component isisolated from its environment during the pre-
analysis, we aso use the pictorial term "off-line analysis”.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-54 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

—» sorvicel

Component Type
—» servicen

Aggregation by Off-Line Analysis

Aggregated —» Servicel

Component Type |—» servicen

Figure 4.1: Construction of an Aggregated Component Type

The advantage of analyzing isolated component types emerges from the fact that
components appearing asidentical subsystemsin different models have to be analyzed
only once (or precisaly: pre-anayzed). Afterwards they can always be used asa"pre-
fabricated building block™ in very different models.

A disadvantage in using aggregated components is that an evaluation of any details
inside the component is of course impossible. Consequently you should try to
aggregate model parts which are of no interest to your current investigations. In
particular if you perform parametric analyses of large models, only those parts should
be modelled in detail for which you want to vary an input parameter or for which you
want to measure individual quantities. The rest of the model should be aggregated (if
possible) to an equivalent substitute representation!

Component types to be aggregated must fulfil the restrictions of the DOQ4 algorithm,
i.e., they must be separable, but the extensions listed in Section 5.1. can be used. In the
latter case the aggregate is only approximate.

4.3. Applying Aggregation

Now we will explain how to perform a pre-analysis. We intend to aggregate the
component type cs (i.e., the component comp_system) of example2, see Section 3.3.1.
Thisis done by pre-analysing a part of this model (i.e., the component type) and
creating a substitute representation of it.

The specification of the experiment will merely be composed of a so-called
AGGREGATE statement. In it the maximum population of tasks (for each service
provided by cs) will be specified.

The HI-SLANG source text of the aggregated component type, generated according to
this specification, will be saved in afile, which is by default named by the file name
generator (suffix preana).

The sourcefile for the pre-analysis of cs (horizonta refinement) can be specified as
follows:

HIT and HI-SLANG. An Introduction

4. Hierarchica Moddl Anaysis (Aggregation) -55-

TYPE cs COMPONENT;
{'see Section 3.3.1.1}
END TYPE cs;

EXPERIMENT exp2agg METHOD ANALYTICAL "DOQ4";
BEGIN

AGGREGATEcs,
CREATE 20 PROCESS cmdl_processing;
CREATE 2 PROCESS cmd2 processing;
END AGGREGATE;

END EXPERIMENT exp2agg;

It isremarkable that the result of the aggregationis again aHI-SLANG component type
with the same name and the same set of provided (parameterless) services. If you are
curious, inspect the file containing the aggregated component type.

This means that aggregated component types can be included in HI-SLANG sources.
The name of the file containing the aggregated component type is specified by the
following control part:

%COMMON
%BIND "AGGCS' TO file_name
%END

%COMMON is needed because the aggregate will be read by both the compiler and the
used analyzer. Thefirst reads the HI-SLANG interface, while the latter isonly
interested in the " speeds table".

In the source text the connection to this aggregated component type will be attained
through the name of the aggregated component type. Note that the same name is used as
component type name and as name of the aggregated component type. The aggregated
component typeisincluded by:

%COPY "AGGCS'

COM PONENT comp_system : cs;

The link name should be related to the name of the component type. In the same way an
ordinary HI-SLANG component type can be included (see Section 3.3.1.2. and
Appendix B.2.). Note that the names of the provided services must not be changed in
the main source text. The same holds for the type namesin the corresponding object
declarations. In general amodel can be configured by binding different versions of
component types to the link names used.

When inserting aggregated components, one must take into account for which
population the corresponding component type was pre-analyzed. In our example, the
aggregated component can process a maximum of 20 and 2 processes from
cmdl_processing and cmd2_processing, respectively.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 56 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

4.4. HI-SLANG Subset for Model Aggregation

We give the syntax of the aggregate statement and list the restrictions which have to be
fulfilled to be able to aggregate a component type or to useiit.

4.4.1. Aggregate Statement

An AGGREGATE statement is needed for transforming a component type to an
aggregated component type. The maximum population for each provided service must
be given by a set of corresponding CREATE statements within the AGGREGATE
statement. If this population is exceeded when actually using the generated aggregate, a
warning will appear.

The AGGREGATE statement is contained in the EXPERIMENT block, in which both
the method (in thiscase ANALYTICAL "DOQ4", which is currently the only one
possible) and the experiment name are specified:

EXPERIMENT experiment_name METHOD ANALYTICAL "DOQ4"
BEGIN

AGGREGATE component_type name [OUTPUT "link name'];

CREATE max_population_1 PROCESS service 1;
CREATE max_population_2 PROCESS service 2;

6REATE max_population_n PROCESS service n;
END AGGREGATE;

END EXPERIMENT experiment_name;

If you want to specify afile name for the aggregate (overriding the default name) you
can usethe OUTPUT "link name" clause. Only when performing an aggregation in this
case, the control part must include something like:

%ANALYZER
%BIND "link_name" TO file_name
%END

After executing the aggregation, the file with namefile_name will contain the
aggregated component type.

HIT and HI-SLANG. An Introduction

4. Hierarchica Moddl Anaysis (Aggregation) -57-

4.4.2. Restrictions in Aggregation

By performing aggregations and by using aggregated component types, the following
restrictions must be taken into consideration:

= Component types, which should be aggregated must not have parameters. Also the
provided services must have no parameters.

= |f the keyword ENCL OSE appearsin the source text of the component type, then
the corresponding component object must be defined within this component type.

= Aggregation of acomponent isonly feasible for components obeying to the
restrictions of separable models and their DOQ4 extensions. But note, the use of an
aggregated component is not limited to separable models, i.e., they can also be used
in models using other analysis methods.

If you use an aggregated component type, consider the following points:

= Aggregated component types are admitted to be constituents of component types,
which should be aggregated, too ("multi-level aggregation™).

= Aggregated component types are admitted to be constituents of models, in which
permanent and temporary processes exist, but the services of aggregated
components may be used only by permanent processes.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

5. Extensions and Limits of Separable Models -59-

5. Extensions and Limits of Separable Models
5.1. Overview

The objective of this chapter is:

= tointroduce a class of non-separable models also solvable with DOQ4, but not with
LINZ;

= to summarize aspects which cannot be treated by DOQ4 or LIN2, but by METHOD
ANALYTICAL "NUMERICAL".

5.2. An Extension of Separable Models
5.2.1. Approximate Solution of a Class of Non-Separable Models

The HIT system offers nearly al relevant features of the class of separable models
which have been explored by queueing theoriticians. But if the restrictions from
separable models are widened, the class of treatable models will be growing. Of course
the price isthe loss of formal strength and the exactness of results. Nevertheless, the
quality of the resulting quantitative measures is mostly fully sufficient for the needs of
practice. The two extensions of separable models described as follows can be treated by
the DOQ4 agorithm. Since DOQ4 is used for aggregation, these extensions aso apply
for the aggregation of component types.

5.2.2. FCFS Scheduling

Note that in case of separable models all requests to the same fcfs-server must have the
same actua negexp parameter. In other words: All service requests to a server with fcfs
scheduling discipline must be specified by the negexp function and the parameter of
these negexp functions must have exactly the same value! If thisis not the case an
approximate solution technique, which has been integrated in the DOQ4 algorithm, will
be applied automaticaly.

5.2.3. Priorities

Scheduling disciplines like preemptive and non-preemptive priority can not be treated
by separable models. An approximate solution technique (again the DOQ4 agorithm)
will be applied automatically. We distinguish between priority scheduling with and
without preemption.

= prioprep: Priority Scheduling with Preemption

Preemption means a"newly arriving" service request interrupts a process of lower
priority. Theinterrupted (preempted) process has to be repeated from the beginning,
i.e.,we have a"priority preemptive repeat” discipline.

More precisely we have a " priority preemptive repeat” discipline with "resampling”,
i.e., the amount of the service to be restarted is determined again.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 60 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

= prionp : Priority Scheduling without Preemption

In the non-preemptive case a newly arriving service request can not cause an interrupt.
It hasto wait for service until al services of lower priority have finished.

Because the component type prioserver is not an intrinsic part of HI-SLANG, but rather
amember of the HIT standard modelling base, it must be introduced into the source by
%COPY "PRIOSERVER".

A declaration of a component with priority scheduling lookslike this:
COMPONENT cpu : prioserver (LET schedule := prioprep);

Instead of prioprep the strategy prionp can be used here. A process whichisto be
executed by aprioserver component must be declared in the following manner:

TY PE diaproc SERVICE;
USE SERVICE
compute (amount: REAL ; prio: INTEGER DEFAULT 32767);

END USE:
BEGIN

éémpute (negexp (1/10), 3);
EN I.:S.TYPE diaproc;
The service request compute has two parameters. the amount specified by a negative
expontial distribution with mean value 10 and a priority of 3. Note that the highest

priority is 0 and the lowest priority is 32767. Please note, that the REFER part for
compute does not change comparing to a component of type server.

HIT and HI-SLANG. An Introduction

5. Extensions and Limits of Separable Models -61-

5.3. What Cannot be Treated by DOQ4 or LIN2

We summarize some aspects which can not be treated by METHOD ANALYTICAL
"DOQ4" or "LINZ2". Nevertheless we recommend to use this method in the early stages
of amodelling study, neglecting non-separable aspects. Y ou may include these aspects
(if necessary) in later phases of your modelling enterprise; switching from analytical
solution to numerical or simulative evaluation is really easy!

5.3.1. Non-Exponential Distributions

METHOD ANALYTICAL "DOQ4", which appliesto separable models, considers only
the mean value of adistribution. A coefficient of variation different from 1.0 can not be
treated. Moreover this holds for general probabilistic distributions, too.

Nevertheless the so-called Coxian distributions can be used in case of the schedule
disciplines immediate and Icfspr! Thisis not a contradiction to the statement above! It is
known from queueing network theory that the resulting performance values are not
affected at all by the coefficient of variation. This phenomenon is sometimes called
robustness property of separable networks. Consequently you should not try to
investigate the sensitivity of separable networks with respect to the coefficient of
variation!

5.3.2. General State Dependent Service Speeds

Service speeds depending on the "service mix" at acomponent are not admitted in
complete generaity. The most important case for the application of mix-dependent
speeds feasible in separable networks concerns the inclusion of aggregated component

types.

5.3.3. Multiple Resource Holding

A process can hold more than one resource at atime. The most important examples are
passive resources. They do not have time durations associated with them, but they limit
the population of jobs that may utilize other devices. Examples of passive resources are
main memory or a bus. If multiple resource holding has an essential influence on the
performance behavior of the model under study, you should switch to numerical or
smulative evaluation.

5.3.4. Blocking and Losses

A device (acomponent) may be blocked, i.e., prevented from executing processes,
when a queue or abuffer elsewherein the model has reached its full capacity and cannot
accept any more tasks. In communication systems a packet attempting to enter afilled
buffer may be lost.

Neither blocking nor losses can be treated by separable models. Of course METHOD

ANALYTICAL "DOQ4" can be used in case of low blocking probabilities and low loss
probabilities, respectively.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 62 - I1. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

5.3.5. Synchronization
Theinclusion of synchronization features is not possible in separable models. In

particular semaphores or tokenpool s cannot be used within separable models. We refer
to the class of Markov models described in later chapters.

HIT and HI-SLANG. An Introduction

Part 111

SUBSET FOR
MARKOV MODELS

Chapters

9 -7

6. Introduction to Numerical Evauation -65-

6. Introduction to Numerical Evaluation
6.1. Overview

The objective of this chapter is:

= tointroduce basic concepts of numerical evaluation and
= to give some hintsfor the use of METHOD ANALYTICAL "NUMERICAL"

6.2. Basic Concepts of Markov Models

Numerica evauation in performance modelling is a valuable supplement or even an
aternative to other evaluation methods.

By numerical evaluation of a computing system model we mean the computation of the
stationary probability distribution of aMarkov model by numerically solving the set of
so called global balance equations. The coefficients of this equation system are
represented in atransition rate matrix. Each entry in this matrix accounts for atransition
from one model state to another.

Of course you as HIT user have nothing to do with the complicated process of setting
up alarge matrix and the subsequent solution of an equation system. Asin other
evaluation methods HIT automatically transforms models, which are written in HI-
SLANG, into executable form and finally provides the desired performance measures.

But you should keep in mind that every single state of your model and every possible
transition between the states will be explicitely treated in HIT. Consequently some
circumspection isin place.

6.3. Hints and Warnings

Apart from the evident disadvantage of athreatening state space explosion, Markov
chains based on numerical analysis have some attractive features. Numerical evaluation
allows modelling of features which are not part of the separable models. Evaluation
problems are less severe compared to smulation and in many cases the application of
the numerical method will be less expensive than ssimulation.

6.3.1. On Aggregation

To apply the numerical method successfully, it isimportant to concentrate the modelling
efforts on the essential features of your problem. Try to focus on a specific part of your
model and aggregate the rest. Note that, e.g., synchronisation features are not part of
the world of separable models. In HIT these features can be treated within the class of
Markov models, but it would be inefficient or even impossible to evaluate an overal
model including all details of the system under study. Consequently all model parts
which are not of immediate interest in the given context should be compressed (i.e.,
aggregated!) asfar as possible. Note that the HIT system supports hierarchical analysis
by means of automatic aggregation of component types which do not violate the
restrictions of separable models. Of course aggregated component types can aso be
included in models to be evauated by numerical or smulative methods.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 66 - I1l. SUBSET FOR MARKQOV MODELS

6.3.2. On State Space Explosion

It iswell known that even harmlessly looking models can exhibit an enormous number
of statesresulting in anearly or completely unsolvable model. Y ou should try to
approach the desired level of detail very carefully. A good adviceisto restrict the
number of processes which can be simultaneoudly in the system. First restrict your
model to one per process type. Probably your model can be evaluated very quickly
then. Now increase the process population and observe the behaviour of your model.

