
HITHIT andand

HI-SLANGHI-SLANG

AnAn
IntroductionIntroduction

Document Version 1.2.00

thethe

H i e r a r c h i c a lH i e r a r c h i c a l E v a l u a t i o nE v a l u a t i o n T o o lT o o l

HITHIT
Version 3.1.000

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

HIT AND HI-SLANG: AN INTRODUCTION

Norbert Weißenberg (Editor)
Achim Wilde (Editor)

Bruno Müller-Clostermann
Salwa Shaban
Wolfgang Dittrich

Part of the material has been taken from publications of the HIT staff. The document
has been typed by Brigitte Adunola, Nathalie Münter and mainly by Iris Koch and the
editor. Bruno Müller-Clostermann was the main author and editor of former versions of
this paper, called "HIT. An Introduction".

Many updates have been considered for the current document version 1.1.00. For main
changes to HIT version 3.1.000 please see Appendix D.

Copyright © 1990-99 : Universität Dortmund, Informatik IV.
ALL RIGHTS RESERVED.

Abstract:

The system evaluation tool, HIT, is a software tool for model-based performance
evaluations of computing systems during all phases of their life cycle. The hierarchical
model description language, HI-SLANG, allows the construction of deeply structured
models in a highly modular fashion. Quantitative model evaluations can be performed
using simulative or a vast range of analytical methods.

HIT has been developed at the chair of Prof. Dr.-Ing. H. Beilner, Fachbereich
Informatik, Universität Dortmund in cooperation with Nixdorf Computer AG and with
partial support of the BMFT (German Federal Ministery of Research and Technology).
The tool, HIT, is in industrial use at computer manufacturing companies since mid
1985. It is operational in Siemens BS2000, IBM VM/CMS, IBM MVS and several
Unix environments (Sun/3, Sun/4 and Apollo workstations, PC '386, WX200, ...).

This document is the primary source for the HIT beginner. Corrections, comments,
criticisms and suggestions for improvements relating to this document are welcome.
For a complete language description the reader is referred to the HI-SLANG Reference
Manual. Additionally the document on the HIT-OMA Object Management System and
the graphical interface HITGRAPHIC will be helpful.

Address:
Universität Dortmund
Informatik IV
Prof. Dr.-Ing. H. Beilner
D-44221 Dortmund

Telefon: (Germany)-(231) 755-2411
Telefax: (Germany)-(231) 755-4730
E-Mail: hit@ls4.informatik.uni-dortmund.de

Contents - i -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

I. A FIRST LOOK ON HIT . 1

0 . Introducing the Big Idea . 3
0.1. Motivation and Main Ideas...3

0.1.1. The Modelling Tool HIT and the Language HI-SLANG...........3
0.1.2. Areas of Application5

0.2. Sketching the HIT Model World5
0.2.1. Machines and Loads5
0.2.2. Layers, Models and Components .. .5

0.3. Quantitative Evaluation Techniques in HIT6
0.4. How this Document is Organized8

II. SUBSET FOR SEPARABLE MODELS AND THEIR
EXTENSIONS.. 9

1 . F i r s t S t e p s w i t h H I T . 1 1
1.1. Overview...... .11
1.2. A Basic Model...11

1.2.1. The Load11
1.2.2. The Machine .. .12
1.2.3. Referring the Load to the Machine .. .13
1.2.4. Building the Complete Model..14
1.2.5. Describing an Experiment..15
1.2.6. The Whole Model .. .16

1.3. Handling the HIT System..18
1.3.1. How to Call HIT18
1.3.2. HIT Output...18

1.4. Performing First Experiments .. .19
1.4.1. Performance Indices .. .19
1.4.2. Some What-If Questions .. .20

1.5. Solvers for Separable Models and their Extensions.........................21
1.5.1. DOQ4.... .21
1.5.2. LIN2... .21

2 . HI-SLANG Subset for Flat Models . 2 3
2.1. Overview...... .23
2.2. Component Control Procedures...23

2.2.1. Accept...24
2.2.2. Schedule..24
2.2.3. Dispatch .. .25
2.2.4. Offer .. .26

2.3. Examples for the Use of Servers..27
2.3.1. Modelling CPUs (Sharing Service Capacity)......................27
2.3.2. Modelling Dialog Users (Infinite Servers) .27
2.3.3. Modelling Input/Output Devices (Queueing).......................27
2.3.4. Modelling Multi-Processors..28
2.3.5. Modelling of Degradation due to System Overhead...............28

2.4. Services...29
2.5. Model Types...30
2.6. Spend and Hold .. .30
2.7. Distribution Functions..31

2.7.1. Negexp31
2.7.2. Draw.... .31

- ii - Contents

HIT and HI-Slang. An Introduction

2.8. Control Statements..32
2.8.1. The Infinite Loop..32
2.8.2. The TIMES Loop..32
2.8.3. The WHILE Loop...32
2.8.4. The UNTIL Loop32
2.8.5. The IF Statement .. .33
2.8.6. The BRANCH Statement...33
2.8.7. The CHAIN Statements .. .33

3 . Hierarchica l Model Spec i f i cat ion . 35
3.1. Overview...... .35
3.2. A Hierarchical Model .. .37

3.2.1. Transforming a Model into a Component .. .37
3.2.2. A Two-Level Model...37

3.2.2.1. Component Type cs......................................38
3.2.2.2. Model Type example2....................................39
3.2.2.3. The Experiment experiment2............................40

3.3. Refinement of a Component Type...41
3.3.1. Horizontal Refinement..41

3.3.1.1. The Refined Component Type cs.......................41
3.3.1.2. Inclusion of cs in example2 .. .43

3.3.2. Vertical Refinement .. .43
3.3.2.1. The Component Type io_subsystem...................44
3.3.2.2. Inclusion of io_subsystem in cs .. .45

3.4. HI-SLANG Subset for Hierarchical Models.................................46
3.4.1. Components and Component Types................................46
3.4.2. Enclosed Components..47
3.4.3. Load Filtering Hierarchies..49

4 . Hierarchical Model Analysis (Aggregation) . 5 3
4.1. Overview...... .53
4.2. Principles of Hierarchical Analysis..53
4.3. Applying Aggregation .. .54
4.4. HI-SLANG Subset for Model Aggregation..................................56

4.4.1. Aggregate Statement .. .56
4.4.2. Restrictions in Aggregation .. .57

5 . Extensions and Limits of Separable Models .59
5.1. Overview...... .59
5.2. An Extension of Separable Models..59

5.2.1. Approximate Solution of a Class of Non-Separable Models.....59
5.2.2. FCFS Scheduling .. .59
5.2.3. Priorities..59

5.3. What Cannot be Treated by DOQ4 or LIN2..................................61
5.3.1. Non-Exponential Distributions .. .61
5.3.2. General State Dependent Service Speeds...........................61
5.3.3. Multiple Resource Holding...61
5.3.4. Blocking and Losses..61
5.3.5. Synchronization .. .62

Contents - iii -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

III. SUBSET FOR MARKOV MODELS .63

6 . Introduct ion to Numerical Evaluat ion. .65
6.1. Overview...... .65
6.2. Basic Concepts of Markov Models..65
6.3. Hints and Warnings...65

6.3.1. On Aggregation..65
6.3.2. On State Space Explosion..66
6.3.3. Trace Your Models..66
6.3.4. Functional Analysis...66
6.3.5. Open Chains .. .66

7 . HI-SLANG Constructs for Markov Models .67
7.1. Overview...... .67
7.2. How to Specify Numerical Evaluation..67
7.3. Scheduling Disciplines..68

7.3.1. Priority Scheduling..68
7.3.2. Random Scheduling...68

7.4. Servers with Restricted Capacity..68
7.5. Distribution Functions..69

7.5.1. Coxian Distributions..69
7.5.2. General Coxian Distributions..69
7.5.3. Other Distributions..69

7.6. Synchronization Features...70
7.6.1. The Concept of Counters...70
7.6.2. The Component Type Counter.......................................70
7.6.3. Examples for the Use of Counters .. .71

7.6.3.1. A Binary Semaphore.....................................71
7.6.3.2. Memory Constraints......................................71

7.7. Fault Tolerant Servers .. .73

IV. FEATURES FOR SIMULATIVE MODELS75

8 . On Simulative Evaluation . 7 7
8.1. Overview...... .77
8.2. Inherent Problems in Simulative Evaluations................................77
8.3. Extensions for Simulation..79

8.3.1. Estimators..79
8.3.2. Streams..... .80

8.3.2.1. Types of Streams...80
8.3.2.2. More Predefined Streams................................80
8.3.2.3. User-Defined Streams....................................81

8.3.3. A Simulative Experiment...82
8.3.4. Results from the Simulation..83
8.3.5. The CONTROL Statement .. .84

8.3.5.1. Start and Stop Conditions .. .84
8.3.5.2. The TRACE Option .. .85

8.3.6. Measurement Intervals..86
8.4. Hints and Warnings...87

8.4.1. Wide Range of Parameters...87
8.4.2. Hierarchical Models...87
8.4.3. Length of Simulation Runs...87
8.4.4. Tracing Simulations...87
8.4.5. Influence of the SEED Parameter....................................87

- iv - Contents

HIT and HI-Slang. An Introduction

9 . The Model World for Simulation . 8 9
9.1. Overview...... .89
9.2. Basic HI-SLANG Data Structures and Statements..........................89

9.2.1. Simple Data Types .. .89
9.2.2. Structured Data Types .. .90

9.2.2.1 Arrays...... .90
9.2.2.2. Dynamic Arrays ..90

9.2.3. Assignments .. .91
9.3. Handling of Files and Texts..92

9.3.1. OPEN and CLOSE..92
9.3.2. WRITE Statement...93
9.3.3. READ Statement...94
9.3.4. Eof, Lastitem and Eoln .. .94

9.4. More Control Statements...95
9.4.1. The CASE Statement..95
9.4.2. The FOR Loop...95
9.4.3. The CONCURRENT Statement.....................................96

9.5. More on Services..97
9.5.1. The CREATE Statement..97
9.5.2. The SUBMIT Statement..98
9.5.3. Static Process Declaration..98
9.5.4. Service Arrays...99
9.5.5. Services Supplying Results..99

9.6. Procedures100
9.6.1. More Random Drawing Procedures................................100
9.6.2. Predefined Procedures...101
9.6.3. User-Defined Procedures..101

9.7. An Extensive Mini Example...103

10. More Predefined Component Types . 1 0 5
10.1. Semaphor..105
10.2. Tokenpool...106
10.3. Synchsend...107
10.4. Nowaitsend108
10.5. Observer...109

V. APPENDICES .111

APPENDIX A. H o w t o R u n H I T . 1 1 3
A.1. Guide for UNIX..114
A.2. Guide for BS2000..115
A.3. Guide for VM/CMS..115

APPENDIX B. Handl ing of the HIT System. 116
B.1. Some Compiler Control Statements..116
B.2. The Control/Configuration File...117

B.2.1. %PARM. Compilation and Analyzer Options117
B.2.2. %BIND. Binding and Linking..118

APPENDIX C. HIT Experiment Syntax Sketch. .120
APPENDIX D. More HI-SLANG Features . 122
APPENDIX E. R e f e r e n c e s . 1 2 3
APPENDIX F. I n d e x . 1 2 4

Part IPart I

A FIRST LOOKA FIRST LOOK

ON HITON HIT

ChapterChapter

00

0. Introducing the Big Idea - 3 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

0. Introducing the Big Idea

0 .1 . Motivation and Main Ideas

The development of computing systems is associated with many problems due to the
fact that both the performance requirements and the technological progress are
increasing rapidly. It is impossible to master the increasing complexity of system
architectures, the integration speed in the hardware, as well as the diversification in the
software area without employing tools to analyse both planned and existing computing
systems quantitatively and qualitatively.

In particular, modelling and evaluation should be done by the designer, consultant,
salesman or engineer himself without being an expert in simulation, statistics, queueing
theory, numerical analysis and related techniques for quantitative system evaluation.

Consequently, it was an important requirement for the HIT system, that a modelling
problem can be solved by these persons themselves and must not be passed to a
modelling specialist, thus eliminating the enormous communication overhead.

0 .1 .1 . The Modelling Tool HIT and the Language HI-SLANG

HIT is a performance modelling tool which allows the structured specification and the
quantitative evaluation of computing system models.

Nowadays system design and development are usually based on a layered model with
functional abstraction. HIT employs therefore hierarchical modelling techniques
allowing the separate specification and analysis of models, model components and their
evaluations.

The software tool, HIT supports

• the specification of (models of) dynamic, discrete-event, stochastic systems using a
particular model description language, HI-SLANG, for the description of model
structures and the evaluation to be performed;

• the (performance) analysis of correspondingly specified models using a variety of
techniques of the simulative, analytic-algebraical and analytic-numerical type.

Although originally developed for evaluating computing system performance, HIT also
lends itself to the analysis of "similar" systems such as communication and office
systems, transport and logistic systems and others of the specified (dynamic, discrete-
event, stochastic) type.

- 4 - I. A FIRST LOOK ON HIT

HIT and HI-SLANG. An Introduction

The HIT model world is tailored upon the prevailing view of computing system
structures which partitions a system

• vertically, into a sequence of layers and levels, communicating via function calls,
and jointly representing a hierarchy of virtual machines;

• horizontally, into independent, mutually well-protected, information-hiding
modules each one realising some subset of functions to be provided at a particular
level.

The corresponding HI-SLANG specification maintains as far as possible the
conventional, high-level-language (HLL) approach, assumed to be well-known to and
convenient for the envisaged user community of the tool:

• Conventional functions/procedures (termed SERVICEs) serve as "patterns" for
process/subprocesses "to-be-run". They are described in terms of traditional HLL
control and data structures.

• SERVICEs can be packaged into modules (termed COMPONENTs). These services
can be called upon by other (higher layer) SERVICEs, situated within other (higher
layer) COMPONENTs. Imported (USEd) and exported (PROVIDEd) names of
SERVICEs are explicitly linked in order to increase the independence of partial
designs.

• Options for initiating processes in time-controlled or event-controlled mode
complete the desired specification capabilities for describing systems of parallel
processes.

From a software engineering point of view, HI-SLANG specification supports various
design styles such as top-down, bottom-up and (realistically) ping-pong/yo-yo. From a
modelling point of view, disjoint specifications of models (to be analysed) and
experiments (to be performed with these models) greatly increase the flexibility of use.
Additionally a modelling base is offered by HIT to support storage and retrieval of
(partial) models and analysis results. This option eases to combine previous modelled
parts into larger models as well as the development of team developed models.