6.3.3. Trace Your Models
Y ou should inspect the analyzer listing in case of numerical evaluation to get
information about the state space, the matrix size and the cpu time used. In particular

you should start with small models, followed by a controlled increase of the process
population.

6.3.4. Functional Analysis
The construction of the full state space and of al the transitions between states has the
advantage that properties concerning functional aspects can be discovered during model

evaluation. For example, the existence of deadlocks can often be recognized. If a
deadlock corresponds to an absorbing state, it will even be discovered automatically.

6.3.5. Open Chains

The population of open chains aways hasto be limited. Add aLIMIT part within your
CREATE...EVERY statements, if you come from another solution method:

CREATE 1 PROCESS service_name LIMIT n EVERY negexp (arriva_rate);

HIT and HI-SLANG. An Introduction

7. HI-SLANG Constructs for Markov Models -67-

7. HI-SLANG Constructs for Markov Models

7.1. Overview

In addition to the HI-SLANG subset for separable models HIT offers the class of
Markov models, which can be solved numerically. They include the following features:

= preemptive and non-preemptive priority scheduling with the help of a standard
component type prioserver;

= fault tolerant servers which can operate in different degraded modes,
= redtricted capacity of servers,;

= non-exponentia distribution functions (Coxian distributions) and

= synchronization with the help of counters (including semaphores)

Note that al constructs already introduced also apply for Markov models.

7.2. How to Specify Numerical Evaluation
The solution of Markov models is accomplished by numerical techniques, precisely

called analytic-numerical techniques (in contrast to analytical-separable for separable
models). Therefore the specification of this method is given by

EXPERIMENT experiment_name METHOD ANALYTICAL "NUMERICAL";

There are aias names which can be used instead of "numerical”, e.g., "markov", see
Section 1.3. The execution of the numerical solver can be controlled by, e.g.,

CONTROL STOP ACCURACY 1.0[OR CPUTIME 1000];

The option ACCURACY specifiesthe desired accuracy in percent. Its default valueis
1.0. CPUTIME can be used to stop the iterative solution procedure independently from
the reached accuracy. If anon-iterative algorithm has been selected by HIT, the
CPUTIME stop condition will beignored.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 68 - I1l. SUBSET FOR MARKQOV MODELS

7.3. Scheduling Disciplines

Markov models admit schedul e procedures which cannot be treated by separable
models. Apart from immediate scheduling (specified by LET schedule:=immediate)
Markov models admit the disciplines random, prioprep and prionp.

Nevertheless a specia standard component type called prioserver (an abbreviation of
priority server) must be employed if prioprep or prionp is choosen as scheduling
discipline. In case of random scheduling, the well-known component type server can be
used, but prioserver isalso admitted.

Note that priority scheduling can also be treated approximately with the DOQ4
algorithm, see Section 5.2.

7.3.1. Priority Scheduling

The analytic-numerical technique permits the same type of priority scheduling as
described for DOQA4. For more information see Section 5.2.3.

7.3.2. Random Scheduling

Random scheduling plays an important role in modelling, because it is very appropriate
for the approximation of fcfs. Moreover, in Markov models randomis used as atie-
break in case of equal priorities.

Applying arandom discipline means that service requests waiting for execution are
selected in arandom fashion. For example, if the number of service 1 and service 2is
n; and ny, respectively, scheduling of service i, i=1,2, will be done with probability
n;/(ng+ny).

Random scheduling is, e.g., specified by

COMPONENT cpu : server (LET schedule := random);

Here instead of server the use of aprioserver is also possible.

7.4. Servers with Restricted Capacity

The storage capacity of servers(and prioservers) can be restricted by the accept
procedurerestrict(n), i.e., such a server accepts at most n service calls. A rgected task
hasto stay inits actual status and repeat its last received service phase. This concept of
restricted capacity can be used for the modelling of blocking phenomena.

In HI-SLANG this construct is given in connection with a component declaration by:

COMPONENT unit : server (LET accept := restrict (5));

Note that the accept procedurerestrict cannot be used for ssimulative evaluations.

HIT and HI-SLANG. An Introduction

7. HI-SLANG Constructs for Markov Models - 69 -

7.5. Distribution Functions

For the modelling of time durations like processing time the following probability
distribution functions are admitted.

7.5.1. Coxian Distributions

The Cox function is adistribution with an adjustable service time variability. The
second parameter of cox(r,v) isthe so called coefficient of variation v, defined as
v:=(standard deviation)/(mean). The case v>1 yields an hyper-exponential distribution
(with two exponential phases) whereas in the case of v<1 we obtain a hypo-exponential
distribution with two or more(!) exponential phases. We recommend to use coefficient
of variations v3 0.5, because for smaller v the number of phases becomes very high and
as a conseguence the size of the state space can grow to an intractible order. (Indeed in
HIT thereisabuilt-in restriction to 10 phases yielding a coefficient of variation of
0.32!)

Note, that the first parameter r isthe rate of the distribution, such that r=1/mean.

7.5.2. General Coxian Distributions

Alternatively to cox (r,v) we can specify the phases of a Cox distribution explicitly by
the coxg function (the letter 'g' stands for general). In this case we have to give the rate
and the probability to enter the next exponential phase for each phase.

The HI-SLANG notion of coxg uses atwo-dimensional array; thefirst row for the
rates, the second row for the probabilities. A service call to a standard server requesting
aprocessing time according to a coxian distribution with three phasesis denoted as
follows:

compute (coxg ([[0.5, 0.7, 1.3], [0.7, 1/6, 0.0]])).
Note that those many brackets are due to the HI-SLANG syntax. The array parameter is

specified directly as an array aggregate. The last value of this aggregate must be 0.0,
since thisisthe probability to enter the next phase.

7.5.3. Other Distributions

Of coursenegexp(r) is also admitted, wherer isthe rate of the distribution. For more
information see Section 2.5.4.

Erlang distributions can be introduced via coxg functions. For example, the sequential
passing through exactly n phases can be achieved by

coxg ([[r,r,...,r,r],[1.0,1.0,...,2.0,0.0]]).
Deterministic distributions (having a constant value) are of course not possible in the
context of analytical techniques, in particular the coefficient of variation must be 0. But

adistribution with arather small coefficient of variation, e.g., 0.5, will usually be a
good approximation.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-70- I1l. SUBSET FOR MARKQOV MODELS

7.6. Synchronization Features
7.6.1. The Concept of Counters

Different from standard servers (server or prioserver) where a process requests time, a
counter is aresource where processes can request to change an integer state vector. This
state vector, say [X(1),...,X(n)] isan array owned by the counter. It can be changed
according to

[X(L), X ()] = [X(L),0e0, X ()] + [C(D),....C()]

where [C(1),...,C(n)] isan integer array given as an actual parameter of a service
request.

The feasible range of the state vector aswell asitsinitial value must be specified for
each counter. If a service request cannot be satisfied because the desired change would
move the state vector out of range, the requesting service hasto wait until another
request changes the state vector to a suitable value. Which of several waiting requests,
possibly of different types, will be handled first is determined according to a priority
discipline or arandom discipline. The fulfillment of arequest, if possible, happens
without any delay. Typical applications of counters are semaphores or memory
management schemes.

7.6.2. The Component Type Counter

If you want to use countersin your HIT model you have to introduce the component
type counter by %COPY "COUNTER". The parameters and the provided service are
given in the following type declaration. Of coursein HIT this type declaration is not
visible for you.

TY PE counter COMPONENT (min,max,init : ARRAY OF INTEGER);

PROVIDE
SERVICE change (amount : ARRAY OF INTEGER,;
prio . INTEGER DEFAULT 32767);
END PROVIDE;
EN I.D“TY PE counter;

The arraysmin and max give the minimum and maximum values for the state vector
such that min(i) £ X(i) £ max(i) for each element X(i) of the state vector. The array init
specifiestheinitia value for the state vector.

The parameters of the provided service change specify

= the desired amount of change and
= the priority, in case the priority scheduling disciplineis used.

Beside the priority scheduling discipline cprio the random scheduling discipline
crandomis aso available. In case of crandom, al changes of the state variables must
have the same absolute value. If you use cprio we recommend to choose different
values for the priority parameters, otherwise different priorities are assigned
automatically by HIT. In the following we consider some examples for the use of
counters.

HIT and HI-SLANG. An Introduction

7. HI-SLANG Constructs for Markov Models -71-

7.6.3. Examples for the Use of Counters
7.6.3.1. A Binary Semaphore

A binary semaphore has two values, 0 and 1, and can be altered by P operations or V
operations, which try to decrement or increment the semaphore variable. In HIT we can
realize abinary semaphore with the help of a counter:

COMPONENT bin_semaphore : counter
(LET min = [0], LET max =[1],
LET init := [1], LET schedule := crandom);

Note: This semaphore implementation has the property that the V operation may be
blocking (in the case that more P than V operations are executed), snce Pand V are
both implemented by change and are therefore symmetrical.

HIT aso offers a component type semaphor with a non-blocking V operation, but it
may only be used for simulation, see Chapter 11.

7.6.3.2. Memory Constraints

We give acomplete example to demonstrate the use of counters for the modelling of
memory constraints. Note that an aggregated version of the component type cs has been
used (see Chapter 3.). In particular for Markov models the HIT features for submodel
aggregation should be employed whenever possible. The model's state space is reduced
substantialy.

If you inspect the solver information written to the listing, you will get some
information on the solution process of this example. E.g., the model has 109 states and
the direct (non-iterative) numerical solution method has been applied.

Note that the type declaration of component csis not a part of your source text. The
aggregated central server system referred by csisincluded by a %COPY command.

%COPY "CSAGG"
%COPY "COUNTER"

TY PE memory_constraint MODEL (m1, m2, no_of_partitions: INTEGER);

TYPE classl SERVICE;
USE SERVICE
think (much : REAL);
mem _alloc (partitions:. ARRAY OF INTEGER;
prio . INTEGER DEFAULT 32767);
mem_relea (partitions: ARRAY OF INTEGER,;
prio . INTEGER DEFAULT 32767);
work;
END USE;
BEGIN
LOOP
think (negexp (1/5000));
mem_alloc ([+1]);
work;
mem_relea ([-1]);
END LOOP,
END TY PE classl,;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-72- I1l. SUBSET FOR MARKQOV MODELS

TYPE class2 SERVICE;

USE SERVICE
think (much @ REAL);
mem_alloc (partitions: ARRAY OF INTEGER;
prio . INTEGER DEFAULT 32767);
mem_relea (partitions: ARRAY OF INTEGER;
prio . INTEGER DEFAULT 32767);
work;
END USE;
BEGIN
LOOP
think (negexp (1/10000));
mem_alloc ([+1]);
work;
mem_relea ([-1]);
END LOOP;
END TYPE class2;
COMPONENT
term Dosaver;
centra_part : cs;
memory : counter (LET max := [no_of partitions],
LET min = [0],
LET init = [0],
LET schedule:= crandom);

REFER classl, class2 TO term, central_part, memory

EQUATING
classl.think WITH term.request;
classl.work WITH central_part.classl processing;

classl.mem_aloc WITH memory.change
classl.mem relea WITH memory.change;
class2.think WITH term.request;
class2.work WITH centra_part.class2_processing;
class2.mem _aloc WITH memory.change;
class2.mem relea WITH memory.change;
END REFER;

BEGIN
CREATE m1 PROCESS classl;
CREATE m2 PROCESS class2;

END TYPE memory_constraint;

EXPERIMENT analysisMETHOD ANALYTICAL "numerica";
BEGIN
EVALUATE MODEL modl : memory_constraint (20,2,6);
EVALUATIONOBJECT
memory_queue VIA modl.memory,
terminals VIA modl.term,
centra_server VIA modl.central_part;

BEGIN
MEASURE THROUGHPUT, POPULATION AT memory_queue;
MEASURE TURNAROUNDTIME AT terminals;

MEASURE THROUGHPUT, POPULATION AT central_server;
CONTROL TRACEALL STOP CPUTIME 200 OR ACCURACY 0.5;

END EVALUATE;
END EXPERIMENT analysis;

HIT and HI-SLANG. An Introduction

7. HI-SLANG Constructs for Markov Models -73-

7.7. Fault Tolerant Servers

HIT provides a component type ftserver, which can be used for reliability oriented
analyses. A fault tolerant server can be viewed as a homogeneous multiprocessor which
is ableto operate in different degraded modes, d=0,1,...,degmax. Degmax denotes the
maximum degradation; d=0 is the fault free situation where al processors are operative.
Failed processors will be repaired, if one of the repair unitsis available. The number of
repair unitsis given by the parameter repair_units.

A ftserver changes its degraded mode according to failure and repair events, occuring
with rate failure rate and repair_rate, respectively. A dormancy factor determines the
failure rate of idle processors. in case of dormancy=0.0 an idle processor can not break
down. In case of dormancy=1.0, an idle processor has the same failure rate as a busy
processor. Otherwise the failure rate of an idle processor is given as the product
dormancyxfailure rate.

The component type declaration is stored in the HIT standard modelling base.
Nevertheless we show the interface of the type declaration.

TY PE ftserver COMPONENT
(processors : INTEGER,;
degmax . INTEGER DEFAULT 1,

repair_units : INTEGER DEFAULT 1,
falure rate : REAL;
repair_rate : REAL;

dormancy : REAL DEFAULT 1.0);
PROVIDE
SERVICE request (amount : REAL;
prio . INTEGER DEFAULT 32767);
END PROVIDE;
END TY PE ftserver;

The admitted scheduling rules are random, prionp and prioprep. Admitted dispatching
disciplines are equal and sdequal.

As an example consider the following declaration:

%COPY "FTSERVER"

COMPONENT triple_processor : ftserver (3, 1, 1, 1E-5, 0.005);

This declaration introduces an elementary component with three processors (i.e., three

processors can be simultaneoudy active), at most one processor can break down, there
isonerepair unit, the failure rate is 0.00001 and the repair rate is 0.005. The dormancy
factor hasits default value of 1.0.

Please note that the component type ftserver cannot be used in ssimulative models.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

Rart 1V

FEATURES FOR
SIMULATIVE MODELS

Chapters

g - 10

8. On Simulative Evaluation -77 -

8. On Simulative Evaluation

8.1. Overview

The objective of this chapter is:

= to discussthe inherent problems of simulation techniques;
= tointroduce the additional estimators and streams for simulation and
= to discussthe additional features for writing experiments.

Note that all concepts aready introduced also apply for smulations, with the exception
of component type ftserver and the accept procedure restrict.

8.2. Inherent Problems in Simulative Evaluations

Simulation is essentially atechnique that involves setting up amodel of areal or
imagined situation and then performing experiments on the model.

Tosmulate amodd is:

= to use aprogram which behaves like the moddl;
= to observe the behaviour of this program and
= to measure the performance values of interest.

One of the inherent problems in simulation concerns the measurement of performance
values. In particular, it is difficult to estimate the statistical variability and accuracy of
simulation results.

In HIT these problems are reduced, but they do not disappear completely. Y ou are till
responsible for the control of the smulation, i.e., duration and accuracy of asimulative
evaluation are determined by user-supplied control parameters. If you want to obtain a
so-called confidence interval (m-w, m+w), where m denotes the point estimate mean of
the considered performance measure, you have to specify conditions which determine
the resulting confidence interval implicitly or explicitly.

Note - and thisis very important - that all estimators of performance measures are
computed under the assumption that the model would reach a steady-state if the
simulation was run during an infinite interval of time. Because we run our ssimulations
finite periods of time, we get approximate estimates, but we can make the error "small”
if the smulation runis"long" enough.

In order to sketch some aspects of simulation control, we consider atrgectory of a
component's population over timet.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-78- IV. FEATURES FOR SIMULATIVE MODELS

4 POPULATION
51

“; L]

Model time
f >
t0 t1 t2

Figure 8.1: A Simple Trajectory

If wewish to obtain a"reliable" estimate of the performance measure POPULATION,
there arise some requirements for the simulative method.

= The standard estimator "mean vaue of population” does not reflect the statistical
nature of ssimulation as displayed in the trgjectory. We need estimators, which
quantify the goodness of approximation (e.g., confidence level) or which do
quantify the variability of a performance measure (e.g., standard deviation). In the
next section, we will see how the estimators STANDARDDEVIATION,
CONFIDENCE LEVEL and FREQUENCY INTERVAL areused in HIT.

= There must be meansto control the durations of the measurements as well asthe
total length of the simulation. In case of the trgectory given above, the interval
(t0,t1) seems very inappropriate for measurement purposes and should therefore be
neglected. |dedlly, the measurement should not start before t1 isreached. The
interval (t0,t1) iscalled the "transient phase”" of smulation. Unfortunately thereis
no simple way to determinetl in advance.

< An"apriori" determination of astopping point t2 is another problem. Of course the
simulation can be stopped if a certain amount of model time or cpu time has been
spent, but the accuracy of the results, e.g., given by the width of a 95% confidence
interval, can be unsatisfactory if the stop condition was too restrictive. For this
reason, in HIT the simulation can be controlled by explicitly specifying the desired
(relative) accuracy for the performance measures of interest.

HIT and HI-SLANG. An Introduction

8. On Simulative Evaluation -79-

8.3. Extensions for Simulation

Being acquainted with the problems of simulative evaluation, we show how they can be
handled in HIT. Besides the introduction of estimatorsfor METHOD SIMULATIVE,
our main interest will actually be the CONTROL statement, which specifies the global
STOP conditions aswell as TRACE options for the ssimulation. We will also conduct
different experiments, display some results and discuss their accuracy.

8.3.1. Estimators

We start with a definition of the estimators (addressed by the keyword ESTIMATOR)
admitted for METHOD SIMULATIVE:

« MEAN

Mean value of the considered performance measure. Note, that in case of smulation we
only have an estimation (i.e., an approximation!) of the true mean value.

« STANDARDDEVIATION

The standard deviation (square root of the variance) quantifies the variability of a
performance measure. A high value for standard deviation indicates, that the observed
values are "rather dispersed”. On the other hand a standard deviation of (nearly) zero
indicates, that the observed values are (nearly) constant.

« CONFIDENCE LEVEL p

Asaresult you obtain a confidence interva including the true mean value with the
chosen probability p. The probability p, expressed in percent, is an integer expression
and ranges from 90 to 99. The width of the resulting confidence interval indicates the
accuracy of the estimated mean. The width of the confidence interval depends on the
chosen confidence level p; the higher the confidence level p is, the larger the width is.
Note, that the true value lies outside the interval with probability (100-p) percent. Also
note that the confidence interval is also an estimation!

« FREQUENCY INTERVAL [interval_list]

The total number of observations made upon a particular performance measureis
grouped into classes according to the specified intervals. Note that the performance
measure TURNAROUNDTIME isthe only standard performance measure allowed in
combination with frequency interval.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-80- IV. FEATURES FOR SIMULATIVE MODELS

8.3.2. Streams

The experiment specification block should precisely describe, which performance
indices are to be determined. Simulation result output isinitially generated in the form
of various data streams. Each stream represents a sequential sample (time series,
trgjectory) of a particular performance index. Each performance index, i.e., each
stream, must be explicitly requested. Streams are bound to components. Each
component or the model itself can control one or more of such streams by sequentially
generating them.

8.3.2.1. Types of Streams
Depending on the eventual statistical evaluation mode of a sample, the corresponding
stream has to be classified as belonging to one of three different types:
» EVENT : Event streams store values serialy.
Examplee TURNAROUNDTIME.
« STATE : State streams comprise the time progress of piecewise constant state
variables.
Examples: POPULATION, OCCUPATION, UTILIZATION

e« COUNT : Count streams determine rates.
Examples: THROUGHPUT, SCHEDULE RATE, PREEMPT_RATE

8.3.2.2.More Predefined Streams
Note that the standard performance indices explained in Section 1.4.1.

(THROUGHPUT, TURNAROUNDTIME, POPULATION and UTILIZATION) are
predefined standard streams. For simulation there are three further streams available:

* OCCUPATION . The probability that a component is not empty
(concerning processes).
« SCHEDULE_RATE : Thetrangtion rate from the entry areato theservicearea

* PREEMPT_RATE : Thetrangtion ratefromthe serviceareato theentry area

HIT and HI-SLANG. An Introduction

8. On Simulative Evaluation -81-

8.3.2.3.User-Defined Streams

Y ou can introduce your own performance indices by defining non-standard streams.
Defining a non-standard stream is done as follows:

= Declareastream of agiventype (EVENT, STATE, COUNT).
= Providefor the updating of the stream.

For standard streams all thisis done automatically. The declaration of a user-defined
stream should be made within a component or model type. It issimilar in its syntactical
structure to the declaration of avariable:

STREAM stream_name : stream_type;

For updating the stream within a service of the component, the following statement is
used:

UPDATE stream_name BY observation_value;

Different services of acomponent may update the same stream. As observation value
any numerical expression is allowed. If the stream is of type STATE, the observation
value will be interpreted as the difference to the previous value. For EVENT streams the
observation value is given by evaluating the numerical expression and for COUNT
streams the given value isignored (each update has the same weight of 1.0).

In the experiment the stream is addressed by its name within MEASURE statements. Of
course, the corresponding evaluation object must refer to the component where the
stream is declared.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-82- IV. FEATURES FOR SIMULATIVE MODELS

8.3.3. A Simulative Experiment

We now present an example of an experiment block and discuss the results obtai ned.
For simplicity, we use the model of examplel, thus having to change only the
experiment block to be adequate for simulation.

Note that the METHOD statement should be changed from METHOD ANALYTICAL
"DOQ4" to METHOD SIMULATIVE.

EXPERIMENT experiment_sim METHOD SIMULATIVE;
BEGIN

EVALUATE MODEL model1: examplel(0.15);

EVALUATIONOBJECT
cpu VIA model1.cpu,
disk VIA model1.disk_a;

BEGIN

MEASURE TURNAROUNDTIME
AT cpu
ESTIMATOR
FREQUENCY INTERVAL
[0..0.05,0.05..0.1,0.1..0.2,0.2..0.5,0.5..1,1..50];

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME, OCCUPATION
AT disk
ESTIMATOR CONFIDENCE LEVEL 95;

CONTROL
AT disk STOP MODELTIME 5000;

END EVALUATE;

END EXPERIMENT experiment_sim;

HIT and HI-SLANG. An Introduction

8. On Simulative Evaluation -83-

8.3.4. Results from the Simulation

The result of the experiment listed above (Section 8.3.4) are two tables. Thefirst table
shows the total number of observations made on TURNAROUNDTIME at different
intervals for evaluation object cpu:

ESTI TURN AROUNDT IME
Freq 1226

0.0 0.05
Fra 1033

4 0.05 0.1

Freq 1430

0.1 0.z
Freq 2285

0.z ns
Freq 1207

05 1.0
Freq ans

1.0 a0

Dependent on the length of the intervals and the distribution of the values of turnaround
time, it will often be the case that the highest frequency occursin the interval including
the mean value.

The second table, displayed below, shows a confidence interval for each performance
measure specified in the experiment block. The specification of ESTIMATOR
CONFIDENCE LEVEL 95 indicates that the resulting confidence interval will include
the true value with probability 0.95. Confidence intervals are denoted by mean + width.
The (relative) width of theinterval depends on the length of the ssimulation. In general,
longer simulation runswill generate smaller confidence intervals (of course, there are
exceptions from this rule!).

ESTI FOPLU- TURMARQUND- | UTILIZATION | OSCUPATION | THROUGHPUT
LATION TIME

Mean | 0.050213 0.102%44 0.043635 0.043635 0.43Z600

Stdew | 0229224 0102348 undetined 0.2135230 988207

Con 0.0530213 0102244 0.0426933 0.0426235 0.43Ze00

5% +- 13478 | +-4.24% +-11.95% +- 13.10% +-9.76%

What, if we are not satisfied with the width of the confidence interva for
POPULATION? Fortunately, HIT offers the possibility of specifying the desired width
with the aid of the CONTROL statement.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-84 - IV. FEATURES FOR SIMULATIVE MODELS

8.3.5. The CONTROL Statement

We now turn our attention to the (for smulation obligatory) CONTROL statement.
Apart from the TRACE option, which will be discussed later, the CONTROL statement
specifies STOP conditions for the ssmulation. The simulation will cease if one of the
STOP conditionsis satisfied. STOP conditions must always be given in connection
with an evaluation object, and are tested whenever processes of that component are
being simulated.

The syntax of the CONTROL statement is as follows:

CONTROL [TRACEALL]
AT evaluation_object 1 [STOP stop_condition_1] [TRACE];

AIT evaluation_object_n [STOP stop_condition_n] [TRACE];

8.3.5.1. Start and Stop Conditions

The stop_conditions are specia boolean expressions, which may consist of the
following operands:

« CPUTIME value {e.g., 500 seconds}
* MODELTIME vaue {e.g., 10000 time units}
* EVENTS value {e.g., 1000}
[DUETO hierarchy] {eg., al}
* CONFIDENCE LEVEL probability {e.g., 98 (%)}
WIDTH interval_width {e.q., 5(%)}
MEASURE stream {e.g., POPULATION}
[DUETO hierarchy] {e.g., dl}

These operands can be combined with AND and/or OR operations, denoting that the
simulation stops when the specified combined condition is satisfied. Note that no
brackets are alowed, but AND has higher precedence than OR.

The stop conditions CPUTIME and MODELTIME are intuitively clear. ViaEVENTSn
the simulation can be stopped when n processes have |eft the component denoted by the
evaluation object.