HIT evaluation techniques include the following approaches:

• stochastic discrete-event simulation with appropriate, statistical result evaluation
• exact result evaluation for "separable networks" (with product-form solution) and

approximate evaluation techniques for both "large" separable and certain "non-
product-form" networks

• numerical evaluation of Markov chain representations of general models
• sub-model analysis and aggregation with the objective of generating "equivalent"

higher level representations, to be used in structured and/or heterogeneous (total
model) evaluation.

It must be emphasized that a HIT model specification is not directly influenced by the
particular evaluation technique to be employed. There does, of course, exist an indirect
influence whereby certain models will turn out not to be tractable by one or the other
analysis technique, with simulation clearly offering the largest spectrum.

0. Introducing the Big Idea - 5 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

0 .1 .2 . Areas of Application

HIT is a tool for the performance evaluation of computing systems during most phases
of their life cycle.

• During the design of computers, computer components and operating systems,
model evaluations can answer many of the arising questions. Design studies are
usually undertaken by the producer of a system rather than by its users.

• During selection and configuration of systems, model evaluations can help to
choose among the various available alternatives, for example, the most convenient
alternative to a given application.

• During the operation phase of computing systems, model evaluations are helpful for
tuning and upgrading purposes.

Apart from computing system modelling, HIT can be used for the modelling of
communication systems, office systems, flexible manufacturing systems and others.

0 .2 . Sketching the HIT Model World

We sketch very briefly the most important features of HIT.

0 .2 .1 . Machines and Loads

In each model layer, a usable machine and a using load face each other. A machine is
composed of a set of components. Each of them provides certain usable services. The
total set of services (of all machine components) defines the level upon wich a layer
may be built. A load consists of a set of process patterns. Each one specifies a
particular prescription for the dynamic use of any (usable) services. Processes which
are obeying the rules of specific service can be instantiated in time-controlled or event-
controlled mode within the load. Returning to the machine, components are normally
declared as instances of certain component types. Predefined standard types are
available, amongst them the component type, server, which provides a basic service,
request (amount: real). The parameter amount indicates the temporal duration of the
service, request.

0 .2 .2 . Layers, Models and Components

A model layer is formed by referring a load to a machine. This step includes an explicit
linking of the various used services (of the load) to specific provided services (of the
machine). The resulting, linked machine/load complex is termed a model. If the
machine consists exclusively of standard server components, the traditional non-
hierarchical model will be achieved, consisting only of a single layer. A model can be
transformed into a component by declaring certain of its internally specified services as
externally accessible, usable services. We thereby arrive at (part of) the next higher
level, i.e., at (part of) the basis of a next higher layer. Consequent application of this
concept results in arbitrarily multi-level/multi-layer models, which can be developed
top-down or buttom-up or, more realistically, in a ping-pong strategie.

- 6 - I. A FIRST LOOK ON HIT

HIT and HI-SLANG. An Introduction

0 .3 . Quantitative Evaluation Techniques in HIT

HIT users do not have to bother about the analysis and the evaluation of their models.
This is automatically done by HIT! The user must merely specify the experiments to be
performed and the analysis technique to be used. Experiment specifications describe the
results demanded from model or component analysis. As for model analysis, a
corresponding experiment specification encloses

• instantiation of a model (of an earlier defined model type) inclusive of the setting of
any parameters;

• specification of the model analysis technique;
• indication of all evaluation objects, i.e., model components, where measurements

are to be taken;
• indication of all measurement streams, i.e., performance variables, of the above

evaluation objects, for which evaluation is demanded;
• specification of measurement specifics; and
• indication of data gathering starting rules (if simulation is the selected analysis

technique) and evaluation stopping rules.

Depending on whether the analytical or the simulative method is specified, the HIT
system will transform the HI-SLANG representation of the model to analytical
algorithms or to a simulation program. The figure depicted below shows the different
solvers of the HIT system. At the tree´s leaves the method names used by HIT are
given.

Please note that due to historical reasons there are different names for the same solution
method. Some of these names refer to different algorithms used in that solver, since
most solvers implement a collection of algorithms. The most appropriate one is selected
at run time, and the reasons for this selection are given on the HIT listing.

Solution Methods

ANALYTICAL

NumericalAlgebraical

DOQ4

Simulation

SEPARABLE
BCMP
PRODUCTFORM
DOQ3

DOQ4
NONSEPARABLE-
APPROXIMATE

PERFORMANCE
BOUNDS

LIN2
LINEARIZER
SEPARABLE-
APPROXIMATE

SIMULATIVE NUMERICAL
MARKOV
MARKOVIAN
MARK

LIN2

Figure 0.1: HIT Solvers

0. Introducing the Big Idea - 7 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

In the following we will use the method names DOQ4, LIN2 and NUMERICAL.

The analytic-algebraical algorithms can treat the so-called separable networks or
product form networks, which form an important model class for quantitative
performance evaluation. Separable models can either be solved exactly (via the DOQ4-
algorithm) or approximately (via the Linearizer LIN2-algorithm). The second choice
should be made in case of very large models. It may also deliver lower and upper
bounds for performance values, called performance bounds.

A class of non-separable models including FCFS-scheduling with different service
requests as well as priority scheduling disciplines can also be treated by the DOQ4-
algorithm (which is obviously an extension of the older DOQ3!).

Models based on Markov chains can be evaluated by numerical techniques. These
models include more general distribution functions, priority scheduling disciplines and
features for the modelling of synchronization mechanisms.

The simulative method is based on the discrete event simulation concept of the host
language, Standard SIMULA.

As a result of model evaluation we obtain performance values for selected model
components or pre-analyzed component types. Pre-analyzed components are
components that are analysed without being influenced by the rest of the model. This
process leads to a flow-equivalent substitute of a component in the form of a state
dependent server component. It can later be included in a model, replacing the original
component, yielding (under certain conditions) approximately the same results as the
original. Currently only the DOQ4-algorithm can be used for aggregation.

HIT offers the performance indices population, turnaround time, utilization, occupation
and throughput. Additionally self-defined performance indices as well as scheduling
and preemption rates can be evaluated simulative.

- 8 - I. A FIRST LOOK ON HIT

HIT and HI-SLANG. An Introduction

0 .4 . How this Document is Organized

We will gradually introduce various HI-SLANG subsets and the pertinent modelling
possibilities followed by examples and general explications. We dedicate special
sections to the following subsets of HI-SLANG:

• Subset for separable models and some extensions. There are two solution methods
for this class of models:

- METHOD ANALYTICAL "DOQ4" for the exact evaluation (and aggregation) of
separable models as well as for the approximate evaluation (and aggregation) of
extended separable models

- METHOD ANALYTICAL "LIN2" for the approximate evaluation of large
separable models (including performance bounds)

• Subset for METHOD ANALYTICAL "NUMERICAL" for the evaluation of
Markov chain based models, which includes the subset for separable models (with
some few exceptions)

• and the METHOD SIMULATIVE which is the most comprehensive model class. It
includes both of the above subsets (with some few exceptions). But simulation in
general needs much more cpu time than analytical solvers and the results are only
estimated.

It is not our intention to give an exhaustive description of HIT, although we try to be
complete in the parts which are of central importance.

Detailed information can be found in the HI-SLANG Reference Manual (/Weis92/)
and, concerning the use of a modelling base, in the HIT-OMA User's Guide
(/Weis91/). Moreover the graphical interface of HIT is described in the HITGRAPHIC
User's Guide (/Heck91/).

In the next part of this manual (Part II) we deal with the subset of separable models.
We recommend the HIT beginner to restrict himself to this subset. Numerical and
simulative evaluation of HIT models should be postponed until the first modelling
experiences with the HIT system have been made. They are described in Parts III and
IV respectively.

The last part consists of several appendices. Appendix A. is devoted to the handling of
the HIT system on different computer systems and should be used as reference material
if necessary. Appendix B. summarizes the HI-SLANG syntax for experiments and
Appendix C. lists HI-SLANG features not treated in this introduction. Some references
and an index conclude this document.

Part I IPart I I

S U B S E T F O RS U B S E T F O R

S E P A R A B L E M O D E L SS E P A R A B L E M O D E L S

A N D T H E I R E X T E N S I O N SA N D T H E I R E X T E N S I O N S

ChaptersChapters

1 - 51 - 5

1. First Steps with HIT - 11 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

1. First Steps with HIT

1 .1 . Overview

The objective of this chapter is:

• to become acquainted with the basic elements of modelling with HIT;
• to become conversant with handling the HI-SLANG compiler;
• to answer, by performing experiments, some "what-if" questions, which will typi-

cally arise while evaluating several design alternatives and
• to comprehend the HI-SLANG features for the evaluation of "flat" (i.e., non-

hierarchical) models.

To use HIT as soon as possible, we postpone an examination of isolated language
constructs and start with a complete example.

1 .2 . A Basic Model

We consider a computing system, which satisfies the service requirements of certain
tasks. The computing system is called the machine. The tasks to be processed are called
the load. In HI-SLANG we address the tasks as processes. They are created according
to a process pattern, called a service.

1 .2 .1 . The Load

The load our computing system has to face behaves as the process pattern depicted
below. After its creation it fulfills an initial computing requirement. Then it repeats a
loop 9 times on the average. Within this loop read or write accesses to files are
performed, followed by more calculations. Finally the process finishes.

Figure 1.1: Simple Process Pattern

After describing the load in an informal manner we have to translate the informal
description into a formal HI-SLANG service declaration. We use four service requests,
one for calculations and three for file accesses. But before we can use them we have to
name them in the USE declaration part of the corresponding service named batch_task:

read_-
file_a

read_-
file_b

write_-
file_c

calcu-
late

1/3
1/3

1/3
0.9

0.1
calcu-
late

- 12 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

TYPE batch_task SERVICE;

USE SERVICE
calculate (amount: REAL);
read_file_a(amount: REAL);
read_file_b (amount: REAL);
write_file_c (amount: REAL);

END USE;

After we have finished this step, we can determine by control statements how the
services are used.

BEGIN
calculate (negexp(5.0));
AVERAGE 9 TIMES
LOOP

BRANCH
PROB 1/3 : read_file_a(negexp(1/0.1));
PROB 1/3 : read_file_b (negexp(1/0.2));
ELSE : write_file_c (negexp(1/0.4));

END BRANCH;
calculate (negexp(1/0.2));

END LOOP;
END TYPE batch_task;

We have refined the file accesses by a BRANCH construct now. The files a, b and c are
accessed with identical probabilities 1/3. The rest of the process pattern was directly
translated into HI-SLANG.

Please note that we have used the random distribution function negexp to specify the
amount of required service. Its parameter gives the rate R of a negative exponential
distribution with mean 1/R.

1 .2 .2 . The Machine

After specifying the load, the machine has to be described by means of units. We
assume a CPU and three disk units. From now on, we refer to them as components.
These components can accept and process tasks, and finally offer them to the
environment. In the given context we don't intend to refine these components any
further. Thus they are called elementary components or standard components of type
server. You can think of them as the machine. A server provides a basic service request
(amount: real), the parameter indicating the temporal duration of the service.

The progress of the service is governd by rules which can be specified by parameters of
the components shown below. See also Section 2.2. for more information.

COMPONENT cpu: server
(LET accept := always,
 LET schedule:= immediate,
 LET dispatch:= shared,
 LET offer:= all);

COMPONENT disk_a, disk_b, disk_c : server (LET schedule := fcfs);

1. First Steps with HIT - 13 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

The parameterization of the CPU has the following meaning (in the order of
appearance):

• Service requests are always accepted without conditions.
• Scheduling is immediate, i.e., there is no waiting time.
• The processing capacity is shared between all processes.
• All completed processes are offered.

The parameterizations of the disks are different. Note that fcfs (first-come-first-
scheduled) has been chosen as scheduling discipline. The other parameters have their
default values, which are always, equal(1.0) and all, respectively.

1 .2 .3 . Referring the Load to the Machine

We have described the machine by a set of components and the load by a set of
services. Now we can specify from which machine components the load requirements
ought to be fulfilled. Obviously the computing requirements should be referred to the
CPU and the IO requirements should be referred to the disk units.

We say, that a load is referred to a machine for execution by explicit binding the various
used services of the load to specific provided services of the machine. In HI-SLANG
this has to be done by a REFER part, depicted below. Remember that the basic service
of cpu and disks is request.

REFER batch_task TO cpu, disk_a, disk_b, disk_c
EQUATING

batch_task.calculate WITH cpu.request;
batch_task.read_file_a WITH disk_a.request;
batch_task.read_file_b WITH disk_b.request;
batch_task.write_file_c WITH disk_c.request;

END REFER;

The figure below shows the HITGRAPHIC equivalent of the former REFER part.

Figure 1.2: HITGRAPHIC Representation of a Component Type

cpu
:server

disk_a
:server

disk_b
:server

disk_c
:server

calculate

read_file_a

read_file_b

read_file_c

batch_task

 BODY

- 14 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

1 .2 .4 . Building the Complete Model

A complete model type is formed by concatenating the load, the machine and the
REFER part, followed by a CREATE statement within a block which describes the
arrival pattern of batch tasks, e.g., of processes of type batch_task. Note the parameter
tasks_per_second of the model example1.

The parameterization of a model is not necessary. But it is advantageous in order to
perform many similar experiments with different parameters. For example it is now
possible to investigate which load our model cannot handle any more.

TYPE example1 MODEL (tasks_per_second: REAL);

{description of load}
{description of machine}
{referring load to machine}

BEGIN
CREATE 1 PROCESS batch_task EVERY negexp (tasks_per_second);

END TYPE example1;

The CREATE statement leads to the instantiation of individual processes of type
batch_task at exponentially distributed inter-instantiation times with mean value
1/tasks_per_second.

Note that the model example1 consists exclusively of standard server components. The
following figure illustrates the "flatness" of the model. Aside from flat models HIT
offers also hierarchical models. Their construction and advantages will be shown in the
succeeding chapters.

Figure 1.3: Model Structure

Up to now we have specified a model type only. In order to measure its performance
indices, i.e., to perform an experiment we have to add an experiment block. This block
specifies the lacking actual parameter tasks_per_second and determines the evaluation
method to be used as well as the performance indices of interest.

cpu
:server

disk_a
:server

disk_b
:server

disk_c
:server

:example1

1. First Steps with HIT - 15 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

1 .2 .5 . Describing an Experiment

We have learned in the previous section that the parameters of a model type will be set
in an experiment block. It consists of a declaration part and a statement part. The former
may contain declarations of constants, variables and procedures. The latter describes the
performance indices to be determined by means of an EVALUATE statement. In our
example we are going to declare the variable arrival_rate of type REAL in the
declaration part.