For CONFIDENCE LEVEL consder the following aternative CONTROL statement
for experiment_sim

CONTROL AT disk
STOP
CONFIDENCE LEVEL 95 WIDTH 5.0 MEASURE POPULATION
ORCPUTIME 10000;

This CONTROL statement ensures that the simulation will not cease until the true value
for POPULATION lieswith 0.95 probability within the interval [mean-5%,
mean+5%]. This could lead the simulation to run for quite along time until the STOP
condition is satisfied. The uncontrolled consumption of large amounts of computing
time can be prevented by specifying amaximal simulation time as done above. The
simulation will consume at most 10000 seconds of computing time. Of course, it may
be the case that awidth of £5.0% can not be achieved under this restriction. But we are

HIT and HI-SLANG. An Introduction

8. On Simulative Evaluation -85-

lucky: The results are displayed in the table below. Compare them with the results
above.

ESTI FPOPLU- TURNAROUMD= [UTILIZATION | OCCUPATION [THROUGHFUT
LATION TIME

Mean | 0050118 0.1032:0 0.047eEs 0.047e6s 0425356

Stdew | 0229588 0103393 undefined 0213064 4 223507

Coan Q050118 0102260 0.047EES 0.047EES 0.4285356

5% | 469 +=1.71% +-Z2.82% +-4 . 43% +- ZE

The width of the confidence interval for POPULATION is now less than 5%. The other
performance values apparently also gained in accuracy.

Summing up, we see that with the aid of the CONTROL statement we are able to
specify the required accuracy of the results aswell as the duration of the smulation.

8.3.5.2. The TRACE Option

In fact, the CONTROL statement has another important feature, namely the TRACE
option. It isadebugging facility to trace the course of an experiment. There are two
possibilities:

e TRACEALL : tracesthe event sequencesfor all components. All area
transitions of processes form events.

= TRACE . traces only the event sequence for the associated evaluation
object every time an event takes place.

We give some hints for using the TRACE option:

= Normally, if you are (only) tracing asimulation, MODELTIME or EVENTS will be
the most appropriate STOP condition.

= Do not use TRACEALL and TRACE in combination!

= Thetraceinformation will be automatically written into atrace file. Be cautious!

Printing trace files may be awaste of paper! For a detailed explanation of the trace
fileswerefer to the Reference Manual.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 86 - IV. FEATURES FOR SIMULATIVE MODELS

8.3.6. Measurement Intervals

To specify measurement time intervals for evaluation objects, HIT offerslocal START
and STOP conditions which could be given in the MEASURE statement as follows:

MEASURE stream_list

AT evaluation_object
ESTIMATOR estimator_list
OUTPUT TABLE link_name
START start_condition
STOP stop_condition

These START and STOP conditions are local in the sense that they affect only the
measurement at the associated evaluation object and have no influence on the duration
of the whole simulation.

The START condition helps us to ignore, for example, the transient phase of the
simulation. The STOP condition indicates that further measurements with respect to the
specified evauation object are of no interest to us.

The operands of the START condition can be either CPFUTIME, MODELTIME or
EVENTS while the operands of the STOP condition can be either MODELTIME,
EVENTS, CONFIDENCE LEVEL or even CPUTIME.

The OUTPUT option may follow the estimator. It servesto specify alink name for the
results. In the control file thislink name can be bound to afile which can be named
explicitely. Moreover you can choose between aformatted table and a dump by
substituting the keyword TABLE above by the keyword DUMPFILE. A dump file can
be used for further processing, e.g., for generating graphical output, not discussed
here.

Alternatively the ESTIMATOR and/or the specifications following it may also be
defined in the EVALUATIONOBJECT declaration as a default for all measurements at
that evaluation object.

EVALUATIONOBJECT
evaluation_object-name VIA component_identification
DEFAULT
ESTIMATOR estimator_list
OUTPUT TABLE link_name
START start_condition
STOP stop_condition

Note that all these default specifications can be overwritten in every MEASURE
statement. For a complete description please see the HI-SLANG Reference Manual.

HIT and HI-SLANG. An Introduction

8. On Simulative Evaluation -87-

8.4. Hints and Warnings
8.4.1. Wide Range of Parameters

If you cannot solve your problem by separable or Markovian models the execution of
simulative experimentsisin place. But try to explore the relevant parameter space by
simplified analytical models. Perform ssimulations for afew selected parameter sets
only. Be economical in the execution of simulative experiment series!

8.4.2. Hierarchical Models

In case of multi-layered modelsit may be possible that large differencesin the
frequencies of high-level and low-level events prevent the determination of performance
estimations which are statistically significant.

Y ou should consider techniques like off-line analysis of isolated components or the
aggregation of detailed lower layersto simplified components. Note that HIT offers
automatic aggregation of separable component types (and some extensions)! Tailor your
models in afashion which is amenable to submodel aggregation techniques!

8.4.3. Length of Simulation Runs

Always use confidence level as estimator for streams of interest, but do not choose too
small confidence interva widths for the respective STOP conditions. Asarule of thumb
you should know that halving a confidence interval (under the assumption of afixed
confidence level) quadruplicates the length of the smulation!

Additionally you may use %PARM=UPDATES to display the number of updates
which have occured on each stream.

8.4.4. Tracing Simulations

If you use CONTROL TRACEALL your tracefile will normally become very
voluminous. Better use CONTROL AT evauation _object TRACE and/or the
procedurestrace off and trace on to restrict the trace to some components and/or some
timeintervals of interest.

8.4.5. Influence of the SEED Parameter
It iswell known that the results of simulation are influenced by the start value of the
pseudo-random number generator. For purposes of validation the default value for the
seed parameter can be atered asfollows:

EVALUATE MODEL modell : examples (0.15, LET seed ;= 5);
where the seed should be set to an odd integer! The default value for the seed parameter
is 13 for each evaluation executed. If you want a continuous sequence of seed values
you can write

EVALUATE MODEL modell : examples (0.15, LET seed := last_seed);

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

9. The Model World for Simulation -89-

9. The Model World for Simulation
9.1. Overview

The objective of this chapter is

= tointroduce all those HI-SLANG features which can mainly be used
- for simulations (for specifying model types and component types), or
- within the body of the experiment block (independent from the solution method).

9.2. Basic HI-SLANG Data Structures and Statements
9.2.1. Simple Data Types
The simple datatypesin HI-SLANG are:

= INTEGER TEXT

= REAL = INFILE

< BOOLEAN = OUTFILE

= CHARACTER < POINTER FOR record type

REAL will be internally represented as LONG REAL, i.e., with the maximal accuracy
available. INFILE and OUTFILE enable sequentia data processing similar to PASCAL
textfiles. POINTERSs and RECORDs are described in the HI-SLANG Reference
Manual.

Variables and constants may be declared over these basic types:

VARIABLE count . INTEGER;
product : REAL DEFAULT 1.0;
indata . INFILE;
CONSTANT five . INTEGER DEFAULT 5;
Pl . REAL DEFAULT 2*arcsin(1);

E_POWER_Pl : REAL DEFAULT 2.3140692632E01;
Variables have an appropriate implicit DEFAULT value (e.g., INTEGER with O, REAL
with 0.0, BOOLEAN with FALSE).
Most simple-typed expressions possible in HI-SLANG can be compared to those in
conventional programming languages. In spite of that the constructs AND THEN and
OR EL SE need more consideration.

i <5AND THEN g[i] <> 0;
b(i,j) OR ELSE b(j,i);

In the first expression, the part a[i] <> Owill only be executed if i islessthan 5. In the
second expression, b(j,i) will only be executed if b(i,j) isfalse.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-90- IV. FEATURES FOR SIMULATIVE MODELS

9.2.2. Structured Data Types

Besides records and pointers not described here HI-SLANG provides arrays and
especialy dynamic arrays.

9.2.2.1 Arrays

Arrays can be declared over all basic types as well as over the structured types
COMPONENT and SERVICE. Constants of type ARRAY are also allowed.

The dimension of an array is given by the number of specified index ranges. An index
rangeisgiven by |..u, where | and u are the lower and upper bound, respectively.

Even for array variables DEFAULT values can be given, e.g.,
VARIABLE ar : ARRAY [0.4] OF CHARACTER
DEFAULT [4a,'b,'c,'d];

arl : ARRAY [1.2,1.3] OF INTEGER
DEFAULT [[2,3,9], [3,7,6]];

The array arrl will contain the following values. 2 3 5
3 7 6

9.2.2.2. Dynamic Arrays

Dynamically sized arrays are possible: The lower or upper bound of an index range at
declaration is not given as a constant but as a variable or even as an expression. See the
following example:

VARIABLE dyn_arr: ARRAY [bl..b1+2<n] OF INTEGER,;

The variables appearing in the expression must be declared in an outer block (e.g., as
parameters). Theindex range of dyn_arr is determined at execution time of the
declaration part and will be fixed afterwards.

Note that in HI-SLANG the dimension and index ranges of an array used asformal
parameter are not fixed a priori. They are determined by the actual given field.

The statement part of an outer block including the array field may contain the following
CASE statement in order to manage arrays of different dimensions:

CASE field.dimension
WHEN 1: ... field[i] ...
WHEN 2: ... field[ij] ...

END CASE:

Note that the dimension of an array is an attribute of each array and can be adressed via
dot notation by array name.dimension. Moreover the array attributes lower_boundq]i]
and upper_boundq[i] exist for 1 £ i £ dimension.

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -91-

9.2.3. Assignments

We distinguish single assignment statements and multiple assignment statements:

var :=expression; {single assignment}
varl, var2, var3 :=expression; {multiple assignment}

In multiple assgnments all variables get the same value. In contrast multi-value
assignments are possible, where the variables within the list normally get different
values:

(varl, var2, var3) := function_call; {the function returns three values}

Thereis atype conversion between INTEGER and REAL. If aREAL expressionis
assigned to INTEGER variables, the value will be rounded and then converted. If an
INTEGER expressionsis assigned to ato REAL variable, the value will be converted.
There are no other type conversions (e.g., between CHARACTER and TEXT) in HI-
SLANG.

All elements of an array can be assigned by asingle statement:

mat = O;
matl = mat2;
mat = [[0,0,0],[0,0,0]];

Thisisaso possible in the DEFAULT part. The first assignment results in setting all
elements of the INTEGER (or REAL) array mat to zero. The latter assignment is
equivalent to the first assignment. By the second assignment, the following conditions
must be met:

= matland mat2 must be type consistent.

= matland mat2 must have the same dimension aswell as the same index range
within each dimension.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-92- IV. FEATURES FOR SIMULATIVE MODELS

9.3. Handling of Files and Texts
From the performance modelling viewpoint the contents of this section is of minor
interest. But for sake of completeness we give a short overview on file and text
handling. We suggest to skip this section and use it as reference material .
The assignment statement is also defined for files:

fl:=12;

Herefl and f2 must both be either INFILE or OUTFILE variables. The corresponding
filewill not be copied but one can address the file by f1 as well as by 2.

For TEXT variables assignments may look like this:

t :="Thisisatext";
t12 ="
t1 =t2;

t1 :=t1 & "longer"

The operation "&" concatenates the text, """ denotes the empty text. Texts can be
lexicographically compared by means of the following operations.

=, <,>,<=,>=, <> # (both <>and # stand for unequal)

HI-SLANG 1/O statements are similar to those of the programming language PASCAL.
Thefollowing statements are available:

= OPEN, CLOSE
= READLN, WRITELN
= READ, WRITE

Thefirst four statements are only defined for INFILEs and OUTFILEs, while READ
and WRITE are also applicable for TEXTs. The LN suffixes only initiate aline feed.

9.3.1. OPEN and CLOSE

Before afile can be accessed it has to be opened. By thisthe INFILE or OUTFILE
variable is connected to an externd file viaalink name. All file accesses are performed
viaabuffer of the specified length:

OPEN f, "link_name" LENGTH 80;

After |last accessto thefileit has to be closed by simply writing

CLOSE f;

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -93-

9.3.2. WRITE Statement
The WRITE statement servesto print a series of valuesto an externd file, formatted
according to their type (INTEGER, REAL, TEXT, CHARACTER, BOOLEAN). For
example

WRITE "&(", n, "', m, "):", a(n,m);

displays"a(1, 2): 16.475" if the variablesn and m and the real array element a(1, 2)
have these values.

Instead of afile (the default fileis SY SOUT) also a TEXT variable can be used:

VARIABLE t1, t2,t3: TEXT;

t4 : TEXT DEFAULT "example’;
CONSTANT 5 : TEXT DEFAULT "I";
t2 := "This";
t3 = "is" & "an",

WRITE TEXT t1, t2, t3, t4, t5;

After the execution of WRITE statement the TEXT t1, which will be newly generated,
has the following contents:

"Thisisan example!"

To show the formatting of the output, we give some examples.

< BOOLEAN vauesareprinted as0 and 1, for CHARACTERSs their valueis printed:

WRITEFILE ouf, TRUE, ==>1
WRITEFILE outf, FALSE; ==>0
WRITETEXT t ' ==>_

= Inthecaseof TEXT, INTEGER and REAL field declarations for output formatting
can be used. Otherwise adefault field width is used.

"OK" 25 => 'OK ' {the field width isfive}
"RESULT=" @6 ==> 'RESULT { better use field width seven or more}
256 :: 3 => '25¢ {exact fit}
256 => ' 256' {default width is eleven}
17.5665 :: 5 ==> ' 1.7566E+01' {floating point representation}
175665::3::10 ==> ' 17.566' {fixed point representation}
17.5665 ==> '1.756650E+01' { default seven significant digits}

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-94 - IV. FEATURES FOR SIMULATIVE MODELS

9.3.3. READ Statement

The READ statement assigns an input va ue to a variable according to the types of the
given variables. The following types are possible: TEXT, INTEGER, REAL,
BOOLEAN and CHARACTER.

Again instead of afile (default SYSIN) a TEXT variable can be used. Consider for
example the following READ TEXT statement which isto be executed after the WRITE
TEXT statement above. Thetext t1 is splitted into t2 and t3:

READ TEXT t1, t2,t3:: 6;

Because the default length of atext is 1, the variables will have the following values, if
t1 has the value assigned by the previous example:

t2:"T
t3: "hisis".

9.3.4. Eof, Lastitem and Eoln
There are three functions to control the reading of files:

» eof (f) returns TRUE if no more characters (inclusive blanks!) are encountered in
the INFILET.

o lastitem (f) will return TRUE, if only blanks are encountered in the rest of INFILE
or if the end of thefileisreached.

» eoln (f) will return TRUE if no more characters (inclusive blank!) in the actually
accessed line of the INFILE can beread, i.e., the end of the lineis reached.

Note that in these functions the INFILE parameter f has the standard input file SY SIN
as adefault. The following example illustrates how to read all records of afile named
my_file referenced by the link name DATA:

VARIABLE my_file: INFILE;

6PEN my_file"DATA" LENGTH 80;
READLN FILE my file;

WHILE NOT eof (my_file) LOOP
{reading and processing the records, e.g., by means of READ}
END LOOP;

CLOSE my file;

Note that thisis not a perfect example for accessing afile. If only blanksfollow the last
item read and no next lineisin thefile, then eof will yield false and the next call of
READ (for anumerical item) will constitute an error. It is better to use lagtiteminstead
of eof in this case. Lastitem skips blanks. If DATA is bound to anon-existing filearun
time error will occur at the OPEN statement.

Moreover don't use READLN with alist of variablesif you are not sure weather the

end of thefile has already been reached. A previous eof query does not suffice, since
READLN first skipsto the next record and then reads the variables.

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -95-

9.4. More Control Statements

Compared to METHOD ANALY TICAL more constructs are permitted for METHOD
SIMULATIVE, e.g., the CASE statement, the FOR loop and the CONCURRENT
statement.

9.4.1. The CASE Statement

The CASE statement is used to select which sequence of statements should be executed
next, depending on the value of the expression following the keyword CASE.

CASE expression
WHEN expl : {statements}
WHEN exp2 : {statements}

WHEN expn : {statements}
ELSE . {statements}
END CASE;

The expressions (choices) following WHEN must be of type INTEGER,
CHARACTER or TEXT. Lists of expressions separated by commas are also possible.
The usua strict type rules apply and the choices must have the same type as the
expression following the keyword CASE. The EL SE clauseis optional.

As an example consider the following definition of cpu requests depending on the kind
of access:

CASE access {accessisaCHARACTER variable}

WHEN 't : cpu_request (5.0); {reed}
WHEN'w' : cpu_request (10.0);{write}
WHEN 'u: cpu request (10.0);{ update}
WHEN 'd': cpu request (2.0); {ddete}

ELSE © cpu_request (0.5);

WRITELN "illegal access", access, " at model time", TIME :: 3:: 10;
END CASE;

If the value of accessis different from 'r', 'w', 'u’ or 'd’, the service request will be
followed by amessage. Try to guess the format of the message specified by the
WRITELN statement!

9.4.2. The FOR Loop
The FOR loop deals with cases where we go round a loop a certain number of times.

FOR var := expl STEP exp2 UNTIL exp3 LOOP
{ gatements};
END LOOP;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 96 - IV. FEATURES FOR SIMULATIVE MODELS

expl, exp2 and exp3 must be INTEGER or REAL expressions and var must be an
INTEGER or REAL variable. Please note, that STEP exp2 cannot be omitted. Another
form of the FOR loop admits alist of expressions. The loop is executed for every
member inthelist.

FOR var := expl, exp2, ..., expn LOOP
{ statements};
END LOOP;

Besides the use of the FOR loop in the specification of model typesit can be used in the
experiment specification. Note that this possibility isindependent from the evaluation
method: for specifying experiments all HI-SLANG features can be used independant of
the solution method used.

A typical application for thiskind of loop is the execution of experiment series. Actual
values for the parameterization of models can be assigned in thisway:

EXPERIMENT model_analysis METHOD SIMULATIVE;
VARIABLE speed : REAL;
BEGIN
FOR speed := 1.0, 2.5, 5, 20, 100
LOOP
EVALUATE MODEL mod : mt (speed):
END EVALUATE;

END LOOP;
END EXPERIMENT;

9.4.3. The CONCURRENT Statement

The CONCURRENT statement is used for the modelling of parallelism. It can be used
in services only. An example for the CONCURRENT statement is:

CONCURRENT

procl _computing (amountl);
TO

proc2_computing (amount2);
TO

procl _computing (amount3);

proc2_computing (amount4);

END CONCURRENT;

The three parts separated by the keyword TO will be executed in parallel (concerning
model time). The statement is finished when all of its branches have terminated.

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -97 -

9.5. More on Services

The syntactical structure of services admitted for METHOD ANALY TICAL has aready
been given. But afew points must be taken into account:

= The only restriction imposed on the parameters of aserviceis, that cal by nameis
not admitted.

= Declaration of local variablesis possible.

= |nthebody of aservice, other statements apart from control statements and service
calls can be used. Even CREATE statements may occur here.

9.5.1. The CREATE Statement

The CREATE statement is responsible for generating processes which execute service
descriptions dynamically during run time. It can be used in the following four forms:

< CREATE n PROCESS service_name (actual parameters) AT timel;

= CREATE n PROCESS service _name (actual parameters) AFTER time2;
< CREATE n PROCESS service name (actual parameters) EVERY time3;
= CREATE n PROCESS service name (actua parameters);

The two latter forms are dready known from METHOD ANALYTICAL. Some
examples for the generation of processes are:

CREATE 10 PROCESS batch_task AT 0;

CREATE 1 PROCESS batch_task EVERY negexp (7.5);
CREATE 2 PROCESSjob (x, 13.7) AFTER 217.5;
CREATE 1 PROCESSjaob (,,) EVERY negexp (1/iat);
CREATE 56 PROCESSdialog task;

Thefirst statement generates an initial filling of the model. If you can make a good
guess at the mean population of the model, you can shorten the transient phase of a
simulation in thisway.

A continous Poisson arrival stream of batch tasks is specified in the second CREATE
statement. The third statement creates exactly one process with actua parameters x and
13.7 after 217.5 time units, whereas the following statement creates a Poisson arrival
stream of objects having default values. The last statement shows the standard way to
generate afixed number of permanent processes. Note that statements one and three are
not allowed for METHOD ANALYTICAL!

The time given in the CREATE statement refers to the model time, not to the CPU time.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 98- IV. FEATURES FOR SIMULATIVE MODELS

9.5.2. The SUBMIT Statement

Another possibility of creating processes dynamically at run timeis supported by the
SUBMIT statement. When the SUBMIT statement is executed only one processis
generated. But this process is named. The name (or names) must be declared by:

PROCESS p_namel, p_name2, NAME FOR service_name;

or even by aone-dimensiona static ARRAY of names:

PROCESS p_array_name: ARRAY [1..4] OF NAME FOR service_name;

The SUBMIT statement has the following syntax:

SUBMIT service_name (actua_parameters) NAME process_name;

Additionally the timing specification AT, AFTER and EVERY can begiven asinthe
CREATE statement. For processes like those defined above (which do have a name)
service parameters can be accessed by means of the dot notation. In HIT the service
parameters are used to model the process state.

In the following example the service parameter, i.e., the state of the process called
p_nameis accessed via dot notation: p_name.much.

TYPE ¢t COMPONENT:
TYPE st SERVICE (much : REAL);
END TYPE st:

PROCESS p_name: NAME FOR st;
PROCESS print : state print;

TYPE state_print SERVICE;
BEGIN
LOOP
hold (10);
WRITE time, p_name.much;
END LOOP
END TY PE state print;

BEGIN
SUBMIT st (17.5) NAME p_name;
END TYPE ct;

9.5.3. Static Process Declaration
Processes can also be generated statically by a declaration. It looks quite similar to the
declaration of aprocess name, explained above: A process can be declared and
immediately generated by

PROCESS p1, p2, ... : service_name (actual_parameters)
or even by aone-dimensional static ARRAY of processes:

PROCESS p_array : ARRAY [1..4] OF service_name (actual _parameters);

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -99-

9.5.4. Service Arrays

A service may use anumber of similar services, called a SERVICE ARRAY . Caling
one of the services of aservice array issimilar to accessing an array element, i.e., by
indexing.

Service arrays must be bound to the provided services of acomponent array. Other
ways of binding are not possible. Here is a small example to illustrate the use of a
SERVICE ARRAY:

TY PE compute SERVICE;
USE
SERVICE ARRAY store(...); { The parameter list is optional}
END USE;
BEGIN

;c:tbre [3] (.); {The round brackets embrace the actual parameters}
EN D TY PE compute;
{ We assume the existence of a component type ct, which provides a service called file it}
COi\./i PONENT ca: ARRAY [1..4] OF ct; {declaration of an array of components of type ct}
REFER compute TO ca EQUATING

compute.store WITH ca. file_it;
END REFER,;

As defined by the REFER part, the statement store [3] within the service compute will
cause the execution of file it of the third element of the component array ca.

Note that the index of the service array must not exceed the boundaries of the associated
component array, otherwise arun time error results. It is often favourable to specify the
boundaries of the component array as a parameter of the service, since the attribute
dimension does not exist for component arrays. Note that the USE declaration of the
service array does not contain any bounds (similar to array parameters of procedures).

9.5.5. Services Supplying Results
Services can aso supply results! See the following example.

TYPE fun_st SERVICE (t: REAL) RESULT REAL;
USE

END USE:
BEGIN

iilESU LT time- t; {timeisthe current model time}
END TYPE fun_st;

Just as a procedure with result, results are returned after the creation and execution of a
process of servicefun_st. The call of services should be identical to afunction call,
otherwise (e.g., in CREATE/SUBMIT statements) the result islost (although it may
sometimes be reasonable to call services and ignore the results).

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 100 - IV. FEATURES FOR SIMULATIVE MODELS

9.6. Procedures

For simulative models alot of additional random drawing procedures, predefined
procedures and even user-defined procedures are available.

9.6.1. More Random Drawing Procedures
In Section 2.6., the random drawing procedures negexp and draw have been intro-
duced. Section 7.5. contains the definition of cox and coxg. In the following we

present the most important random drawing procedures, which can be used in
simulations only.

= uniform (a b)
Uniform isareal function with real parameters aand b.
Ifathb the value will be adrawing from a uniform distribution
betweenaand b, i.e., each value in theinterval [a,b] is
drawn with the same probability.

Ifa>b aruntime error will result.

= erlang (a b)
Erlangisareal function with real parametersaand b.

Ifa3 Oandb3 0 the value will be adrawing from the Erlang distribution
with mean 1/aand standard deviation 1/(axVb). b< 1

resultsin asmall variation, b=1 yields the exponential
distribution, b > 1 resultsin alarge variation.

Ifa<Oorb<O aruntimewill error result.

< normal (m, s)

The value given by this function is normally distributed with mean m and standard
deviation s. Normal isareal function with real parametersm and s.

Furthermore, al random drawing procedures known from the host language SIMULA
(discrete, histd, linear, poisson, randint) are available in HIT. Seethe HI-SLANG
Reference Manual, please.

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -101 -

9.6.2. Predefined Procedures

Besides the random drawing procedures there are alot of other procedures predefined
in HI-SLANG:

» Thesat of arithmetic functions available consists of the standard trigonometric
functions (sin, arccos, tanh, ...) aswell as abs sgrt, log and the like.

 For text and file handling procedures like digit, letter, eoln can be used.

» Modelling support procedures are available as, e.g., time, cpu_time, stop_-
evaluation, transfer_results (intermediate results) and get_result (e.g., to control
evaluation series depending on earlier results).

» Simulativetrace control: Viatrace sate information about the current location of
processes can be added to the trace file (state trace, done automatically when the
simulator detects a deadlock). Viatrace on and trace off the event trace can
temporally be supressed.

For more details see the HI-SLANG Reference Manual.

9.6.3. User-Defined Procedures

Apart from services HIT also provides procedures, whose execution isinvoked by a
cal. A procedure call isastatement, or if it isused like afunction it is an expression if
exactly onevalueisreturned as result. Multi-valued procedures are a specia HIT
feature.

If other procedures from lower layers are to be used (called), they must be explicitly
imported viaa USE declaration part. The HI-SLANG notation of the USE declaration is
identical to the USE declaration of services. Note that a procedure cannot use services!
Moreover procedures cannot consume model time. Third procedures are not subject to
component control, e.g., they cannot be scheduled.

< Procedure with result:

PROCEDURE f (r : REAL DEFAULT 0.0;
nl,n2 : INTEGER)
RESULT REAL, INTEGER;

{Declaration of locd variables, constants and/or procedures}
BEGIN

RESULT 27.09, 49;
END PROCEDURE f:

This procedure returns apair (x,n), where x and n are of type REAL and
INTEGER, respectively. Here are some possible calls of the procedure f, which are
completely equivalent.