The EVALUATE statement generates an analysable model object by setting the actual
model parameters and describes all performance indices of interest. An experiment
block for our sample model is depicted below.

EXPERIMENT experiment1 METHOD ANALYTICAL "DOQ4";

VARIABLE arrival_rate: REAL;

BEGIN
FOR arrival_rate := 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
LOOP

EVALUATE
MODEL model1: example1 (arrival_rate);

EVALUATIONOBJECT
cpu VIA model1.cpu,
disk VIA model1.disk_a;

BEGIN
MEASURE POPULATION, UTILIZATION, THROUGHPUT,

TURNAROUNDTIME AT cpu;

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT disk;

END EVALUATE;

END LOOP;
END EXPERIMENT experiment1;

Concerning the experiment block we emphasize the following points:

• The FOR loop embraces an evaluation, starting with EVALUATE MODEL, which
will be repeated for different model objects. We specified an evaluation series.

• The different models (all named model1) have the same type, namely example1.
They only differ in the actual parameter values.

• The EVALUATIONOBJECT construct defines evaluation objects (cpu and disk) via
model components. The MEASURE statements refer to these evaluation objects.

• As performance estimator the mean value is chosen (by ESTIMATOR MEAN).
Indeed MEAN is the only choice in case of separable networks.

• The output is directed to a table file, as is the default. Otherwise an OUTPUT part
has to be added (see Reference Manual).

• If you like you can simply switch to another evaluation method by replacing
ANALYTICAL "DOQ4" by, e.g., ANALYTICAL "LIN2".

• Note that all HI-SLANG statements can be used for writing experiment bodies,
independent of the evaluation method used.

- 16 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

1 .2 .6 . The Whole Model

We now present the model and experiment in total. The following source text can be fed
to the HIT system:

TYPE example1 MODEL (tasks_per_second:REAL);

TYPE batch_task SERVICE;
USE SERVICE

calculate (amount: REAL);
read_file_a(amount: REAL);
read_file_b (amount: REAL);
write_file_c (amount: REAL);

END USE;

BEGIN
calculate (negexp(5.0));

AVERAGE 9 TIMES
LOOP

BRANCH
PROB 1/3 : read_file_a(negexp(1/0.1));
PROB 1/3 : read_file_b(negexp(1/0.2));
ELSE : write_file_c (negexp(1/0.4));

END BRANCH;

calculate (negexp(1/0.2));
END LOOP;

END TYPE batch_task;

COMPONENT
cpu: server

(LET accept := always,
 LET schedule := immediate,
 LET dispatch:= shared,
 LET offer := all);

COMPONENT
disk_a,
disk_b,
disk_c : server (LET schedule := fcfs);

REFER batch_task TO cpu, disk_a, disk_b, disk_c
EQUATING

batch_task.calculate WITH cpu.request;
batch_task.read_file_a WITH disk_a.request;
batch_task.read_file_b WITH disk_b.request;
batch_task.write_file_c WITH disk_c.request;

END REFER;

BEGIN
CREATE 1 PROCESS batch_task EVERY negexp (tasks_per_second);

END TYPE example1;

1. First Steps with HIT - 17 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

EXPERIMENT experiment1 METHOD ANALYTICAL "DOQ4";

VARIABLE arrival_rate: REAL;

BEGIN
FOR arrival_rate := 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
LOOP

EVALUATE
MODEL model1: example1 (arrival_rate);

 EVALUATIONOBJECT
cpu VIA model1.cpu,
disk VIA model1.disk_a;

BEGIN

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT cpu;

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME AT disk;

END EVALUATE;

END LOOP;
END EXPERIMENT experiment1;

- 18 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

1 .3 . Handling the HIT System

A model, which is written in HI-SLANG, will first be translated to Standard SIMULA
by the HI-SLANG compiler and will finally be translated to executable code by the
SIMULA compiler. In order to control the operation of the HIT system a control part
can be written, which is either a separate file or the beginning of the HI-SLANG
source. How to specify the control part is described in a later section.

Now we have to run the model described in the preceeding section. The evaluation of
our model example1 can be done without any control part.

1 .3 .1 . How to Call HIT

After calling HIT in the operating system environment HIT responds with the line

Please enter name of Compiler SOURCE or CONTROL file:

demanding for the name of the control or the source file. Since we do not need a control
file we supply the name of the source file.

HIT is normally processed in dialog mode, so you can expect a response within a short
time (provided you use METHOD ANALYTICAL). At the end of a HIT run you return
into operating system mode. Of course, HIT can also be processed in batch mode. In
any case, when you use HIT the first time, we recommend to contact the administrator
of the HIT installation on your host system. Some advices are given in Appendix A.

1 .3 .2 . HIT Output

Now you have activated HIT. But where are the results? By default all HIT output is
written to files named by the HIT file name generator by suffixing the control file name
with the kind of output. After a successful compilation from HI-SLANG via SIMULA
to executable code, followed by the execution of the model, the required values for the
performance indices will be supplied in a separate file. The results are normally
represented as tables, but they can as well be given in a simple graphical form. Please
see the Reference Manual for more information.

If the input file contains errors, (syntax errors, logical errors) we recommend to inspect
the listing file for finding and correcting these errors. In addition to your formatted HI-
SLANG source text you may find a cross reference listing (if demanded in the control
file) and the (let us hope empty) list of error messages. Moreover information about the
model solution process is appended to the listing.

1. First Steps with HIT - 19 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

1 .4 . Performing First Experiments

We first explain the performance indices, which are provided by HIT as results of an
experiment. Then we introduce some questions which can be answered with the help of
a model similar to example1.

1 .4 .1 . Performance Indices

HIT provides standard performance indices for all components of a model. In case of
example1 these performance indices can be determined for all used services of the
service batch_task and will be represented as a table in a separate file. Only those
performance indices will be given which are specified in the MEASURE statement of
the experiment block.

One can choose between the following performance indices, which are obtained by
evaluation of the so-called standard streams. Note that the results given by the analytical
method are mean values!

• THROUGHPUT

This is the number of processes leaving the considered component per time unit. If a
component provides several services, throughputs for the specific services can be
distinguished.

• TURNAROUNDTIME

This is the total time a process spends in the component until it is completed.
Sometimes response time or system time is used as a synonym.

• POPULATION

This is the number of processes present in a component. Another word for population
is filling. Sometimes the misleading term queue length is used in the literature.
Population includes the queued processes as well as the processes in service!

• UTILIZATION

This performance index is only permitted for components of type server and specifies
the use of that server on the average (utilization). Due to assigned service speed or the
simultaneous requests of different processes values greater than one may occur.

- 20 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

1 .4 .2 . Some What-If Questions

It is very important for you to make your own modelling experiences. For that reason
we recommend to perform some experiments with the model of example1. This will
give you a first impression how to handle some typical what-if questions appearing,
e.g., in system design and configuration.

Note that the model type or the experiment block have to be changed according to the
questions imposed. Now try to solve the following problems on basis of example1:

• What is the maximum load intensity (given by the arrival rate) which the system can
still handle?

• Find the bottleneck of the system and examine whether increasing the speed of the
CPU or of the disk units will improve the system throughput or not. (How to
specify the speed of a standard component is described in Section 2.5.1.)

• How does a 30% faster CPU affect the system performance?

• How are the system performance measures affected if the access to the disk devices
is not uniformly distributed? Consider, for example, an unbalanced case where the
probabilities of disk accesses are given by 0.2, 0.3 and 0.5 !

1. First Steps with HIT - 21 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

1 .5 . Solvers for Separable Models and their Extensions

HIT offers mainly two possibilities for solving separable models, an exact and an
approximate technique.

1 .5 .1 . DOQ4

By means of the analytic-algebraical solver DOQ4 separable models as well as certain
non-separable models can be analysed or aggregated. A check of restrictions will partly
be performed at run time. A choice between approximate or exact evaluation will be
automatically made during the execution of the experiment. Whenever possible the exact
solver will be chosen.

1 .5 .2 . LIN2

The algorithm which calculates approximate solutions of separable models called LIN2
is able to calculate the mean as well as the so-called performance bounds of
performance indices.

The algorithm for performance bounds calculates upper and lower bounds for
performance indices of separable models. Performance bounds are an appropriate alter-
native or supplement for exact and approximate evaluation methods, respectively. The
PBH method by Eager/Sevcik as well as the integral method by McKenna and Mitra are
implemented. Both can analyse separable models with state dependent and state
independent services.

The PBH method's state dependency is limited to monotonous increasing speed
functions and is dependent on the number of tasks in the concerning server. On the
other side it is required for McKenna/Mitra's method that every closed chain has to
contain at least one infinite server, which must not be overloaded. The state dependency
is limited to the speed which is itself dependent on the number of tasks in a server.
Therefore both methods cannot manage state dependent servers which speed is
dependent on the population vector, i.e., they cannot handle aggregated components.
Open chains visiting state dependent servers are not allowed. Influence can be taken on
the quality of the bounds to be calculated by means of the stop condition ACCURACY
in the control block. For accuracy only values ≤ 4 are allowed. Dependent on the size of
your models LIN2 will decrease the accuracy automatically in order to limit the effort.
In such a case a warning will be given.

Real values for accuracy will be rounded to integer values. If accuracy is smaller than
0.5 or the ACCURACY stop condition is omitted, no bounds will be calculated. The
stop condition CPUTIME will be ignored.

Performance bounds will be selected if you choose the LIN2 solver. Use ESTIMATOR
BOUNDS in the EVALUATE statement and ACCURACY as stop condition.

2. HI-SLANG Subset for Flat Models - 23 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2. HI-SLANG Subset for Flat Models

2 .1 . Overview

The objective of this chapter is:

• to comprehend how a component deals with service requests;
• to learn how server components are used for modelling;
• to become conversant with services and model types;
• to get familiar with spend, hold, negexp and draw and
• to learn HI-SLANG control statements

All this is necessary to specify flat models with HI-SLANG.

2 .2 . Component Control Procedures

A component deals service requests in the following manner:

Figure 2.1: The Component Control Mechanism

• All service requests are stored in the so-called announce queue.
• First such requests will be accepted in the entry area. For a standard component

there are no limitations or restrictions concerning the acceptance capacity (LET
accept := always).

• Then they are transported out of the entry area into the service area according to the
schedule strategy chosen.

• In the service area they will be processed according to the dispatch procedure.
• And finally, in the exit area, they will be offered. Note that a standard component

offers all tasks to its environment (LET offer := all).

announce queue

service area exit areaentry area

offeraccept schedule automatic
transfer

dispatch

progress denied progress granted activities finished

- 24 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

The organization of the processes' progress is governed by four behavior rules: accept,
schedule, dispatch and offer. Upon declaration every component is being parameterized
in accordance with the explications given below.

We now describe the function of these four rules and the possible parameter values
admitted for separable models. For numerical and simulative evaluation more behavior
rules are allowed.

2 .2 .1 . Accept

The accept procedure describes under which conditions new service requests will be
accepted. The default value always is the only possibility for the HI-SLANG subset
treated by METHOD ANALYTICAL.

2 .2 .2 . Schedule

A schedule procedure describes under which conditions a new process will be
transferred into (and out of) the service area. The available scheduling strategies for
separable models are:

• fcfs: first-come-first-scheduled (LET schedule:=fcfs)

The processes will be transferred from the entry area into the service area in the order of
their arrival. Imagine that fcfs is realized by a "queue".

• lcfspr: last-come-first-scheduled-preemptive-resume (LET schedule:=lcfspr)

Priority is given to processes just arriving. Therefore processes, which were longer
present are preempted, e.g., they are driven out of the service area. The services of the
preempted processes will be continued ("resumed") at the "break point". Imagine that
lcfspr is realized by a "stack".

• immediate: immediate scheduling

Arriving processes will be directly (immediately) transferred into the service area.
Therefore the processes do not suffer any waiting time in the entry area. The procedure
immediate is the default schedule procedure.

2. HI-SLANG Subset for Flat Models - 25 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2 .2 .3 . Dispatch

The dispatch procedure determines whether the service capacity is shared among all
processes present in the service area or whether each process is served with equal
speed.

There are various options of dispatching strategies which are fixed by the following
parameter values:

• shared: sharing the service capacity

LET dispatch := shared
 or LET dispatch := shared(S)

Each of the N processes in the service area is served with speed 1/N or with speed S/N,
respectively. Note that S may only have values > 0.0 .

• equal: equal service for all processes

LET dispatch := equal
or LET dispatch := equal(S)

All processes in the service area are served with the same speed 1.0 or with the same
speed S , respectively. It seems as if each process possesses its own processor
permanently. If a process does not have to spend some waiting time in the entry area
(immediate scheduling!), its service request time will be identical to its turnaround time.
If m denotes the service request, the turnaround time will be given by m/S .

• sdequal and sdshared: state dependent service speed

LET dispatch := sdequal (a, c)
or LET dispatch := sdshared(a, c)

"State dependent" means the service speed is a function of the component's population.

The first parameter a of sdequal and sdshared is a 2-dimensional array, which has to be
specified as follows:

[[N1,N2,...,Nk], [S1,S2,...,Sk]],

where N1,N2,...,Nk denote the component populations and S1,S2,...,Sk denote the
associated speeds. Note that the following conditions must hold:

N1 = 1 N1 < N2 < N3 < ... < Nk

and S1, S2, S3 ... Sk > 0.0

- 26 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

If N denotes the actual population of a component, the associated speed is given
according to the following interpretation.

N1 ≤ N < N2 : S1
N2 ≤ N < N3 : S2

.

.

.
Nk-1 ≤ N < Nk : Sk-1
Nk ≤ N : Sk

This means that we don't have to specify speeds for all possible fillings. The gaps will
be filled according to the interpretation given above. Examples which demonstrate the
application of state dependent speeds are given in the following chapter.

The second parameter, c, specifies a norm speed. The default value of c is 1.0. The
service speed can be increased and decreased by increasing or decreasing this
parameter, respectively. Instead of LET dispatch := sdshared (a,c) we can also write
LET dispatch := sdshared (a, LET speed := c).

The parameter equal(1.0) is the default value for the dispatch procedure.

2 .2 .4 . Offer

The offer procedure describes under which conditions the finished processes will be
offered by the current component. The default value is all, i.e., all "completed tasks"
are offered without any conditions. All is the only offer parameter, treated by METHOD
ANALYTICAL.

2. HI-SLANG Subset for Flat Models - 27 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2 .3 . Examples for the Use of Servers

Predefined types are available, amongst them the standard component type server is the
most important. A server provides the basic service request (amount: REAL), the
parameter amount indicates the temporal duration of the requested service.