(x, n) :=1 (0, 8, 15);
(x,n):=f(, 8, 15);
(x,n):=f(, 8, LET n2:=15);

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-102 - IV. FEATURES FOR SIMULATIVE MODELS

= Procedure with USE part:

PROCEDURE proc2 (x:REAL);
USE PROCEDURE
procl (.....);

END USE;
BEGIN

{ statements}

procl (.....);

END PROCEDURE proc2;

Of course procedures with USE part may also deliver results and vice versa. The
following notes applying to al kinds of procedures are advisable:

= Number and type of formal and actual parameters must be compatible.

= Formal parameters without default value must be substituted by an actual parameter.
= Procedures can be called recursively.

= LET parameters (keyword-parameters) must not be followed by other parameters.
= Time consumption, e.g., service callsin proceduresis not admitted.

The default parameter transmission mode is"call by value' for al simple types except
for POINTER, INFILE and OUTFILE and "call by reference" for al structured types
respectively. "call by name" can optionally be used in all cases (but only for parameters
of procedures, not for component types and services). As an example consider the
following list of formal parameters, where for n and z the default transmission
mechanism has been changed:

PROCEDURE f (NAME n : INTEGER;
VALUE z : ARRAY OF BOOLEAN,;
REFERENCE f1:INFILE);

BEGIN

END PROCEDURE f:

HIT and HI-SLANG. An Introduction

9. The Model World for Simulation -103 -

9.7. An Extensive Mini Example

To give an impression of HI-SLANG we continue with an example, which shows as
many HI-SLANG features as possible on asingle page.

%ANALYZER

%BIND "FILE" TO datafile

%END

VARIABLE &file : INFILE;

CONSTANT file_length : INTEGER DEFAULT 80;

TYPE system MODEL (t:REAL DEFAULT 5; n_sim, n_ulaINTEGER);

TYPE in_out SERVICE (id: TEXT);
USE SERVICE fetch (t : REAL);
END USE;

VARIABLE i : INTEGER DEFAULT O;
BEGIN

WHILE NOT lastitem(afile)

LOOP

READ FILE &file, i; { spends approx. log(i) }
fetch(normal (1+entier(log(i)),1)); { sec. to read number i}
WRITELN id, " writes', i::8, " at", time::3::10;
END LOOP,
END TYPE in_out;

COMPONENT man : server(LET schedule := immediate);

REFER in_out TO man EQUATING
in_out.fetch WITH man.request;

END REFER;
BEGIN
CREATEn sm PROCESSin_out("SIM"); {tasks from SIM}
CREATEn ula PROCESSin_out("ULA") EVERY t; {tasksfrom ULA}
END TY PE system,

EXPERIMENT analysis METHOD SIMULATIVE;

VARIABLE s, u: INTEGER;
BEGIN

FORs:=0STEP10 UNTIL 10LOOP
FORu:=1,3,5L0O0P
OPEN dfile, "FILE" LENGTH file_length;

EVALUATE
MODEL i_o: system (, s, LET n_ula:=u);
EVALUATIONOBJECT one_ man VIA i_o.man
DEFAULT ESTIMATOR MEAN, STANDARDDEVIATION;
BEGIN
MEASURE POPULATION, TURNAROUNDTIME AT one_man;

CONTROL AT one_man STOP CPUTIME 10 OR EVENTS 30;
END EVALUATE;

CLOSE &file;
END LOORP,
END LOOP;
END EXPERIMENT;

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 104 - IV. FEATURES FOR SIMULATIVE MODELS

The example starts with some percent statements, where the file data.file containing
some numbersis bound to alink name.

The HI-SLANG source is composed of amodel type with name system and an
experiment specifying an evaluation series of models of that type. The global
declarationsin thefirst lines hold for both parts.

The model issimple: There isaman (represented by a component) able to perform the
task (service) in_out to write the name of his orderer together with integersread from a
file until the end of thefileisreached. The man needs approximately n seconds
(normally distributed with variance 1) to read and write a number with n digits. The
connection between man and histask is established in the refer part, specifying that the
servicefetch used withinin_out isto be satisfied by the standard service request of the
server man. The occurence pattern of the tasksis specified by create statements.

The experiment part describes an evaluation series. For each parameter combination (s,
u) an evaluation of amodel object namedi_o is performed. Each evauation is
preceeded by opening thefile. As aresult we obtain a table containing mean value and
standard deviation of POPULATION (number of tasks present) and TURNAROUND-
TIME (completion time for atask) at the component man (adressed by one_man). This
tableiswritten to afile named by the file name generator (see Appendix A.). The
simulation stops after 30 events or if 10 cpu seconds have been spent.

Notice that we presented aflat model, but refining this model can be done by replacing
man by a more detailed component. On the other hand the model can be transformed to
a component providing the servicein_out. In thisway hierarchical models can be built

aswe have seen in a previous chapter.

HIT and HI-SLANG. An Introduction

10. Predefined Component Types -105-

10. More Predefined Component Types

In HIT we can store component types in modelling bases or in files and make them
available for other HIT users. The component types specialy taillored to Markov models
(counter, prioserver, ftserver) have been introduced in earlier sections. Of course these
types are aso admitted for ssimulative evaluation except ftserver.

Now we introduce the rest of the predefined component types which are members of
the HIT standard mobase. Please note, that all of them can only be used if you choose
simulation.

10.1. Semaphor

An object of type semaphor represents a general semaphore. The initial value can be
specified viathe parameter sem init (>0). The default value of sem initis1, yielding a
binary semaphore.

A semaphore provides the servicesPand V.

P; If possible, the semaphore variable will be decremented by one, otherwise the
requesting process will be passivated.

V; Thesemaphore variable will be incremented by one and a passivated process
may be activated.

Semaphores are known from operating systems to Synchronize processes or to protect
critical regions. The following example shows how to protect a critical region with the
help of a semaphore.

TY PE semaphor COMPONENT (sem_init : INTEGER DEFAULT 1);
PROVIDE SERVICE
P Vv,
END PROVIDE;

EN D TY PE semaphor;

Note that the default (and only meaningful) scheduledisciplineisfcfs-like and that
sem _initisonly theinitial value of the semaphore and not an upper bound. By
executing only V-operations the semaphor value can infinitely be incremented.

An alternative implementation of a semaphore can be made with the help of the
component type counter, see the chapters on Markov models. In this case random and
priority scheduling disciplines are possible.

Dueto historical reasons a semaphore in HIT indeed spells semaphor, without an "e" at
the end!

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 106 - IV. FEATURES FOR SIMULATIVE MODELS

The following example demonstrates the use of a binary semaphore to protect acritical
region within aservice:

%COPY "SEMAPHOR"

COMPONENT binsem : semaphor (LET sem_init := 1);

TY PE xwrite SERVICE;

USE SERVICE
passeer; .)
verlaat; {passeer and verlaat are notions due to Dijkstra}
END USE;
BEGIN

passeer {if passeer (=p) is successfull, the critical region can be entered}
{critical region, e.g., exclusive file access}

verlaat; {verlaat (=v) switches the semaphore variable to its original value}
END TY PE xwrite;

REFER xwrite, ... TO binsem ... EQUATING
xwrite.passeerWITH binsem.p;
xwriteverlaat ~ WITH binsem.v;

END REFER:

10.2. Tokenpool

The component type tokenpool models a pool of tokens, which can be alocated,
released, destroyed and produced by using the provided services. The following type
declaration shows the interface of tokenpool.

TY PE tokenpool (no_of_tokens: INTEGER) COMPONENT;
PROVIDE SERVICE
allocate (number : INTEGER);
rdease (number : INTEGER);
destroy (number : INTEGER);
produce (number : INTEGER);
END PROVIDE;

END TY PE tokenpool;

A request to allocate, e.g., by allocate(n), demands for a number of tokens and waits
until those tokens are allocated. If the number of free tokensis greater than or equal to
the number of requested tokens the allocation will happen without delay. Otherwise the
requesting process is passivated until the number of free tokens matches. The number
of free tokens can be increased by release, which frees a number of allocated tokens, or
by produce, which creates a number of "new" tokens. Free tokens can be removed
from the token pool by calling destroy.

HIT and HI-SLANG. An Introduction

10. Predefined Component Types - 107 -

Please note that destroy(n) and allocate(n) will result in passivation of the calling
processif n exceeds the number of free tokens. Also note that in contrast to the counter
the limits of available tokens can be manipulated at run time.

One of the most famous applications of atokenpool is the representation of
simultaneous resource possession. The simultaneous use of active components, (like
cpu and io devices) and passive resources like main storage can be modelled as follows.

%COPY "TOKENPOOL"

COMPONENT main_storage : tokenpool (LET no_of tokens := 1024);

The default (and only meaningful) scheduling discipline of atokenpool is fcfs-like.
Also digpatch and the other control procedures may not be set. A process can allocate
and release n byte of main storage by calling allocate(n), and release(n), respectively.

For this example calls of destroy and produce are of minor interest.

10.3. Synchsend

A component object of type synchsend enables two processes to communicate with
each other in one direction: one process as sender and the other asreceiver. If
communication takes place in both directions, or if more than two processes exchange
messages, then several component objects (or even a component array) must be
declared.

The sender and receiver are synchronized when exchanging messages in the sense that
some access operations will be delayed by either of them until an appropriate state of the
other is reached. Synchsend provides the two services send and receive as given in the
type declaration below. The buffer isimplemented by atext variable.

TY PE synchsend COMPONENT;
PROVIDE
SERVICEsend (what : TEXT);
receive RESULT TEXT;
END PROVIDE;

END TY PE synchsend;

The following example demonstrates the use of synchsend for a synchronous
unidirectional communication between a sender and areceiver process.

%COPY "SYNCHSEND"
COMPONENT commun : synchsend,;

Two services sender and receiver (normally belonging to different components) may
then communicate over an enclosed synchsend component in the following way:

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 108 - IV. FEATURES FOR SIMULATIVE MODELS

TY PE sender SERVICE; TY PE receiver SERVICE;

USE SERVICE USE SERVICE

send(x :TEXT); receive RESULT TEXT,;

END USE; END USE;

VARIABLE message : TEXT,; VARIABLE message : TEXT,
BEGIN BEGIN

. { produce message} .

éend (message); mesége .= receive;

. . { consume message}
END TYPE sender: END TY PE receiver;

10.4. Nowaitsend

The component type nowaitsend enabl es the communication of processes. In contrary
to synchsend, the sender, in general, does not have to wait until the receiver receives
the messages. It may further produce messages and send them while the buffer is
empty. The receiver must obvioudly wait for the sender in case of an empty buffer.

Note that the buffer isimplemented by a TEXT Array. The capacity of the buffer is
given by the integer parameter no_of buffers (default=1). The type declaration and
application are similar to those of synchsend.

TYPE nowaitsend COMPONENT (buffer_size: INTEGER);
PROVIDE
SERVICEsend (what : TEXT);
receive RESULT TEXT;
END PROVIDE;

END TY PE nowaitsend:;

If we want to introduce a component of type nowaitsend, e.g., with buffer size 100, we
can do thisasfollows:

%COPY "NOWAITSEND"
COMPONENT proc_comm: nowaitsend (100);

Sending and receiving are done by send (mess_text1) and mess text2 := receive
respectively. If communication occurs between different components (as usual), one of
them (or both) have to enclose the component.

HIT and HI-SLANG. An Introduction

10. Predefined Component Types - 109 -

10.5. Observer

The standard component type observer can be used to produce intermediate result
outputs. The observer has no provided services, but internally creates one process
which will interactively prompt the user for new time points for the next intermediate
results, if the parameter interactiveis set. Aninitial observation model time interval can
be set by the real parameter obs _interval. The interactive observer will then produce the
results, print the current model time and amount of cpu time used, and query for one of
the following alternatives:

g: quit smulation

S: stop observing, continue simulation

c : keep current model timeinterval and continue observing
n: asc, but switch to non-interactive mode

<real value n.nnEnn> : set new interval, continue observing

It has the following interface:

TY PE observer COMPONENT
(obs interval : REAL,;
interactive : BOOLEAN DEFAULT FALSE);

END TYPE observer:

To use the observer it has to be copied from the standard modelling base. An observer
component should preferable be declared within the model type or global to the model

type.
%COPY "OBSERVER"

COMPONENT obs: observer (500, TRUE);

Normally the results are directed to afile (the default isOUTPUT TABLE "TABLE")
and can in this case not be watched interactively. Thus the observer should be used in
combination with OUTPUT TABLE "SYSOUT".

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

Part Vv

APPENDICES

Appendices

A= F

A. How to Run HIT -113-

APPENDIX A. How to Run HIT

In this chapter a brief introduction to the usage of the HIT system in different
environmentsis given.

For every operating system HIT has been ported to there exists an operating system
procedure to activate HIT (see the next sections). This procedure callsthe HI-SLANG
compiler and then the SIMULA compiler and linker to create executable code. After this
the compiled and linked module (i.e., the analyzer) will be executed to calculate the
desired performance indices. The object manager OMA isaways accessibleviaa
similar, operating system procedure.

There are many parameters to control the operation of HIT. All parameters have default
values and are therefore optional. For a detailed list please see the corresponding HIT
User's Guide. The main parameters which always exist are:

control the name of the contral file used by HI-SLANG compiler and
analyzer. If you do not use this parameter both the compiler and the
analyzer will ask for acontrol file separately. Suppose you have
none, you must enter the file name of your HI-SLANG program
then.

task the entry point of the procedure. Possible values are:
com: start with HI-SLANG compilation
sm: start with SIMULA compilation
exp: only perform the experiment (run the analyzer, e.g., with
other input data)

option the exit point of the procedure. The value check stops HIT after the
completion of the HI-SLANG compilation

sizecomp thesizeof the working storage for the HI-SLANG compiler
sizeexp the size of the working storage for the generated analyzer
If the user does not provide specia file bindingsin his control file al files generated,
e.g., theresult files, are named by the HIT file name generator. The file name patterns

are given in the next sections. The user may define a different file name pattern by using
"0DEFAULT pattern” in his control file. See the Reference Manual.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-114 - V. APPENDIX

A.1l. Guide for UNIX

For using the HIT system on aworkstation (or even a PC) under some UNIX-like
operation system, the shellscript hitis available. Moreover the graphica interface
HITGRAPHIC can be used (on SUN workstations).

HIT may be used by more than one user at the same time. In this case the shellscript hit
hasto be called from different directories because some output files have fixed names.

Withinstallation-directory being the name of the directory the HIT systemisinstalled
in, starting the HIT system looks like this

installation-directory/hit

Itisuseful to define an aliasfor this or better to set apath in the .login file by
set path=($path installation-directory)

The script may then be called like this:
hit [control [task]]

Control and task are positional parameters, while al other parameters are implemented
by environment variables. Such parameters can be set typing, e.g.,

env option=check sizecomp=8000 hit control_file

Do not use blanks around the '="-characters !

After every run of the HIT system, some new files exist in the current directory. Some
files are created by the shellscript hit. Their names can only be modified by the
parameter prefix of hit which hasthe string "t." as a default value. Normally the
following files exist:

t.hitcode theanayzertoberun

t.hitcode.sim the generated code of the HI-SLANG compiler
t.compiler the standard output file of the compiler
t.experiment the standard output file of the analyzer

More important for the user are the files created by the HIT system itself. Their names
may be defined in the control file, or the file name generator of HIT may be used. The
latter is automatically used for files having a standard link name which isnot bound in

the control file. It generates file names t.<c>.<I> where <c> is the name of the control

file stripped of the directory prefix and a suffix .ctl or .hit and <I> are the three leading
letters of the standard link name, e.g., lisfor listing, tab for table.

For a control file named my_dir/example/exl.ctl
the standard name of thelistingis t.exl.lis

and your resultsarefoundin ~ t.exl.tab

within the current directory!

HIT and HI-SLANG. An Introduction

A. How to Run HIT -115-

A.2. Guide for BS2000

For using the HIT system in a BS2000 environment the procedure HIT is available.
Cdling the HIT system looks as follows:

DO $Userld.HIT [, CONTROL = <file name>] [<other parameters>]

Userld stands for the user identification the procedure is situated on your computer
system. After arun of the HIT system you find some temporary files created by HIT:

#HIT.CODE.LOAD the analyzer to berun

#HIT.CODE the generated code of the HI-SLANG compiler
#HIT.SYSLST.COMPILER the standard output file of the compiler
#HIT.SYSLST.EXPERIMENT the standard output file of the analyzer

More important for the user are the files which are by default named by the HIT file
name generator. It creates temporary files #<c>.<I>, where <c> is the name of the
control file and <I> isthe link name. So by default your results will be written to
#<control file name>.TABLE.

A.3. Guide for VM/CMS
For using the HIT system in aVM/CMS environment the REXX procedure HIT EXEC
isavailable. Starting the HIT system look as follwos:
HIT FNAME FTYPE [FMODE] [(<other parameters>)]
Here the usua parameter control is split into three parameters FNAME, FTY PE and
FMODE due to file name conventions. The other parameters may follow.
Specia parameters are
SIZE the memory sizefor one analyzer run (default 4096K)
(SIZE isthesizeexp parameter, currently there is no sizecomp
parameter)
OUTPUT PRINT the output is send to the line printer
TERM the output is displayed on the terminal only

After arun of the HIT system by default you find your resultsin files named by the file
name generator. It generatesfile names HIT <I>, where <I> isthe link name. So by
default your results will be writtento HIT TABLE.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 116 - V. APPENDIX

APPENDIX B.Handling of the HIT System

The HIT system isintegrated with the so-called HIT File Access Network (HIT-FAN).
HIT-FAN supports the devel opment and configuration of HIT models from modules
like component types, services, procedures or arbitrary pieces of HI-SLANG code.
These modules can be either files or membersin a modelling base (called mobase) and
are accessed or created viaHIT-FAN. Every logical file which is used (or created)
during the processing of aHIT model islinked by HIT-FAN to aphysical fileor to a
member of a mobase. Moreover the HI-SLANG compiler is controlled by FAN.

B.1.Some Compiler Control Statements

The following compiler control statements may appear at any placein the HI-SLANG
source text. They are used to invoke various listing options of the compiler. Note that
all of then start with a'%'-character, which must appear in column 1.
%NOSOURCE

The formatted HI-SLANG listing will be usually written into afile. This option
suppresses the HI-SLANG listing until a%SOURCE statement is encountered.
%PAGE

A form-feed will be inserted.

%TITLE Thisisatitle

Similar to the PAGE statement, aform-feed will beinserted. Additionally the text
written in the control statement will be printed as atitle a the head of the page. Thistitle
will be preserved on the following pages until it is overwritten by a new title.

% arbitrary comment

Source text lines which contain a"%" in the first column and a blank in the second
column are considered to be comments:

% Thisis acomment
%No comment; error!

The second example is wrong formatted and will lead to an error! Another way to
include comments in your source text isthe use of braces{...} . We do use both
possibilities. Please note, that such comments must be terminated in the sameline.
%COPY "link name™'

Thefile bound to the link name (in the control file) istextually inserted at this position.

Thisfacility can be used to accesslogical units of text (e.g., component types and
experiments) from separate files or separate "design objects’ within a modelling base.

HIT and HI-SLANG. An Introduction

B. Handling of the HIT System -117 -

B.2. The Control/Configuration File

Thelinking of physical objectsto logical objectsis defined by control records, which
can be placed either at the beginning of a HI-SLANG sourcefile or in a separate control
file. Calling HIT you have to supply the name of the file containing the control records.
If your control fileisincomplete, HIT requires for the resolution of unresolved
references by

%BIND "link_name" TO ?

As a consequence you can use HIT even with an empty control part. The control part
has a structure as follows:

% COMMON
{ control records common to the HI-SLANG compiler and the analyzer}

%COMPILER
{ control records for the HI-SLANG compiler}

%ANALYZER
{ control recordsfor the analyzer}

%END
{last statement of the control part, now the HI-SLANG source can follow}

All parts are optional. Comments can also be included, starting by '%', followed by at
least one blank. There are several control records; the most important are %PARM and
%BIND.

B.2.1. %PARM. Compilation and Analyzer Options
The admitted parametersin a %PARM record are either concerned with the compilation
of HI-SLANG sources or with the formatting of the HI-SLANG listing or with
analyzing models. The parameters are given by

%PARM = parameter |,...]
For acomplete list see the HI-SLANG Reference Manua. Most important are the
following options:
CHECK
The HI-SLANG sourceis only checked for syntactical and semantical correctness. No
generation of SIMULA code (neither of executable code) is performed.
NOSOURCE

Normally alisting of the HI-SLANG source (including the control part) is generated.
NOSOURCE supresses the HI-SLANG listing.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-118- V. APPENDIX

XREF

A cross reference listing is generated and appended to the listing. Test it!

NOWARN

Additiona to error messages, HIT normally provides warnings. NOWARN suppresses
warnings.

INDENT =[character] number

The HI-SLANG listing is indented (i.e., shifted right) to show the block structure of
the program. The number determines the number of indented shifts per block level. You
can optionally specify a character which is used for threading between block-begin and
block-end. (We suggest ablank or '['.)

UPDATES

Additional to the mean value, the number of updatesto a stream will be displayed in
tables resulting from asimulation. By %PARM=MINMAX even minimal and maximal
values which have occured in the observation interval can additionally be displayed
within the mean value tablefields.

B.2.2. %BIND. Binding and Linking

The %BIND record is used to bind logical link namesto physical files or to members of
amodelling base. Besides the link names you define, e.g., by %COPY or OPEN
statements there are alot of link names predefined, e.g.,

"TABLE" for the tabular result output

"LISTING" for the compiler source listing (including messages and X REF)
"TRACE" for the Markovian or simulative trace output

"PREANA" for the aggregation outpuit.

Y ou may bind these link names to define your own file names, disabling the HIT file
name generator. Moreover you can aternatively or additionally bind the link names to
membersin amodelling base. A %BIND statement has the structure

%BIND "link name" TO file_object

Asfile_object you can specify ether the name of aphysical file or you can specify a
member of amodelling base. We shortly explain the second case by some examples,
where we presuppose the existence of a HI T-specific modelling base. See the OMA
User's Guide for more informations. The general structure of the %BIND statement in
that caseis

%BIND "link_name" TO mobase_name (parameters)
Themobase_name specifies the name of your (private) modelling base. Thelist of

parameters contains up to four entries, which specify the object to be included as
follows:

HIT and HI-SLANG. An Introduction

B. Handling of the HIT System -119-

1. The representation of the moduleto be included. Y ou can choose between
HISLANG, PRECOM, PREANA, CONTROL, SIMULA and DATA. PRECOM is
apre-compiled intermediate representation of the object, PREANA is associated
with apre-analyzed (i.e., aggregated) component type.

2. Thetype of the object, e.g., COMPONENT, PROCEDURE etc.; notice that this
information may be omitted.

3. Thenameof the object. This name must begin with aletter followed by letters,
digits, dots or underscores. Thefirst 12 characters of the name are significant. If
this parameter is omitted, it is assumed to be identical with thelink_name

4. Specifies whether the object is protected (P) or unprotected (U). If an object is
protected it can only be overwritten if this accessis aso specified with P. Reading
accessis aways possible. The default valueis U.

Some exampl es shall demonstrate the usage:

%BIND "installation” TO mylib (HISLANG)

Thelink name "ingallation™ is bound to an object with the same name (name omitted)
and module HI-SLANG. By, e.g., %COPY "installation" this HI-SLANG source can
be read out of the modelling base named mylib.

%BIND "preana' TO mylib (,,cpu,P)

The predefined link name "preana” (you can use lower- or upper-case letters) is bound
to the modelling base mylib. The execution of the corresponding AGGREGATE
statement stores the aggregate named cpu as a protected member of that data base.
Module and type are automatically set.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 120 - V. APPENDIX

APPENDIX C.HIT Experiment Syntax Sketch

This appendix sketches the most important parts of the experiment block of the HI-
SLANG syntax in aBNF-like form, being the most complicated part of the HI-SLANG
syntax. The syntax for describing modelsis quite similar to that of high level
programming languages. For a complete syntax and even HI-SLANG syntax diagrams
see the Reference Manual.

experiment ::=
EXPERIMENT experiment-name METHOD method,;
[VARIABLE
{ object-name, ...] : smple_type[DEFAULT expression]; } [...]]
BEGIN
statement [...]
END EXPERIMENT [experiment-name];

method::=
ANALYTICAL "method-name"
| SIMULATIVE

smple_type:=...
| INTEGER
| REAL

statement::= ...

| for_loop

| aggregate statement
| evaluate statement

for_loop::= ...
FOR variable-identifier := expression [, ...]
LOOP
statement [...]
END LOOP;

aggregate_statement::=
AGGREGATE componenttype-name,
{ CREATE expression PROCESS service-name; } [...]
END AGGREGATE;

evduate statement::=
EVALUATE
MODEL model-name : model_type-name
[({ [LET parameter-name :=] expression] } [, ...]1} 1;

EVALUATIONOBJECT
{{ evaluationobject-name VIA component-identifier } [, ...]
[DEFAULT estimator_part]
HIERARCHY
{ hierarchy-name][, ...] default_or_merge;} [...]

HIT and HI-SLANG. An Introduction

C. HIT Experiment Syntax Sketch -121 -

BEGIN

{ MEASURE stream|,...]
AT evaluationobject-name
[DUE TO hierarchy-namel, ...]]
[estimator_part]

[CONTROL [TRACEALL]
{[AT eval uationobject-name]
[STOP sart or_stop_condition]
[TRACE]}[...1;]

END EVALUATE;

estimator_part::=
[ESTIMATOR estimator [, ...]]
[OUTPUT TABLE "linkname" [, DUMPFILE "linkname"]]
[START start_or_stop_condition]
[STOP start_or_stop_condition] ;} [...]

default_or_merge::=
DEFAULT (component-name [, service-name [, use-name]]) [. ...]
| MERGE hierarchy-name, ...]

start_or_stop_condition::=

{ CPUTIME expression
MODELTIME expression
| EVENTS expression

[DUE TO hierachy-name]

| CONFIDENCE LEVEL expression
WIDTH expression
MEASURE stream
[DUE TO hierarchy-name]

| ACCURACY expression

} [AND |OR ..]]

stream::=
THROUGHPUT
TURNAROUNDTIME
POPULATION
OCCUPATION
UTILIZATION
SCHEDULE_RATE
PREEMPT_RATE
Stream-name

estimator::=
MEAN
| BOUNDS
| STANDARDDEVIATION
| CONFIDENCE LEVEL expression
| FREQUENCY INTERVAL [{ expression .. expression} [, ...]]