2 .3 .1 . Modelling CPUs (Sharing Service Capacity)

We consider a model of a time-sliced CPU. In this model we introduce the abstraction
that all processes are allowed to make progress, without having to wait for the
allocation of the CPU. Nevertheless they are sharing the service capacity equally.

The CPU can therefore be modelled as a standard component with the following
parameters, which denote processor sharing:

COMPONENT cpu: server (LET accept := always,
 LET schedule := immediate,
 LET dispatch := shared,
 LET offer := all);

or shortly, using defaults:

COMPONENT cpu: server (LET dispatch := shared);

2 .3 .2 . Modelling Dialog Users (Infinite Servers)

Imagine a large computer system with many terminals. A dialog task is running for each
terminal and spends a certain time at the terminal. This holding time is needed by the
user for thinking and typing of commands, followed by striking the return key, such
that processing is initiated or continued. Indeed, we take the view that a dialog process
has a service request at a component terminal_pool which includes the terminals'
hardware and software as well as the users themselves (a human sub-component, if you
like!)

The dialog users of a computing system can therefore be modelled by a standard
component without parameters. These are infinite servers:

COMPONENT terminal_pool: server;

2 .3 .3 . Modelling Input/Output Devices (Queueing)

If tasks are not allowed to access a resource simultaneously, then the scheduling
discipline must specify the criteria to be used for the selection of the next task.

For example a disk unit employing the discipline first-come-first-scheduled (fcfs) can
typically be defined as follows:

COMPONENT disk: server (LET schedule := fcfs(1));

The parameter of the fcfs-scheduling discipline defines the number of processes which
can be in the entry area simultaneously. In the given example at most one process can
receive service. One is also the default value for fcfs.

- 28 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

2 .3 .4 . Modelling Multi-Processors

A multi-processor can be modelled by selecting the speed proportional to the filling.
This is done only up to a certain limit, which is governed by the number of available
processors.

The following declaration defines a double processor system.

COMPONENT
multiprocessor : server (LET dispatch := sdshared ([[1,2],[1.0,2.0]]));

If you like to model the total service rate of n processors which can be significantly less
than n times the rate of a single processor because of competition for software locks and
interference in accessing main memory, you should specify the effective service rate for
each possible filling.

See for example the following "four-processor system" component declaration.

COMPONENT
quad_processor : server

(LET schedule := immediate,
 LET dispatch:= sdshared ([[1,2,3,4],[1.0,1.7,2.2,2.6]]);

In both examples, multiprocessor and quad-processor, we omitted the norm speed
parameter for the dispatch procedure. If we want to change the norm speed from 1.0 to,
e.g., 1.5 we can write:

... LET dispatch := sdshared (..., LET speed := 1.5);

Instead of LET speed := 1.5 a real variable or a real constant can be used as actual
parameter, too.

2 .3 .5 . Modelling of Degradation due to System Overhead

There are systems which suffer from performance degradation due to heavy work load.
Typical examples are thrashing in paging systems and Ethernet-like protocols under
heavy traffic. In the following example we consider the Ethernet protocol.

The Ethernet protocol permits simultaneous access to the bus. The resulting conflicts
are regulated by repeating the access after a certain delay time. First the throughput will
increase with the load (number of packets to transmit) to a certain threshold (which
depends on the Ethernet parameters), but will then drop sharply to a level of very poor
performance.

To model this phenomenon, state-dependent speeds can be used in the following way:

COMPONENT
bus : server

(LET dispatch := sdshared ([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [1.0,1.8,2.7,3.5,4.2,4.5,4.6,4.6,3.0,1.5]]));

This is only an example; the values given do not stem from a measurement.

2. HI-SLANG Subset for Flat Models - 29 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2 .4 . Services

Services are used for the instantiation of processes obeying identical load patterns.
Services may have parameters which are specified in a list of formal parameters.

Due to restrictions imposed by METHOD ANALYTICAL service parameters must not
be used in conditions of control statements. And moreover you can use only the control
statements listed below and service calls in your services. You have a richer choice of
possibilities in simulation of course. We refer to Section 9.5. for more information. A
service, which due to historical reasons is specified as a service type, has the following
syntactical structure:

TYPE service_name SERVICE (formal_parameters);
USE

SERVICEservice1 (...);
service2 (...);

END USE;

BEGIN
...
{process pattern composed of control statements and}
{calls of service1, service2,...}
...

END TYPE service_name;

Services can be seen as "service types", as indicated by the HI-SLANG notation. Then
"service objects" are processes which are generated dynamically during run time by
means of:

CREATE 1 PROCESS service_name (...) EVERY negexp (1/m);

or

CREATE n PROCESS service_name (...);

In the first case processes are generated continuously according to a temporal pattern
specified by negexp (1/m), i.e., a new process is generated with exponentially
distributed inter-instantiation times (mean m).

Note that the body of the service declaration must not contain an infinite loop, otherwise
the population grows to infinity. In the second case, n processes are generated in the
same time instant and have to remain in the system permanently provided their process
pattern is of the infinite loop type.

- 30 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

2 .5 . Model Types

A model type forms the uppermost level of a model. It is an analysable unit, which
looks like a component type except that a PROVIDE block is missing. Remember that a
model does not provide services! Consider the following example of a model type:

TYPE model_type_name MODEL (formal_parameters);
...
{definition of the load, composed of one or more services}

{definition of the machine, composed of one or more component objects}
{of lower levels}

REFER...{service names}...TO...{component names}...EQUATING
...
{referring the load to the machine}
...

END REFER;

BEGIN

{initial statements to create processes}

END TYPE model_type_name;

A model object is generated in the experiment block (more precisely in the EVALUATE
statement) by:

MODEL model_object_name : model_type_name (...{actual parameters}...);

2 .6 . Spend and Hold

The normal way to specify (either implicitly or explicitly) time durations in a HIT model
is to use services from lower levels which finally lead to time consumption at the
standard servers.

Another way to describe time delays is given by the predefined services hold and
spend. For these calls the HIT system implicitely introduces server components. A call
of hold causes the process to pause for a certain time interval. Note that the
interpretation of hold is left to you! Hold, e.g., models the execution of a service or the
passivation of the calling process. To ensure the treatability within separable models the
parameter of hold is restricted to the negexp function.

The spend service works in a similar way. The main difference is that spend is
controlled by the dispatch procedure of the component embracing the calling service. If
the calling service is located at highest level, e.g., in the model type, spend has the
same effect as hold.

Some examples will demonstrate the use of spend and hold:

hold (5); {the process sleeps for 5 time units}
hold (negexp (1/2)); {mean sleeping time is 2 time units}
spend (5); {depending on the dispatch procedure of the embracing}

{service there may occur contention for spend}

2. HI-SLANG Subset for Flat Models - 31 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2 .7 . Distribution Functions

2 .7 .1 . Negexp

In order to model the random variation of the processing time, e.g., "service duration"
or "time between process creations" the function negexp will be used. It has the form:

negexp (R)

The parameter R denotes the rate (number of events per time unit) of a negative
exponential distribution with mean M=1/R. The expressions negexp (R) and negexp
(1/M) are equivalent. The result of negexp is a positive real value, which is randomly
chosen according to a negative exponential distribution. If R ≤ 0, a run time error will
appear.

We give two examples for typical applications of negexp:

• Negexp must be used to specify a random pattern of arrivals (or pattern of creation)
of temporary processes, for example as follows

CREATE 1 PROCESS batch_task EVERY negexp (0.1);

This statement has two interpretations which are completely equivalent:

- batch jobs of service batch_task are created and "appear" in the model at a rate of
0.1, or

- the time between two successive creations is in the average 10 time units.

• Negexp must be used to specify the amount of required service from a standard
component.

The statement read_file (negexp (5.0));
or equivalently read_file (negexp (1/0.2));

requires the use of a provided service bound to read_file for 0.2 time units on the
average. Because in general several processes compete for a single component, the
mean turnaround time (composed of waiting time and service time) for the read_file
process will be larger than 0.2.

2 .7 .2 . Draw

The function draw is used to choose in a probabilistic manner between different
alternatives, e.g., access to disk units or as a second example alternative routings in a
communication network.

draw is a boolean function with a parameter p of type REAL:

If 0<p<1, the value will be TRUE with probability p, FALSE with probability 1-p.
If p=0, the value will be always FALSE.
If p=1, the value will be always TRUE.

The function draw is typically used within the conditions of control statements.

- 32 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

2 .8 . Control Statements

2 .8 .1 . The Infinite Loop

Syntax: LOOP {statements} END LOOP;

An infinite LOOP statement is used when we wish to repeat the same sequence of
statements forever. A typical use of this LOOP construct is the modelling of processes
moving permanently through the system. These processes are sometimes called
permanent processes or cyclic processes. The type declaration for such processes
usually contain an infinite LOOP construct without exit!

2 .8 .2 . The TIMES Loop

Syntax: AVERAGE n TIMES LOOP {statements} END LOOP;

The TIMES loop causes the repetition of a sequence of instructions. The mean number
of repetition is given by n. It can be a real expression with value >= 0.0. The LOOP
and END LOOP act as a paranthesis and bracket the group of statements to be repeated.

The distribution behind AVERAGE is geometric; it is interpreted as

X := n/(n+1); WHILE draw (X) LOOP {statements} END LOOP;

2 .8 .3 . The WHILE Loop

Syntax: WHILE draw (prob) LOOP {statements} END LOOP;

The WHILE clause decides whether or not processing is to continue. If the value of the
random drawing procedure draw is true, the sequence of statements between LOOP and
END LOOP will be executed. The boolean procedure draw (p) returns the value TRUE
with probability p, 0≤p≤1, or the value FALSE with probability 1-p. The mean number
of iterations is p/(1-p). For p=1 the loop is endless.

Note: Don´t use service parameters within expression prob. This advice is valid for all
control statement conditions.

We should add, that in case of simulative evaluation other forms of the WHILE loop are
possible. The restriction to the draw function and the service parameters is due to
properties of METHOD ANALYTICAL.

2 .8 .4 . The UNTIL Loop

Syntax: LOOP {statements} END LOOP UNTIL draw (prob);

The condition stipulated in the UNTIL clause is evaluated and, if it is false, the loop
will be repeated. Otherwise execution will be terminated at this point. Unlike the
WHILE loop, the UNTIL loop is at least executed once. The mean number of iterations
is 1/prob. For prob=0 we have an infinite loop!

2. HI-SLANG Subset for Flat Models - 33 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

2 .8 .5 . The IF Statement

Syntax: IF draw (prob) THEN {statements} ELSE {statements} END IF;

The IF statement enables the choice between two alternative courses of action.
According to the value of draw (p) the appropriate course is selected. The statements
after THEN or the statements after ELSE are executed, depending on whether or not
draw (p) is true. The ELSE clause is optional.

2 .8 .6 . The BRANCH Statement

The BRANCH statement enables the user to choose between many alternative courses
of action:

BRANCH
PROB p1 : {statements}
PROB p2 : {statements}

...
PROB pn : {statements}
ELSE : {statements}

END BRANCH;

The statements to be executed are chosen depending on probability values p1,p2,...,pn
given after the keyword PROB. The sum of these probability values must be less or
equal one. The ELSE clause is optional. If it exists, it will sum the probabilities to one,
otherwise the body of the BRANCH statement will be skipped with probability 1-p1-
p2-...-pn.

We provide a simple example which illustrates the BRANCH statement.

BRANCH
PROB 0.1: calculate (....);

store (....);
PROB 0.5: calculate (....);
ELSE : store (....);

END BRANCH;

With probability 0.1 the sequence "calculate-store" will be chosen, with probability 0.5
and 0.4 calculate and store will be used, respectively.

2 .8 .7 . The CHAIN Statements

Note that each HI-SLANG service describes a chain of a corresponding queuing
network. If a queuing network is given as a start point it might be difficult to construct
the corresponding HI-SLANG model. Therefore a recent addition to HI-SLANG, the
CHAIN statements allow to describe queuing systems directly in the following way:

- 34 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

OPEN_CHAIN
QNODE node_name

PROB p1 : node_name1
PROB p2 : node_name2

...
PROB pn : node_namen
ELSE : node_namen+1

QNODE node_name2
...

END OPEN_CHAIN;

The PROB parts describe the selection probabilities for the successor nodes and their
names. In a CLOSED_CHAIN they have to sum up to one, while in an OPEN_CHAIN
statement the remaining probability is the exit probability.

The service batch_task of example1 can now as well be specified as follows:

Figure 2.2: Specification of a Service using the CHAIN statement

Please compare the figure above with Figure 1.1. Of course the nodes may be drawn
like stations of a queueing network, but here we preferred a more simple representation.
The corresponding HI-SLANG representation is stright forward:

TYPE batch_task SERVICE;
USE SERVICE

calculate (amount: REAL DEFAULT negexp(1/0.2));
read_file_a (amount: REAL DEFAULT negexp(1/0.1));
read_file_b (amount: REAL DEFAULT negexp(1/0.2));
write_file_c (amount: REAL DEFAULT negexp(1/0.4));

END USE;

BEGIN
OPEN_CHAIN

QNODE calculate
PROB 0.3 : read_file_a;
PROB 0.3 : read_file_b;
PROB 0.3 : write_file_c;
{else (prob 0.1) exit the chain}

QNODE read_file_a
PROB 1.0 : calculate;

QNODE read_file_b
PROB 1.0 : calculate;

QNODE write_file_c
PROB 1.0 : calculate;

END OPEN_CHAIN;
END TYPE batch_task;

read_-
file_a

read_-
file_b

write_-
file_c

0.1

0.3
0.3

0.3

calcu-
late

3. Hierarchical Model Specification - 35 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3. Hierarchical Model Specification

3 .1 . Overview

The objective of this chapter is:

• to introduce the concept of hierarchical modelling;
• to discuss horizontal and vertical refinement;
• to illustrate this concept by means of an example and
• to explain more on component types.

In order to gain an overall view, we present the following figures. They illustrate the
stepwise refinement of the model we are going to discuss in the following sections.

terminal_pool
: server

: example2

cpu
: server

comp_system
: cs

Figure 3.1: Gross Specification of a Two Level Model

The model, called example2, consists of a server and a component cs. The name cs is
an abbreviation of central server and consists itself of a server.

The horizontal refinement of cs leads to a new component type named cs_ref_hor,
consisting of five servers, see Figure 3.2. Note that the depth of the hierarchy does not
change.