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

-122 - V. APPENDIX

APPENDIX D. More HI-SLANG Features

This appendix sketches some more features, which are not handled in this Introduction,
but in the HI-SLANG Reference Manual. Moreover it sketches the recent changesto
HIT.

= User-defined component control procedures.
Componentsin HIT are dynamic and autonomous systems (up to a certain degree),
the progress of processesis goverend by predefined rules for accept, schedule
dispatch and offer. The HIT user can write his own component control procedures
in HI-SLANG (or evenin SIMULA).

= Predefined Procedures.
There are much more procedures predefined than listed in Section 9.6.2. E.g., every
component provides severa procedures to determine its population, and for every
serviceits state can be determined by predefined procedures.

< Pre-compilation
Procedures, services, component types and total experiments can be transformed
from HI-SLANG to PRE-SLANG (pre-compiled HI-SLANG).

= Graphical output.
There are features to produce graphs and histograms (on aline printer).

= Records and pointers.
In HIT there exists a concept for records and pointers similar to PASCAL.

= Solver information.
The analyzer listing is extended by solver information, which, e.g., givesthe
reasons, why a certain algorithm within the desired solver was selected. For
MARKOV it contains detailed state information.

Recent additionsto HIT 3.1.000 are: the CHAIN statements, more efficient synchsend
and nowaitsend components, the obser ver, trace control procedures, some %parm
options, and the declaration of user-defined streams in components. For a more
complete list see version 1.1.00 of the Reference Manual, Chapter O.

HIT and HI-SLANG. An Introduction

E. References -123 -

APPENDIX E.References

/Beil85/ Beilner, H.:
Workload Characterization and Performance Modelling Tools, Proc. of
the International Workshop "Workload Characterization of Computing
Systems®,
Pavia, Italy, 1985 (North Holland)

/BeMW88/ Beilner, H.; Méter, J.; Weil3enberg, N.:
Towards a Performance Modelling Environment: News on HIT,
Proc. of the 4th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation,
Palmade Mallorca, 1988 (Plenum Publishing Corporation)

/BeSt87/ Beilner, H.; Stewing, F.J.:
Concepts and Techniques of the Performance Modelling Tool HIT,
Proc. of the "European Simulation Multiconference, ESM '87",
Vienna, Austria, 1987

/Beil89/ Beilner, H.:
Structured Modelling - Heterogeneous Modelling
Proc. of the 1989 European Simulation Multiconference, Rome, 1989

/BUPS88/ Buser, M.; Pape, D.; Stewing, F.J.:
Simulation of Integrated Information and Material Flow in Logistics
Systems: An Application of the Modelling Tool, HIT;
Proc. of European Simulation Multiconference, Nizza, 1988

/Heck9l/ Heck, E. (ed.):
HITGRAPHIC User's Guide,
Universitat Dortmund, Informatik 1V, 1991

/LiSS89/ Litzba, D., Sczittnick, M., Stewing, F.J.:
Y et another ssmulation output analysis algorithm: the autoregressive,
online-update eval uation technique of the modelling tool, HIT
Proc. of the 3rd European Simulation Congress, Edinburgh, 1989

/Weis92/ Well3enberg, N. (ed.):
HI-SLANG Reference Manudl,
Universitat Dortmund, Informatik 1V, 1992

/Weis9l/ Weil3enberg, N.:
HIT-OMA User's Guide,
Universitat Dortmund, Informatik 1V, 1991

/Wolf86/ Wolf, H.:
Outil de Modelization et dEvaluation HIT, Proc. of the "Workshop on

Computer Performance Evaluation”,
Sophia Antipolis, France, 1986, (in French)

All papers and documents referenced above are available on request.

Universitét Dortmund, Informatik 1V Version 1.2.00, July 1999

- 124 -

APPENDIX F.Index

%

%ANALYZER 103; 117
%BIND 55; 118
%COMMON 55; 117
%COMPILER 43; 117
%COPY 116

%COPY command 43
%DEFAULT 113
%END 117
%NOSOURCE 116
%PAGE 116

%PARM 117
%SOURCE 116
%TITLE 116

A

absorbing state 66

accept 24

ACCURACY 21,67, 77,79
AFTER 97

AGGREGATE 120
AGGREGATE statement 54; 56
aggregated component type 53
aggregation 7; 65; 87

all 26; 50

aways 24

analytic-algebraica 7; 21
AND THEN 89

announce queue 23
approximate estimates 77
approximate sol ution technique 59
arithmetic functions 101
ARRAY 90; 98

array aggregate 69

ARRAY of names 98
ARRAY of processes 98
assignment 91

AT 97

autonomous systems 122
AVERAGE 32

B

blocked 61
blocking 61; 68
BOOLEAN 89
bottleneck 20
BOUNDS 21
BRANCH 12
BRANCH statement 33
break down 73
BS2000 115
buffer 108

HIT and HI-SLANG. An Introduction

V. APPENDIX

bus 28; 61

C

cal by name 102

call by reference 102

cal by vaue 102

calingHIT 18

CASE statement 95

central server 35

CHAIN statements 33
CHARACTER 89

CHECK 117

CLOSE 92
CLOSED_CHAIN 34
coefficient of variation 61; 69
comment 116

communication 107
communication systems 61
compiler control statement 116
component 5

component arrays 46
Component Control Mechanism 23
component control procedures 122
component object 46
component type 46
COMPONENTs4; 12
concatenate 92
CONCURRENT statement 96
confidence interval 77; 79; 87
CONFIDENCE LEVEL 79; 83
configuration 5

CONSTANT 89

constants 89

CONTROL 67; 121

control file 113

control part 18

control record 117
CONTROL statement 84
control statements 12; 32
COUNT 80

counter 67; 70

cox 69

coxg 69

Coxian distribution 61; 67
cprio 70

CPU 27

CPUTIME 67

cpu_time 101

crandom 70

create 104

CREATE statement 14; 97
critical regions 105

cs4l

F. Index

D

data streams 80
deadlock 66

DEFAULT 89; 120
default specifications 86
degradation 28; 73
design 5

design styles 4
deterministic distribution 69
dialog task 27

digit 101

dimension 90

discrete event smulation 7
discrete, 100

disk unit 27

dispatch 25

distribution function 69
division of labour 53
DOQ4 7; 21; 54; 59; 61
dormancy 73

draw 31

DUETOdI 50
DUMPFILE 86
duration 78

dynamic arrays 90

E

Eager/Sevcik 21
ENCLOSE 47

enclosed components 47
entry area 23

eof 94

eoln 94; 101

equal 25

Erlang 69; 100
ESTIMATOR 86

Ethernet 28

EVALUATE 120
EVALUATE statement 15
evaluation object 85
evaluation series 15
EVALUATIONOBJECT 86; 120
EVENT 80

event sequence 85
EVERY 97

examplel 14; 16
example2 35; 37; 39
executable code 113

exit area 23

exp2agg 55

experiment 6; 120
experiment block 15; 56; 82; 120
experimentl 17
experiment2 40; 50
exponential phase 69

Universitét Dortmund, Informatik 1V

-125-

F

FAN 116

fault tolerant server 67; 73
fcfs24

fcfs scheduling 59
FCFS-scheduling 7

file name generator 18; 113
FOR 120

FOR loop 15; 95
FREQUENCY INTERVAL 79
ftserver 73

functional aspect 66

G

genera probabilistic distributions 61
geometric 32

get_result 101

global balance equation 65

graphical output 86

graphs 122

H

Heterogeneous Modelling 123
HI-SLANG 3

HI-SLANG compiler 18
HI-SLANG syntax diagrams 120
hierarchica model 39
hierarchical model analysis 53
hierarchica modelling 35
HIERARCHY 120

histd 100

histograms 122

HIT 113

HIT model world 4

HIT standard mobase 105
HIT-FAN 116

HITGRAPHIC 123

hold 30

horizontal refinement 35; 41
hyper-exponential distribution 69
hypo-exponential distribution 69

|

I/0O statement 92

idle processor 73

IF statement 33
immediate 24

INDENT 118

INFILE 89; 92
INTEGER 89
inter-instantiation time 14
i0_subsystem 44

Version 1.2.00, July 1999

- 126 -

L

lastitem 94

last_seed 87

layers4; 5

Icfspr 24

length of the simulation 87
LET 102

letter 101

levels4; 5

LIMIT 66

LIN27; 21; 61

linear 100

link name 43; 86; 116
LISTING 118

load 5; 11

load filtering hierarchy 49
LOOP 120

LOOP statement 32
losses 61

lower_bounds 90

M

machine5; 12

main memory 61

Markov 65

Markov chain 7

Markov models 67

Material Flow 123
McKennaand Mitra 21
MEAN 79

MEASURE 82; 121
MEASURE statement 86
measurement time interval 86
memory constraint 71
memory management 70
MERGE 51; 121

METHOD 82
mix-dependent speeds 61
model 5

model object 30

model time 101

model type 30

modelling base 4; 105; 118
modules 4

multi-level aggregation 57
multi-level/multi-layered model 37
multi-processor 28
multi-value assignment 91
multiple assignment 91
multiple resource holding 61
multiprocessor 73

N
negexp 12; 31; 59

HIT and HI-SLANG. An Introduction

V. APPENDIX

non-blocking 71
non-exponential distribution 67
non-preemptive 59; 60; 67
non-standard stream 81
normal 100

NOSOURCE 117
nowaitsend 108
NOWARN 118

number of states 66
numerical evaluation 65
numerical technique 7; 67

@)

observation value 81
observations 79
observer 109
OCCUPATION 80
off-line analysis 53; 87
offer 26

OMA 113

OPEN 92
OPEN_CHAIN 34
operating system 113
ORELSE 89
OUTFILE 89; 92
OUTPUT option 86

P
P 105

parameter transmission mode 102
parameterization 14

passive resources 61

PBH 21

performance bounds 21
performance indice 19
performance measure 77
performance values 7

permanent processes 32

point estimate mean 77
POINTER 89

pointers 122

poisson 100

Poisson arrival stream 97
POPULATION 19; 77; 80
pre-analysis 53; 54

pre-analyzed component types 7
Pre-compilation 122
PRE-SLANG 122

PREANA 118

predefined component types 105
preemptive 59; 67
PREEMPT_RATE 80

prionp 60

prioprep 59

priority preemptive repeat 59

F. Index

priority scheduling 7; 68
prioserver 60

PROB 33

probability 33
procedure 101
PROCESS 98

process pattern 11
process state 98

product form network 7
PROVIDE part 46

R

random 68

random drawing procedure 100
random scheduling 68
rates 80

READ statement 94
REAL 89

receiver 107

Records 122

REFER part 13; 104
refinement 35

relevant parameter space 87
rliable 78

repair units 73

request 12

resampling 59

response time 19

restrict 68

restricted capacity 67; 68
RESULT 99; 101

result files 113

results 99; 102
reusability 53

REXX 115

robustness property 61
round 91

S

schedule 24
SCHEDULE_RATE 80
script 114

sdequal 25

sdshared 25

seed 87

semaphor 105
semaphore 62; 71; 105
sender 107

separable models 59
separable network 7
server 5; 12

service 11; 29; 97
service area 23
SERVICE ARRAY 99
service mix 61

Universitét Dortmund, Informatik 1V

- 127 -

service requests 23

service type 29

SERVICEs4

shared 25

simple data type 89

SIMULA 7; 18; 113
simulation 77

simultaneous resource possession 107
Solver information. 122
solvers 6

speed 25

spend 30

standard modelling base 73
STANDARDDEVIATION 79
START and STOP conditions 86
START condition 86

start value 87

STATE 80

state space 66

state space explosion 65
state vector 70
state-dependent speed 28
statistical evaluation mode 80
statistical nature 78

statistical variability 77
steady-state 77

STOP condition 84; 86
stop_evaluation 101

stream 19; 81

Structured Modelling 123
SUBMIT statement 98
synchronisation features 65
synchronization 7; 62; 67
synchsend 107

T
table 83; 86; 118
temporary files 115
terminal 27

TEXT 89; 92
thrashing 28
threshold 28
THROUGHPUT 19; 80
time 101

TIMES loop 32

timing specification 98
tokenpool 62; 106
TRACE 85; 118
TRACE option 84
TRACEALL 85
trace_off 87; 101
trace_on 87; 101
trace_state 101
trajectory 77; 78; 80
transfer_results 101
transient phase 78

Version 1.2.00, July 1999

- 128 -

trangition rate matrix 65
triples 49
TURNAROUNDTIME 19; 80

U

uniform 100

UNIX 114

UNTIL loop 32
UPDATE 81
UPDATES 118

upper bound 90
upper_bounds 90

USE declaration 11; 101
user-defined stream 81
UTILIZATION 19; 80

V

V 105

validation 87
VARIABLE 89
Variables 89

vertical refinement 35; 44
VIA 86

virtual machines 4
VM/CMS 115

wW

what-if questions 20
WHILE loop 32
width 79; 83
working storage 113
Workload 123
WRITE statement 93

X
XREF 118

HIT and HI-SLANG. An Introduction

V. APPENDIX