- 36 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

terminal_pool
: server

comp_system
: cs_ref_hor

: example2

cpu
: server

disk3
: server

disk1
: server

disk4
: server

 disk2
 : server

Figure 3.2: Horizontal Refinement of Figure 3.1

Finally this new cs component type cs_ref_hor, respectively its disk4, is refined
vertically by changing its type from server to io_system. See Figure 3.3.

terminal_pool
: server

comp_system
: cs_ref_hor

: example2

cpu
: server

disk_x1
: server

 tape
 : server

disk_x2
: server

disk3
: server

disk1
: server

ios
: io_system

 disk2
 : server

Figure 3.3: Vertical Refinement of Figure 3.2

3. Hierarchical Model Specification - 37 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .2 . A Hierarchical Model

In order to ease the design of multi-level/multi-layered models and to enable a piecewise
specification by different people, the HIT system provides some features for organizing
a model into vertical levels/layers.

In this chapter we are primarily concerned with these features. They are best discussed
in terms of an example. Before we define our model, let us briefly consider the
following HIT features.

3 .2 .1 . Transforming a Model into a Component

We have learned that if a machine consists exclusively of standard components, we will
attain a flat model (see example1). In order to build hierarchical models of arbitrary
height we must create components. One way to do this is to transform a model type into
a component type by declaring certain of its internally specified services as externally
usable. Initial statements (e.g., CREATE) can, but must not be removed. We thereby
arrive at the basis of a next higher layer. Consequent application of this concept leads to
arbitrarily deep multi-level/multi-layered models with an uppermost layer and a
lowermost layer. The former consists of a load/machine complex without any externally
accessible services. The latter is directly based on standard components.

3 .2 .2 . A Two-Level Model

In our example, called example2, we deal with a two-level model, which is defined as
follows:

• The load consists of two different kinds of tasks, which are described by the
services cmd1 and cmd2, respectively. Users submit these tasks (dialog jobs) after
some thinking time.

• The machine is composed of the components terminal_pool and comp_system
(abbreviation for computer system). The component terminal_pool will be directly
represented in the model by the standard component type server, whereas the
component comp_system forms a further hierarchical level, providing the services
cmd1_processing and cmd2_processing as externally usable.

We will write down this model in HI-SLANG. We describe the component
comp_system in a gross way neglecting any details first. In a second step, presented in
the next sections, comp_system will be refined in a top-down manner.

- 38 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

3 .2 .2 .1 . Component Type cs

The following example is a gross specification of user-defined component type cs. This
component forms a higher layer. It declares its internally specified services
cmd1_processing, and cmd2_processing as externally usable.

TYPE cs COMPONENT;

PROVIDE
SERVICE

cmd1_processing;
cmd2_processing;

END PROVIDE;

TYPE cmd1_processing SERVICE;
USE SERVICE

compute (m:REAL);
END USE;

BEGIN

AVERAGE 10 TIMES
LOOP

compute (negexp(1/0.045));
END LOOP;

END TYPE cmd1_processing;

TYPE cmd2_processing SERVICE;
USE SERVICE

compute (m:REAL);
END USE;

BEGIN

AVERAGE 20 TIMES
LOOP

compute (negexp(1/0.135));
END LOOP;

END TYPE cmd2_processing;

COMPONENT cpu: server (LET schedule := immediate,
 LET dispatch:= shared);

REFER cmd1_processing, cmd2_processing TO cpu
EQUATING

cmd1_processing.compute WITH cpu.request;
cmd2_processing.compute WITH cpu.request;

END REFER;

END TYPE cs;

3. Hierarchical Model Specification - 39 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .2 .2 .2 . Model Type example2

The model type example2 is a hierarchical model of a dialog system with two services.
The model has two parameters, giving the number of processes for each service in the
model.

The load pattern is described by the two services cmd1 and cmd2. They describe the
view point of a dialog system user: After thinking and typing a command, the task is
executed (run) and the result is returned to the user's terminal. These think-run-cycles
are modelled using an infinite loop construct.

Note that a component comp_system of type cs is declared in the following model type.

TYPE example2 MODEL (n1,n2:INTEGER);

TYPE cmd1 SERVICE;
USE SERVICE

think (thinktime : REAL);
run;

END USE;
BEGIN

LOOP
think (negexp(1/5));
run;

END LOOP;
END TYPE cmd1;

TYPE cmd2 SERVICE;
USE SERVICE

think (thinktime : REAL);
run;

END USE;
BEGIN

LOOP
think (negexp(1/10));
run;

END LOOP;
END TYPE cmd2;

COMPONENT
terminal_pool: server
(LET accept := always,

LET schedule := immediate,
LET dispatch := equal,
LET offer := all);

COMPONENT
comp_system: cs
(LET accept := always,

LET offer := all);

REFER cmd1, cmd2 TO terminal_pool, comp_system
EQUATING

cmd1.think WITH terminal_pool.request;
cmd1.run WITH comp_system.cmd1_processing;
cmd2.think WITH terminal_pool.request;
cmd2.run WITH comp_system.cmd2_processing;

END REFER;

- 40 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

BEGIN
CREATE n1 PROCESS cmd1;
CREATE n2 PROCESS cmd2;

END TYPE example2;

3 .2 .2 .3 . The Experiment experiment2

A corresponding experiment is simple. We are interested in population and turnaround
time of both kinds of processes in comp_system for the case that 20 processes cmd1
and 2 processes cmd2 are executed by the user:

EXPERIMENT experiment2 METHOD ANALYTICAL"DOQ4";
BEGIN

EVALUATE MODEL model2 : example2(20, 2);

EVALUATIONOBJECT
computer VIA model2.comp_system;

BEGIN

MEASURE POPULATION, TURNAROUNDTIME
AT computer;

END EVALUATE;

END EXPERIMENT experiment2;

3. Hierarchical Model Specification - 41 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .3 . Refinement of a Component Type

In the preceeding section, our aim was to get an overall structure of our model before
we get bogged down in too much detail. For simplicity, we ignored some of the more
complicated aspects of HI-SLANG. But now it is convenient to consider some of these
aspects. As mentioned before, the model example2 is a hierarchical model because the
component comp_system is not of the standard component type server. It is itself
composed of several components.

3 .3 .1 . Horizontal Refinement

It should be noted that HIT provides, in addition to the vertical model structure, a
horizontal structuring within a hierarchical layer. In order to fully understand and
appreciate this feature, we are going to refine the component comp_system horizontally.
We model the processing of tasks in comp_system in a more detailed fashion, such that
computing-and I/0-activities will be distinguished.

It is important to realize that refining the component comp_system horizontally only
affects the implementation of the layer, whereas the interfaces between the layers remain
unchanged!

3 .3 .1 .1 . The Refined Component Type cs

The following example gives the refined specification of the user-defined component
type cs. The comp_system component is refined horizontally. The task processing is
modelled in a detailed manner.

TYPE cs COMPONENT;
PROVIDE SERVICE

cmd1_processing;
cmd2_processing;

END PROVIDE;

TYPE cmd1_processing SERVICE;
USE SERVICE

compute (m : REAL);
access1 (m : REAL);
access2 (m : REAL);
access3 (m : REAL);
access4 (m : REAL);

END USE;
BEGIN

AVERAGE 10 TIMES
LOOP

compute (negexp(1/0.045));
BRANCH

PROB 0.25 : access1 (negexp(1/0.035));
PROB 0.25 : access2 (negexp(1/0.035));
PROB 0.25 : access3 (negexp(1/0.035));
ELSE : access4 (negexp(1/0.035));

END BRANCH;
END LOOP;

END TYPE cmd1_processing;

- 42 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

TYPE cmd2_processing SERVICE;
USE SERVICE

compute (m : REAL);
access1 (m : REAL);
access2 (m : REAL);
access3 (m : REAL);
access4 (m : REAL);

END USE;
BEGIN

AVERAGE 20 TIMES
LOOP

compute (negexp(1/0.135));
BRANCH

PROB 0.25 : access1 (negexp(1/0.035));
PROB 0.25 : access2 (negexp(1/0.035));
PROB 0.25 : access3 (negexp(1/0.035));
ELSE : access4 (negexp(1/0.035));

END BRANCH;
END LOOP;

END TYPE cmd2_processing;

COMPONENT
cpu: server (LET schedule := immediate,

 LET dispatch := shared);

COMPONENT
disk1,
disk2,
disk3,
disk4 : server (LET schedule:= fcfs,

 LET dispatch:= equal);

REFER cmd1_processing, cmd2_processing
TOcpu, disk1, disk2, disk3, disk4

EQUATING
cmd1_processing.compute WITH cpu.request;
cmd1_processing.access1 WITH disk1.request;
cmd1_processing.access2 WITH disk2.request;
cmd1_processing.access3 WITH disk3.request;
cmd1_processing.access4 WITH disk4.request;

cmd2_processing.compute WITH cpu.request;
cmd2_processing.access1 WITH disk1.request;
cmd2_processing.access2 WITH disk2.request;
cmd2_processing.access3 WITH disk3.request;
cmd2_processing.access4 WITH disk4.request;

END REFER;

END TYPE cs;

3. Hierarchical Model Specification - 43 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .3 .1 .2 . Inclusion of cs in example2

To incorporate the refined version of comp_system in the source text of example2 we
can of course replace the "gross specification" by the "refined specification" textually.
Fortunately HIT provides a better facility. The control statement

%COPY "link_name"

enables us to insert source text files, e.g., component types or services. The %COPY
command requires as parameter a link name. The files can be declared in the control part
(i.e., configuration part) by means of:

%COMPILER
%BIND "link_name" TO file_name
%END

Alternatively the control part can be omitted. In this case the HIT systems responds
with

%BIND "link_name" TO ?

and you have to type the corresponding file name. See also Appendix B.

3 .3 .2 . Vertical Refinement

In the preceeding section we have considered the horizontal refinement of the
component type cs. Now we intend to vertically refine the same component type cs, by
refining one of its components with the help of a new component type.

Let us assume that disk4 will be replaced by a subsystem, which is composed of two
disk units and a tape unit. Accordingly, the used service access4 will not be bound
anymore to disk4.request but to io_operation which is provided by the component of
type io_subsystem.

For reasons given later we decide that io_operation in contrast to request should not
have any parameters. However, the time consumption of io_operation is now
completely determined hierarchically and more natural by the pattern of service calls
within its body.

- 44 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

3 .3 .2 .1 . The Component Type io_subsystem

The vertical refinement of disk4 within cs can be specified as follows:

TYPE io_subsystem COMPONENT;

PROVIDE SERVICE
io_operation;

END PROVIDE;

TYPE io_operation SERVICE;
USE SERVICE

write_file_a (m :REAL);
read_file_b (m :REAL);
save_file (m :REAL);

END USE;
BEGIN

IF draw (0.5)
THEN

write_file_a (negexp (30));

ELSE
IF draw (0.1)
THEN

save_file (negexp (0.1));

ELSE
AVERAGE 5 TIMES
LOOP

read_file_b (negexp (200));
END LOOP;

END IF;

END IF;

END TYPE io_operation;

COMPONENT
disk_x1,
disk_x2,
tape : server (LET schedule := fcfs,

LET dispatch := equal);

REFER io_operation TO disk_x1, disk_x2, tape
EQUATING

io_operation.save_file WITH tape.request;
io_operation.read_file_b WITH disk_x2.request;
io_operation.write_file_a WITH disk_x1.request;

END REFER;

END TYPE io_subsystem;

3. Hierarchical Model Specification - 45 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .3 .2 .2 . Inclusion of io_subsystem in cs

Note that the component type cs (refined version) must be changed slightly for this
vertical refinement:

• The declaration of component disk4 must be changed into:

COMPONENT ios : io_subsystem;

(We suggest to change the name disk4, e.g., into ios).

• In the REFER part the binding of access4 must be changed.

• access4 is now parameterless, cf. the service io_operation above, since the amount
of time used for an io_operation is now completely determined by the io_subsystem
itself. Therefore the USE blocks of the services within cs and the service calls of
access4 must be changed.

The following points are worth considering:

• Parameterization of service io_operation is possible, but service parameters must not
be used as a parameter of the procedure draw or the BRANCH statement. More
general: Service parameters must not occur in the conditions of control statements of
service bodies.

• Note also that the vertical refinement does not require any change in the experiment
part (if we are not interested in performance indices of the new components).

- 46 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

3 .4 . HI-SLANG Subset for Hierarchical Models

In this section the syntactical structure of elements of the HI-SLANG model world,
which was already presented in terms of examples, is presented in more detail.

Notice, that all structured objects, i.e., components and models, are generated using the
type concept.

3 .4 .1 . Components and Component Types

A component type has the following syntactical structure. Note that names and
parameters of externally accessable services are given in a PROVIDE part. You can
imagine these services as exported from the component.

TYPE comp_type_name COMPONENT (...{formal parameters}...);
PROVIDE

SERVICEservice1 (...);
service2 (...);
...

END PROVIDE;
...
{definition of the load, composed of some services}
{definition of the machine, i.e., some component objects of lower levels}
...
REFER service1, service2, ... TO component1, component2,...
EQUATING

service1.use1 WITH component1.provide1;
service2.use2 WITH component2.provide2;

...
END REFER;
...
{optional static definition of process objects}
...

BEGIN
...
{optional initial statements, like dynamic creation of processes}
...

END TYPE comp_type_name;

In the body of a component type, a load will be referred to a machine. This is done by
binding the used services of the load to the provided services of the machine. In a
higher layer, objects of type c_type_name will be declared as follows:

COMPONENT comp_object_name: comp_type_name (...);

Even ARRAYs may be used:

COMPONENT comp_object_array: ARRAY [1..4] OF comp_type_name (...);

Only one-dimensional static component arrays are allowed. At the creation of the
component object, the initial statements will be executed exactly once. For more
information about component arrays see the HI-SLANG Reference Manual.

3. Hierarchical Model Specification - 47 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .4 .2 . Enclosed Components

HI-SLANG allows for using services of the same component in different layers of a
model. Such components are called enclosed. Enclosed components will be recognized
by using the keyword ENCLOSE instead of the keyword COMPONENT, e.g.,

ENCLOSE cpu : server;

in place of

COMPONENT cpu : server;

Additionally there must be a main declaration in the latter style somewhere else in the
model. Only here the parameters of the component type may be set. The ENCLOSE
declaration can be seen as a reference to that component generated by the main
declaration.

The following example which is based on a two-layer model illustrates the use of
enclosed components. The model is composed of three components, namely disks ,
connections and the control unit cu. In this example, the component cu plays a special
role. It is physically only once available but is actually accessed from several parts of
the model.

This shared access is necessary for both the realization of the provided services of the
components disks and connections as well as the realization of the load processes
transactions1 and transactions2. This model can be represented graphically, as follows:

cu
:cu_type

disks
:disk_type

connections
:connections_type

:model_type

Figure 3.4: A Two-Layer Model

- 48 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

An (incomplete) HI-SLANG description of model_type follows, showing only the
important parts with respect to the enclosed component cu.

TYPE cu_type COMPONENT;

{provides three services, namely: rcu_const, skam_req and skam_access}
{as externally usable services}

END TYPE cu_type;

TYPE connections_type COMPONENT;

{the load uses the provided service rcu_const of cu}

COMPONENT plc, ltg : server;
COMPONENT places : server;
ENCLOSE cu : cu_type;

END TYPE connections_type;

TYPE disks_type COMPONENT;

{the load uses all provided services of cu}

COMPONENT dsk1, dsk2 : server;
ENCLOSE cu : cu_type;

END TYPE disks_type;

TYPE model_type MODEL;

{The load is described by the services transactions1 and transactions2}

COMPONENT connections : connections_type;
COMPONENT disks : disks_type;
ENCLOSE cu : cu_type;

END TYPE model_type;

COMPONENT cu : cu_type (LET schedule := fcfs); {the main declaration}

An alternative construction is to move the line TYPE model_type MODEL to the top of
the example. In this case the main declaration of cu (the last line) can replace its
ENCLOSE declaration within model_type.

3. Hierarchical Model Specification - 49 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

3 .4 .3 . Load Filtering Hierarchies

The HIT evaluation concept permits detailed specification of desired results for
hierarchical models. This is done by identifying a so-called load filtering hierarchy:
Service calls in higher layers, which have an effect on components of lower layers, can
be distinguished and evaluated separately.

Such a load filtering hierarchy is described by the concatenation of triples, which define
a calling hierarchy along the hierarchical structure of the model. The triples consist of:

• the component or model name
• the service name within the component
• the USE name within the service

Note that either the USE name or the service and the USE name may be omitted, with
the meaning, that all services of the component or all USE names of the service are
concerned. Consider the following concatenation

(m.c1, st1, u1).(c2, st2)

This notion addresses the effect of st1-processes generated (by CREATE statements) in
component c1 of model m on the component c2, caused by calls of st2 via USE name
u1 of st1.

Note that if the root of the load filtering hierarchy (the first element of the first triple)
lies in the uppermost layer of the model, the model name must be specified in place of
the component name, otherwise dot notation (starting with the model name) has to be
used to identify the load originating component (containing the respective CREATE
statements).

By the use of load filtering hierarchies performance indices (streams as, e.g.,
THROUGHPUT) can be thought of being composed of a set of different performance
values, from which only some might be of interest. Consider, e.g., a component c2
providing two services s21, s22, which are used by three different services s11, s12,
s13, of a component c1 within the next higher layer, itself being part of a model m. The
following non-standard graphic may help:

Figure 3.5: Illustration of Load Filtering Hierarchies

sm body

body

body

s12 s13

s21 s22

s11c1

c2 c3

- 50 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

Then the throughput for c2 caused by processes generated in c1 is composed of, e.g.,
the following throughput values, which are filtered by the hierarchies given below:

• for all services of c2 (m.c1).(c2)
• for s21 only (m.c1).(c2, s21)
• for s22 only (m.c1).(c2, s22)
• for s21, caused by s11 (m.c1, s11).(c2, s21)
• for s22, caused by s13 (m.c1, s13).(c2, s22)

There are even more possibilities, e.g., those throughput portions caused by processes
generated in m. These can be filtered by hierarchies with root m like

(m, s).(c1, s11).(c2, s21)

Load filtering hierarchies are specified in HI-SLANG by:

HIERARCHY hierarchy_name DEFAULT triple_concatenation ;

Hierarchies will mainly be used in the MEASURE statement as follows:

MEASURE stream_name1,
stream_name2, ...
AT evaluation_object
DUE TO hierarchies_name_list ;

The DUE TO construct specifies the hierarchy (or hierarchies) for which the desired
measures are to be evaluated. You can also specify the predefined load filtering
hierarchy all. In this case no filtering is performed. It is even possible to omit the DUE
TO construct at all, because DUE TO all is used as default.

The hierarchy declaration is best illustrated by means of an example. Consider the
following alternative experiment block of example2.

EXPERIMENT experiment2 METHOD ANALYTICAL "DOQ4";
BEGIN

EVALUATE
MODEL model2 : example2 (20, 2);

EVALUATIONOBJECT
computer VIA model2.computer_system;

HIERARCHY h1 DEFAULT
(model2, cmd1, run).(computer_system);

HIERARCHY h2 DEFAULT
(model2, cmd2, run).(computer_system);

BEGIN

MEASURE POPULATION, TURNAROUNDTIME
AT computer DUE TO h1, h2, all;

END EVALUATE;
END EXPERIMENT experiment2;

3. Hierarchical Model Specification - 51 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

Two disjoint load filtering hierarchies, which end in the same component, can be
merged to a new hierarchy by:

HIERARCHY hierarchy_name MERGE hierarchy_name_1, hierarchy_name_2, ...;

The new hierarchy contains the union of load paths of all individual hierarchies listed.
The predefined hierarchy all exists for any evaluation object. It can be seen as a merge
of all possible hierarchies ending in that component.

4. Hierarchical Model Analysis (Aggregation) - 53 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

4. Hierarchical Model Analysis (Aggregation)

4 .1 . Overview

In this chapter we introduce a HI-SLANG feature which is important for different
reasons. The so called technique of pre-analysis or aggregation. It helps to simplify
complex models by reducing their size and therefore improves the solution speed.

In short the objective of this chapter is to

• discuss the principle of hierarchical analysis;
• illustrate the aggregation technique by an example and
• explain the associated HI-SLANG constructs.

4 .2 . Principles of Hierarchical Analysis

In the preceeding chapter, we became acquainted with the concept of hierarchical model
construction by means of horizontal and vertical refinement.

We learned that machine and load consist of components and services, respectively.
The separation of their specifications strongly supports the goals "division of labour"
and "reusability". And it allows therefore the systematical development of complex
models.

Structuring a model in components is also greatly advantageous from the analysis point
of view. Under certain conditions it is possible to analyse a component type totally
separate from its environment and to use the results of this pre-analysis in other models
and/or other environments afterwards. This means that HIT supports hierarchical model
specification as well as hierarchical model analysis.

We sketch the principle of pre-analysis and finally consider its advantages. Assume a
component type providing a number of externally usable services. In performance
modelling, we are specially interested in the time needed by the component to process a
service. How this service is processed by the component is irrelevant when posing
questions of macroscopic nature. E.g., when inquiring about the response time of
dialog tasks, the duration of a single IO-CPU-cycle is not of interest.

As a consequence, from the performance modelling point of view, the performance
behavior of a component is determined essentially by the processing duration of its pro-
vided services. The explicit modelling of numerous details is absolutely not necessary
and is also not desirable in the analysis.

HIT provides an option for transforming detailed, deeply structured component types to
aggregated component types having a very simple structure. Aggregated component
types are substitute representations for the original component types and provide con-
sequently the same services.

Due to the fact that a component is isolated from its environment during the pre-
analysis, we also use the pictorial term "off-line analysis".

- 54 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

Figure 4.1: Construction of an Aggregated Component Type

The advantage of analyzing isolated component types emerges from the fact that
components appearing as identical subsystems in different models have to be analyzed
only once (or precisely: pre-analyzed). Afterwards they can always be used as a "pre-
fabricated building block" in very different models.

A disadvantage in using aggregated components is that an evaluation of any details
inside the component is of course impossible. Consequently you should try to
aggregate model parts which are of no interest to your current investigations. In
particular if you perform parametric analyses of large models, only those parts should
be modelled in detail for which you want to vary an input parameter or for which you
want to measure individual quantities. The rest of the model should be aggregated (if
possible) to an equivalent substitute representation!

Component types to be aggregated must fulfil the restrictions of the DOQ4 algorithm,
i.e., they must be separable, but the extensions listed in Section 5.1. can be used. In the
latter case the aggregate is only approximate.

4 .3 . Applying Aggregation

Now we will explain how to perform a pre-analysis. We intend to aggregate the
component type cs (i.e., the component comp_system) of example2, see Section 3.3.1.
This is done by pre-analysing a part of this model (i.e., the component type) and
creating a substitute representation of it.

The specification of the experiment will merely be composed of a so-called
AGGREGATE statement. In it the maximum population of tasks (for each service
provided by cs) will be specified.

The HI-SLANG source text of the aggregated component type, generated according to
this specification, will be saved in a file, which is by default named by the file name
generator (suffix preana).

The source file for the pre-analysis of cs (horizontal refinement) can be specified as
follows:

Component Type
service 1

service n

Component Type

service 1

service n

Aggregated

Aggregation by Off-Line Analysis

4. Hierarchical Model Analysis (Aggregation) - 55 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

TYPE cs COMPONENT;
{see Section 3.3.1.1.}

END TYPE cs;

EXPERIMENT exp2agg METHOD ANALYTICAL "DOQ4";
BEGIN

AGGREGATE cs;
CREATE 20 PROCESS cmd1_processing;
CREATE 2 PROCESS cmd2_processing;

END AGGREGATE;

END EXPERIMENT exp2agg;

It is remarkable that the result of the aggregation is again a HI-SLANG component type
with the same name and the same set of provided (parameterless) services. If you are
curious, inspect the file containing the aggregated component type.

This means that aggregated component types can be included in HI-SLANG sources.
The name of the file containing the aggregated component type is specified by the
following control part:

%COMMON
%BIND "AGGCS" TO file_name
%END

%COMMON is needed because the aggregate will be read by both the compiler and the
used analyzer. The first reads the HI-SLANG interface, while the latter is only
interested in the "speeds table".

In the source text the connection to this aggregated component type will be attained
through the name of the aggregated component type. Note that the same name is used as
component type name and as name of the aggregated component type. The aggregated
component type is included by:

%COPY "AGGCS"
...
COMPONENT comp_system : cs;

The link name should be related to the name of the component type. In the same way an
ordinary HI-SLANG component type can be included (see Section 3.3.1.2. and
Appendix B.2.). Note that the names of the provided services must not be changed in
the main source text. The same holds for the type names in the corresponding object
declarations. In general a model can be configured by binding different versions of
component types to the link names used.

When inserting aggregated components, one must take into account for which
population the corresponding component type was pre-analyzed. In our example, the
aggregated component can process a maximum of 20 and 2 processes from
cmd1_processing and cmd2_processing, respectively.

- 56 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

4 .4 . HI-SLANG Subset for Model Aggregation

We give the syntax of the aggregate statement and list the restrictions which have to be
fulfilled to be able to aggregate a component type or to use it.

4 .4 .1 . Aggregate Statement

An AGGREGATE statement is needed for transforming a component type to an
aggregated component type. The maximum population for each provided service must
be given by a set of corresponding CREATE statements within the AGGREGATE
statement. If this population is exceeded when actually using the generated aggregate, a
warning will appear.

The AGGREGATE statement is contained in the EXPERIMENT block, in which both
the method (in this case ANALYTICAL "DOQ4", which is currently the only one
possible) and the experiment name are specified:

EXPERIMENT experiment_name METHOD ANALYTICAL "DOQ4"
BEGIN

AGGREGATE component_type_name [OUTPUT "link name"];

CREATE max_population_1 PROCESS service_1;
CREATE max_population_2 PROCESS service_2;
...
CREATE max_population_n PROCESS service_n;

END AGGREGATE;

END EXPERIMENT experiment_name;

If you want to specify a file name for the aggregate (overriding the default name) you
can use the OUTPUT "link name" clause. Only when performing an aggregation in this
case, the control part must include something like:

%ANALYZER
%BIND "link_name" TO file_name
%END

After executing the aggregation, the file with name file_name will contain the
aggregated component type.

4. Hierarchical Model Analysis (Aggregation) - 57 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

4 .4 .2 . Restrictions in Aggregation

By performing aggregations and by using aggregated component types, the following
restrictions must be taken into consideration:

• Component types, which should be aggregated must not have parameters. Also the
provided services must have no parameters.

• If the keyword ENCLOSE appears in the source text of the component type, then
the corresponding component object must be defined within this component type.

• Aggregation of a component is only feasible for components obeying to the
restrictions of separable models and their DOQ4 extensions. But note, the use of an
aggregated component is not limited to separable models, i.e., they can also be used
in models using other analysis methods.

If you use an aggregated component type, consider the following points:

• Aggregated component types are admitted to be constituents of component types,
which should be aggregated, too ("multi-level aggregation").

• Aggregated component types are admitted to be constituents of models, in which
permanent and temporary processes exist, but the services of aggregated
components may be used only by permanent processes.

5. Extensions and Limits of Separable Models - 59 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

5. Extensions and Limits of Separable Models

5 .1 . Overview

The objective of this chapter is:

• to introduce a class of non-separable models also solvable with DOQ4, but not with
LIN2;

• to summarize aspects which cannot be treated by DOQ4 or LIN2, but by METHOD
ANALYTICAL "NUMERICAL".

5 .2 . An Extension of Separable Models

5 .2 .1 . Approximate Solution of a Class of Non-Separable Models

The HIT system offers nearly all relevant features of the class of separable models
which have been explored by queueing theoriticians. But if the restrictions from
separable models are widened, the class of treatable models will be growing. Of course
the price is the loss of formal strength and the exactness of results. Nevertheless, the
quality of the resulting quantitative measures is mostly fully sufficient for the needs of
practice. The two extensions of separable models described as follows can be treated by
the DOQ4 algorithm. Since DOQ4 is used for aggregation, these extensions also apply
for the aggregation of component types.

5 .2 .2 . FCFS Scheduling

Note that in case of separable models all requests to the same fcfs-server must have the
same actual negexp parameter. In other words: All service requests to a server with fcfs
scheduling discipline must be specified by the negexp function and the parameter of
these negexp functions must have exactly the same value! If this is not the case an
approximate solution technique, which has been integrated in the DOQ4 algorithm, will
be applied automatically.

5 .2 .3 . Priorities

Scheduling disciplines like preemptive and non-preemptive priority can not be treated
by separable models. An approximate solution technique (again the DOQ4 algorithm)
will be applied automatically. We distinguish between priority scheduling with and
without preemption.

• prioprep: Priority Scheduling with Preemption

Preemption means a "newly arriving" service request interrupts a process of lower
priority. The interrupted (preempted) process has to be repeated from the beginning,
i.e.,we have a "priority preemptive repeat" discipline.

More precisely we have a "priority preemptive repeat" discipline with "resampling",
i.e., the amount of the service to be restarted is determined again.

- 60 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

• prionp : Priority Scheduling without Preemption

In the non-preemptive case a newly arriving service request can not cause an interrupt.
It has to wait for service until all services of lower priority have finished.

Because the component type prioserver is not an intrinsic part of HI-SLANG, but rather
a member of the HIT standard modelling base, it must be introduced into the source by
%COPY "PRIOSERVER".

A declaration of a component with priority scheduling looks like this:

COMPONENT cpu : prioserver (LET schedule := prioprep);

Instead of prioprep the strategy prionp can be used here. A process which is to be
executed by a prioserver component must be declared in the following manner:

TYPE diaproc SERVICE;
USE SERVICE

compute (amount: REAL; prio: INTEGER DEFAULT 32767);
...

END USE;
BEGIN

...
compute (negexp (1/10), 3);
...

END TYPE diaproc;

The service request compute has two parameters: the amount specified by a negative
expontial distribution with mean value 10 and a priority of 3. Note that the highest
priority is 0 and the lowest priority is 32767. Please note, that the REFER part for
compute does not change comparing to a component of type server.

5. Extensions and Limits of Separable Models - 61 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

5 .3 . What Cannot be Treated by DOQ4 or LIN2

We summarize some aspects which can not be treated by METHOD ANALYTICAL
"DOQ4" or "LIN2". Nevertheless we recommend to use this method in the early stages
of a modelling study, neglecting non-separable aspects. You may include these aspects
(if necessary) in later phases of your modelling enterprise; switching from analytical
solution to numerical or simulative evaluation is really easy!

5 .3 .1 . Non-Exponential Distributions

METHOD ANALYTICAL "DOQ4", which applies to separable models, considers only
the mean value of a distribution. A coefficient of variation different from 1.0 can not be
treated. Moreover this holds for general probabilistic distributions, too.

Nevertheless the so-called Coxian distributions can be used in case of the schedule
disciplines immediate and lcfspr! This is not a contradiction to the statement above! It is
known from queueing network theory that the resulting performance values are not
affected at all by the coefficient of variation. This phenomenon is sometimes called
robustness property of separable networks. Consequently you should not try to
investigate the sensitivity of separable networks with respect to the coefficient of
variation!

5 .3 .2 . General State Dependent Service Speeds

Service speeds depending on the "service mix" at a component are not admitted in
complete generality. The most important case for the application of mix-dependent
speeds feasible in separable networks concerns the inclusion of aggregated component
types.

5 .3 .3 . Multiple Resource Holding

A process can hold more than one resource at a time. The most important examples are
passive resources. They do not have time durations associated with them, but they limit
the population of jobs that may utilize other devices. Examples of passive resources are
main memory or a bus. If multiple resource holding has an essential influence on the
performance behavior of the model under study, you should switch to numerical or
simulative evaluation.

5 .3 .4 . Blocking and Losses

A device (a component) may be blocked, i.e., prevented from executing processes,
when a queue or a buffer elsewhere in the model has reached its full capacity and cannot
accept any more tasks. In communication systems a packet attempting to enter a filled
buffer may be lost.

Neither blocking nor losses can be treated by separable models. Of course METHOD
ANALYTICAL "DOQ4" can be used in case of low blocking probabilities and low loss
probabilities, respectively.

- 62 - II. SUBSET FOR SEPARABLE MODELS AND THEIR EXTENSIONS

HIT and HI-SLANG. An Introduction

5 .3 .5 . Synchronization

The inclusion of synchronization features is not possible in separable models. In
particular semaphores or tokenpools cannot be used within separable models. We refer
to the class of Markov models described in later chapters.

Part I I IPart I I I

S U B S E T F O RS U B S E T F O R

MARKOV MODELSMARKOV MODELS

ChaptersChapters

6 - 76 - 7

6. Introduction to Numerical Evaluation - 65 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

6. Introduction to Numerical Evaluation

6 .1 . Overview

The objective of this chapter is:

• to introduce basic concepts of numerical evaluation and
• to give some hints for the use of METHOD ANALYTICAL "NUMERICAL"

6 .2 . Basic Concepts of Markov Models

Numerical evaluation in performance modelling is a valuable supplement or even an
alternative to other evaluation methods.

By numerical evaluation of a computing system model we mean the computation of the
stationary probability distribution of a Markov model by numerically solving the set of
so called global balance equations. The coefficients of this equation system are
represented in a transition rate matrix. Each entry in this matrix accounts for a transition
from one model state to another.

Of course you as HIT user have nothing to do with the complicated process of setting
up a large matrix and the subsequent solution of an equation system. As in other
evaluation methods HIT automatically transforms models, which are written in HI-
SLANG, into executable form and finally provides the desired performance measures.

But you should keep in mind that every single state of your model and every possible
transition between the states will be explicitely treated in HIT. Consequently some
circumspection is in place.

6 .3 . Hints and Warnings

Apart from the evident disadvantage of a threatening state space explosion, Markov
chains based on numerical analysis have some attractive features. Numerical evaluation
allows modelling of features which are not part of the separable models. Evaluation
problems are less severe compared to simulation and in many cases the application of
the numerical method will be less expensive than simulation.

6 .3 .1 . On Aggregation

To apply the numerical method successfully, it is important to concentrate the modelling
efforts on the essential features of your problem. Try to focus on a specific part of your
model and aggregate the rest. Note that, e.g., synchronisation features are not part of
the world of separable models. In HIT these features can be treated within the class of
Markov models, but it would be inefficient or even impossible to evaluate an overall
model including all details of the system under study. Consequently all model parts
which are not of immediate interest in the given context should be compressed (i.e.,
aggregated!) as far as possible. Note that the HIT system supports hierarchical analysis
by means of automatic aggregation of component types which do not violate the
restrictions of separable models. Of course aggregated component types can also be
included in models to be evaluated by numerical or simulative methods.

- 66 - III. SUBSET FOR MARKOV MODELS

HIT and HI-SLANG. An Introduction

6 .3 .2 . On State Space Explosion

It is well known that even harmlessly looking models can exhibit an enormous number
of states resulting in a nearly or completely unsolvable model. You should try to
approach the desired level of detail very carefully. A good advice is to restrict the
number of processes which can be simultaneously in the system. First restrict your
model to one per process type. Probably your model can be evaluated very quickly
then. Now increase the process population and observe the behaviour of your model.

6 .3 .3 . Trace Your Models

You should inspect the analyzer listing in case of numerical evaluation to get
information about the state space, the matrix size and the cpu time used. In particular
you should start with small models, followed by a controlled increase of the process
population.

6 .3 .4 . Functional Analysis

The construction of the full state space and of all the transitions between states has the
advantage that properties concerning functional aspects can be discovered during model
evaluation. For example, the existence of deadlocks can often be recognized. If a
deadlock corresponds to an absorbing state, it will even be discovered automatically.

6 .3 .5 . Open Chains

The population of open chains always has to be limited. Add a LIMIT part within your
CREATE...EVERY statements, if you come from another solution method:

CREATE 1 PROCESS service_name LIMIT n EVERY negexp (arrival_rate);

7. HI-SLANG Constructs for Markov Models - 67 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

7. HI-SLANG Constructs for Markov Models

7 .1 . Overview

In addition to the HI-SLANG subset for separable models HIT offers the class of
Markov models, which can be solved numerically. They include the following features:

• preemptive and non-preemptive priority scheduling with the help of a standard
component type prioserver;

• fault tolerant servers which can operate in different degraded modes;
• restricted capacity of servers;
• non-exponential distribution functions (Coxian distributions) and
• synchronization with the help of counters (including semaphores)

Note that all constructs already introduced also apply for Markov models.

7 .2 . How to Specify Numerical Evaluation

The solution of Markov models is accomplished by numerical techniques, precisely
called analytic-numerical techniques (in contrast to analytical-separable for separable
models). Therefore the specification of this method is given by

EXPERIMENT experiment_name METHOD ANALYTICAL "NUMERICAL";

There are alias names which can be used instead of "numerical", e.g., "markov", see
Section 1.3. The execution of the numerical solver can be controlled by, e.g.,

CONTROL STOP ACCURACY 1.0 [OR CPUTIME 1000];

The option ACCURACY specifies the desired accuracy in percent. Its default value is
1.0. CPUTIME can be used to stop the iterative solution procedure independently from
the reached accuracy. If a non-iterative algorithm has been selected by HIT, the
CPUTIME stop condition will be ignored.

- 68 - III. SUBSET FOR MARKOV MODELS

HIT and HI-SLANG. An Introduction

7 .3 . Scheduling Disciplines

Markov models admit schedule procedures which cannot be treated by separable
models. Apart from immediate scheduling (specified by LET schedule:=immediate)
Markov models admit the disciplines random, prioprep and prionp.

Nevertheless a special standard component type called prioserver (an abbreviation of
priority server) must be employed if prioprep or prionp is choosen as scheduling
discipline. In case of random scheduling, the well-known component type server can be
used, but prioserver is also admitted.

Note that priority scheduling can also be treated approximately with the DOQ4
algorithm, see Section 5.2.

7 .3 .1 . Priority Scheduling

The analytic-numerical technique permits the same type of priority scheduling as
described for DOQ4. For more information see Section 5.2.3.

7 .3 .2 . Random Scheduling

Random scheduling plays an important role in modelling, because it is very appropriate
for the approximation of fcfs. Moreover, in Markov models random is used as a tie-
break in case of equal priorities.

Applying a random discipline means that service requests waiting for execution are
selected in a random fashion. For example, if the number of service_1 and service_2 is
n1 and n2, respectively, scheduling of service_i, i=1,2, will be done with probability
ni/(n1+n2).

Random scheduling is, e.g., specified by

COMPONENT cpu : server (LET schedule := random);

Here instead of server the use of a prioserver is also possible.

7 .4 . Servers with Restricted Capacity

The storage capacity of servers (and prioservers) can be restricted by the accept
procedure restrict(n), i.e., such a server accepts at most n service calls. A rejected task
has to stay in its actual status and repeat its last received service phase. This concept of
restricted capacity can be used for the modelling of blocking phenomena.

In HI-SLANG this construct is given in connection with a component declaration by:

COMPONENT unit : server (LET accept := restrict (5));

Note that the accept procedure restrict cannot be used for simulative evaluations.

7. HI-SLANG Constructs for Markov Models - 69 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

7 .5 . Distribution Functions

For the modelling of time durations like processing time the following probability
distribution functions are admitted.

7 .5 .1 . Coxian Distributions

The Cox function is a distribution with an adjustable service time variability. The
second parameter of cox(r,v) is the so called coefficient of variation v, defined as
v:=(standard deviation)/(mean). The case v>1 yields an hyper-exponential distribution
(with two exponential phases) whereas in the case of v<1 we obtain a hypo-exponential
distribution with two or more(!) exponential phases. We recommend to use coefficient
of variations v≥0.5, because for smaller v the number of phases becomes very high and
as a consequence the size of the state space can grow to an intractible order. (Indeed in
HIT there is a built-in restriction to 10 phases yielding a coefficient of variation of
0.32!)

Note, that the first parameter r is the rate of the distribution, such that r=1/mean.

7 .5 .2 . General Coxian Distributions

Alternatively to cox (r,v) we can specify the phases of a Cox distribution explicitly by
the coxg function (the letter 'g' stands for general). In this case we have to give the rate
and the probability to enter the next exponential phase for each phase.

The HI-SLANG notion of coxg uses a two-dimensional array; the first row for the
rates, the second row for the probabilities. A service call to a standard server requesting
a processing time according to a coxian distribution with three phases is denoted as
follows:

compute (coxg ([[0.5, 0.7, 1.3], [0.7, 1/6, 0.0]])).

Note that those many brackets are due to the HI-SLANG syntax. The array parameter is
specified directly as an array aggregate. The last value of this aggregate must be 0.0,
since this is the probability to enter the next phase.

7 .5 .3 . Other Distributions

Of course negexp(r) is also admitted, where r is the rate of the distribution. For more
information see Section 2.5.4.

Erlang distributions can be introduced via coxg functions. For example, the sequential
passing through exactly n phases can be achieved by

coxg ([[r,r,...,r,r],[1.0,1.0,...,1.0,0.0]]).

Deterministic distributions (having a constant value) are of course not possible in the
context of analytical techniques, in particular the coefficient of variation must be 0. But
a distribution with a rather small coefficient of variation, e.g., 0.5, will usually be a
good approximation.

- 70 - III. SUBSET FOR MARKOV MODELS

HIT and HI-SLANG. An Introduction

7 .6 . Synchronization Features

7 .6 .1 . The Concept of Counters

Different from standard servers (server or prioserver) where a process requests time, a
counter is a resource where processes can request to change an integer state vector. This
state vector, say [X(1),...,X(n)] is an array owned by the counter. It can be changed
according to

[X(1),...,X(n)] := [X(1),...,X(n)] + [C(1),...,C(n)]

where [C(1),...,C(n)] is an integer array given as an actual parameter of a service
request.

The feasible range of the state vector as well as its initial value must be specified for
each counter. If a service request cannot be satisfied because the desired change would
move the state vector out of range, the requesting service has to wait until another
request changes the state vector to a suitable value. Which of several waiting requests,
possibly of different types, will be handled first is determined according to a priority
discipline or a random discipline. The fulfillment of a request, if possible, happens
without any delay. Typical applications of counters are semaphores or memory
management schemes.

7 .6 .2 . The Component Type Counter

If you want to use counters in your HIT model you have to introduce the component
type counter by %COPY "COUNTER". The parameters and the provided service are
given in the following type declaration. Of course in HIT this type declaration is not
visible for you.

TYPE counter COMPONENT (min,max,init : ARRAY OF INTEGER);
PROVIDE

SERVICE change (amount : ARRAY OF INTEGER;
prio : INTEGER DEFAULT 32767);

END PROVIDE;
...

END TYPE counter;

The arrays min and max give the minimum and maximum values for the state vector
such that min(i) ≤ X(i) ≤ max(i) for each element X(i) of the state vector. The array init
specifies the initial value for the state vector.

The parameters of the provided service change specify

• the desired amount of change and
• the priority, in case the priority scheduling discipline is used.

Beside the priority scheduling discipline cprio the random scheduling discipline
crandom is also available. In case of crandom, all changes of the state variables must
have the same absolute value. If you use cprio we recommend to choose different
values for the priority parameters, otherwise different priorities are assigned
automatically by HIT. In the following we consider some examples for the use of
counters.

7. HI-SLANG Constructs for Markov Models - 71 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

7 .6 .3 . Examples for the Use of Counters

7 .6 .3 .1 . A Binary Semaphore

A binary semaphore has two values, 0 and 1, and can be altered by P operations or V
operations, which try to decrement or increment the semaphore variable. In HIT we can
realize a binary semaphore with the help of a counter:

COMPONENT bin_semaphore : counter
(LET min := [0], LET max := [1],
LET init := [1], LET schedule := crandom);

Note: This semaphore implementation has the property that the V operation may be
blocking (in the case that more P than V operations are executed), since P and V are
both implemented by change and are therefore symmetrical.

HIT also offers a component type semaphor with a non-blocking V operation, but it
may only be used for simulation, see Chapter 11.

7 .6 .3 .2 . Memory Constraints

We give a complete example to demonstrate the use of counters for the modelling of
memory constraints. Note that an aggregated version of the component type cs has been
used (see Chapter 3.). In particular for Markov models the HIT features for submodel
aggregation should be employed whenever possible. The model's state space is reduced
substantially.

If you inspect the solver information written to the listing, you will get some
information on the solution process of this example. E.g., the model has 109 states and
the direct (non-iterative) numerical solution method has been applied.

Note that the type declaration of component cs is not a part of your source text. The
aggregated central server system referred by cs is included by a %COPY command.

%COPY "CSAGG"
%COPY "COUNTER"

TYPE memory_constraint MODEL (m1, m2, no_of_partitions : INTEGER);

TYPE class1 SERVICE;
USE SERVICE

think (much : REAL);
mem_alloc (partitions: ARRAY OF INTEGER;

 prio : INTEGER DEFAULT 32767);
mem_relea (partitions: ARRAY OF INTEGER;

 prio : INTEGER DEFAULT 32767);
work;

END USE;
BEGIN

LOOP
think (negexp (1/5000));
mem_alloc ([+1]);
work;
mem_relea ([-1]);

END LOOP;
END TYPE class1;

- 72 - III. SUBSET FOR MARKOV MODELS

HIT and HI-SLANG. An Introduction

TYPE class2 SERVICE;
USE SERVICE

think (much : REAL);
mem_alloc (partitions: ARRAY OF INTEGER;

 prio : INTEGER DEFAULT 32767);
mem_relea (partitions: ARRAY OF INTEGER;

 prio : INTEGER DEFAULT 32767);
work;

END USE;
BEGIN

LOOP
think (negexp (1/10000));
mem_alloc ([+1]);
work;
mem_relea ([-1]);

END LOOP;
END TYPE class2;

COMPONENT
term : server;
central_part : cs;
memory : counter (LET max := [no_of_partitions],

LET min := [0],
LET init := [0],
LET schedule := crandom);

REFER class1, class2 TO term, central_part, memory
EQUATING

class1.think WITH term.request;
class1.work WITH central_part.class1_processing;
class1.mem_alloc WITH memory.change
class1.mem_relea WITH memory.change;
class2.think WITH term.request;
class2.work WITH central_part.class2_processing;
class2.mem_alloc WITH memory.change;
class2.mem_relea WITH memory.change;

END REFER;

BEGIN
CREATE m1 PROCESS class1;
CREATE m2 PROCESS class2;

END TYPE memory_constraint;

EXPERIMENT analysis METHOD ANALYTICAL "numerical";
BEGIN

EVALUATE MODEL mod1 : memory_constraint (20,2,6);
EVALUATIONOBJECT

memory_queue VIA mod1.memory,
terminals VIA mod1.term,
central_server VIA mod1.central_part;

BEGIN
MEASURE THROUGHPUT, POPULATION AT memory_queue;
MEASURE TURNAROUNDTIME AT terminals;
MEASURE THROUGHPUT, POPULATION AT central_server;

CONTROL TRACEALL STOP CPUTIME 200 OR ACCURACY 0.5;
END EVALUATE;

END EXPERIMENT analysis;

7. HI-SLANG Constructs for Markov Models - 73 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

7 .7 . Fault Tolerant Servers

HIT provides a component type ftserver, which can be used for reliability oriented
analyses. A fault tolerant server can be viewed as a homogeneous multiprocessor which
is able to operate in different degraded modes, d=0,1,...,degmax. Degmax denotes the
maximum degradation; d=0 is the fault free situation where all processors are operative.
Failed processors will be repaired, if one of the repair units is available. The number of
repair units is given by the parameter repair_units.

A ftserver changes its degraded mode according to failure and repair events, occuring
with rate failure_rate and repair_rate, respectively. A dormancy factor determines the
failure rate of idle processors: in case of dormancy=0.0 an idle processor can not break
down. In case of dormancy=1.0, an idle processor has the same failure rate as a busy
processor. Otherwise the failure rate of an idle processor is given as the product
dormancy*failure_rate.

The component type declaration is stored in the HIT standard modelling base.
Nevertheless we show the interface of the type declaration.

TYPE ftserver COMPONENT
(processors : INTEGER;
degmax : INTEGER DEFAULT 1;
repair_units : INTEGER DEFAULT 1;
failure_rate : REAL;
repair_rate : REAL;
dormancy : REAL DEFAULT 1.0);

PROVIDE
SERVICE request (amount : REAL;

prio : INTEGER DEFAULT 32767);
END PROVIDE;

...
END TYPE ftserver;

The admitted scheduling rules are random, prionp and prioprep. Admitted dispatching
disciplines are equal and sdequal.

As an example consider the following declaration:

%COPY "FTSERVER"
...

COMPONENT triple_processor : ftserver (3, 1, 1, 1E-5, 0.005);

This declaration introduces an elementary component with three processors (i.e., three
processors can be simultaneously active), at most one processor can break down, there
is one repair unit, the failure rate is 0.00001 and the repair rate is 0.005. The dormancy
factor has its default value of 1.0.

Please note that the component type ftserver cannot be used in simulative models.

Part IVPart IV

F E A T U R E S F O RF E A T U R E S F O R

S I M U L A T I V E M O D E L SS I M U L A T I V E M O D E L S

ChaptersChapters

8 - 108 - 10

8. On Simulative Evaluation - 77 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

8. On Simulative Evaluation

8 .1 . Overview

The objective of this chapter is:

• to discuss the inherent problems of simulation techniques;
• to introduce the additional estimators and streams for simulation and
• to discuss the additional features for writing experiments.

Note that all concepts already introduced also apply for simulations, with the exception
of component type ftserver and the accept procedure restrict.

8 .2 . Inherent Problems in Simulative Evaluations

Simulation is essentially a technique that involves setting up a model of a real or
imagined situation and then performing experiments on the model.

To simulate a model is:

• to use a program which behaves like the model;
• to observe the behaviour of this program and
• to measure the performance values of interest.

One of the inherent problems in simulation concerns the measurement of performance
values. In particular, it is difficult to estimate the statistical variability and accuracy of
simulation results.

In HIT these problems are reduced, but they do not disappear completely. You are still
responsible for the control of the simulation, i.e., duration and accuracy of a simulative
evaluation are determined by user-supplied control parameters. If you want to obtain a
so-called confidence interval (m-w, m+w), where m denotes the point estimate mean of
the considered performance measure, you have to specify conditions which determine
the resulting confidence interval implicitly or explicitly.

Note - and this is very important - that all estimators of performance measures are
computed under the assumption that the model would reach a steady-state if the
simulation was run during an infinite interval of time. Because we run our simulations
finite periods of time, we get approximate estimates, but we can make the error "small"
if the simulation run is "long" enough.

In order to sketch some aspects of simulation control, we consider a trajectory of a
component's population over time t.

- 78 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

Figure 8.1: A Simple Trajectory

If we wish to obtain a "reliable" estimate of the performance measure POPULATION,
there arise some requirements for the simulative method.

• The standard estimator "mean value of population" does not reflect the statistical
nature of simulation as displayed in the trajectory. We need estimators, which
quantify the goodness of approximation (e.g., confidence level) or which do
quantify the variability of a performance measure (e.g., standard deviation). In the
next section, we will see how the estimators STANDARDDEVIATION,
CONFIDENCE LEVEL and FREQUENCY INTERVAL are used in HIT.

• There must be means to control the durations of the measurements as well as the
total length of the simulation. In case of the trajectory given above, the interval
(t0,t1) seems very inappropriate for measurement purposes and should therefore be
neglected. Ideally, the measurement should not start before t1 is reached. The
interval (t0,t1) is called the "transient phase" of simulation. Unfortunately there is
no simple way to determine t1 in advance.

• An "a priori" determination of a stopping point t2 is another problem. Of course the
simulation can be stopped if a certain amount of model time or cpu time has been
spent, but the accuracy of the results, e.g., given by the width of a 95% confidence
interval, can be unsatisfactory if the stop condition was too restrictive. For this
reason, in HIT the simulation can be controlled by explicitly specifying the desired
(relative) accuracy for the performance measures of interest.

5

4

3

1

2

0
t0 t1

Model time

POPULATION

t2

8. On Simulative Evaluation - 79 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

8 .3 . Extensions for Simulation

Being acquainted with the problems of simulative evaluation, we show how they can be
handled in HIT. Besides the introduction of estimators for METHOD SIMULATIVE,
our main interest will actually be the CONTROL statement, which specifies the global
STOP conditions as well as TRACE options for the simulation. We will also conduct
different experiments, display some results and discuss their accuracy.

8 .3 .1 . Estimators

We start with a definition of the estimators (addressed by the keyword ESTIMATOR)
admitted for METHOD SIMULATIVE:

• MEAN

Mean value of the considered performance measure. Note, that in case of simulation we
only have an estimation (i.e., an approximation!) of the true mean value.

• STANDARDDEVIATION

The standard deviation (square root of the variance) quantifies the variability of a
performance measure. A high value for standard deviation indicates, that the observed
values are "rather dispersed". On the other hand a standard deviation of (nearly) zero
indicates, that the observed values are (nearly) constant.

• CONFIDENCE LEVEL p

As a result you obtain a confidence interval including the true mean value with the
chosen probability p. The probability p, expressed in percent, is an integer expression
and ranges from 90 to 99. The width of the resulting confidence interval indicates the
accuracy of the estimated mean. The width of the confidence interval depends on the
chosen confidence level p; the higher the confidence level p is, the larger the width is.
Note, that the true value lies outside the interval with probability (100-p) percent. Also
note that the confidence interval is also an estimation!

• FREQUENCY INTERVAL [interval_list]

The total number of observations made upon a particular performance measure is
grouped into classes according to the specified intervals. Note that the performance
measure TURNAROUNDTIME is the only standard performance measure allowed in
combination with frequency interval.

- 80 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

8 .3 .2 . Streams

The experiment specification block should precisely describe, which performance
indices are to be determined. Simulation result output is initially generated in the form
of various data streams. Each stream represents a sequential sample (time series,
trajectory) of a particular performance index. Each performance index, i.e., each
stream, must be explicitly requested. Streams are bound to components. Each
component or the model itself can control one or more of such streams by sequentially
generating them.

8 .3 .2 .1 . Types of Streams

Depending on the eventual statistical evaluation mode of a sample, the corresponding
stream has to be classified as belonging to one of three different types:

• EVENT : Event streams store values serially.
Example: TURNAROUNDTIME.

• STATE : State streams comprise the time progress of piecewise constant state
variables.
Examples: POPULATION, OCCUPATION, UTILIZATION

• COUNT : Count streams determine rates.
Examples: THROUGHPUT, SCHEDULE_RATE, PREEMPT_RATE

8.3.2.2.More Predefined Streams

Note that the standard performance indices explained in Section 1.4.1.
(THROUGHPUT, TURNAROUNDTIME, POPULATION and UTILIZATION) are
predefined standard streams. For simulation there are three further streams available:

• OCCUPATION : The probability that a component is not empty
(concerning processes).

• SCHEDULE_RATE : The transition rate from the entry area to the service area

• PREEMPT_RATE : The transition rate from the service area to the entry area

8. On Simulative Evaluation - 81 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

8.3.2.3.User-Defined Streams

You can introduce your own performance indices by defining non-standard streams.
Defining a non-standard stream is done as follows:

• Declare a stream of a given type (EVENT, STATE, COUNT).
• Provide for the updating of the stream.

For standard streams all this is done automatically. The declaration of a user-defined
stream should be made within a component or model type. It is similar in its syntactical
structure to the declaration of a variable:

STREAM stream_name : stream_type;

For updating the stream within a service of the component, the following statement is
used:

UPDATE stream_name BY observation_value;

Different services of a component may update the same stream. As observation value
any numerical expression is allowed. If the stream is of type STATE, the observation
value will be interpreted as the difference to the previous value. For EVENT streams the
observation value is given by evaluating the numerical expression and for COUNT
streams the given value is ignored (each update has the same weight of 1.0).

In the experiment the stream is addressed by its name within MEASURE statements. Of
course, the corresponding evaluation object must refer to the component where the
stream is declared.

- 82 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

8 .3 .3 . A Simulative Experiment

We now present an example of an experiment block and discuss the results obtained.
For simplicity, we use the model of example1, thus having to change only the
experiment block to be adequate for simulation.

Note that the METHOD statement should be changed from METHOD ANALYTICAL
"DOQ4" to METHOD SIMULATIVE.

EXPERIMENT experiment_sim METHOD SIMULATIVE;
BEGIN

EVALUATE MODEL model1: example1(0.15);

EVALUATIONOBJECT
cpu VIA model1.cpu,
disk VIA model1.disk_a;

BEGIN

MEASURE TURNAROUNDTIME
AT cpu
ESTIMATOR

FREQUENCY INTERVAL
[0..0.05,0.05..0.1,0.1..0.2,0.2..0.5,0.5..1,1..50];

MEASURE POPULATION, UTILIZATION, THROUGHPUT,
TURNAROUNDTIME, OCCUPATION

AT disk
ESTIMATOR CONFIDENCE LEVEL 95;

CONTROL
AT disk STOP MODELTIME 5000;

END EVALUATE;

END EXPERIMENT experiment_sim;

8. On Simulative Evaluation - 83 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

8 .3 .4 . Results from the Simulation

The result of the experiment listed above (Section 8.3.4) are two tables. The first table
shows the total number of observations made on TURNAROUNDTIME at different
intervals for evaluation object cpu:

Dependent on the length of the intervals and the distribution of the values of turnaround
time, it will often be the case that the highest frequency occurs in the interval including
the mean value.

The second table, displayed below, shows a confidence interval for each performance
measure specified in the experiment block. The specification of ESTIMATOR
CONFIDENCE LEVEL 95 indicates that the resulting confidence interval will include
the true value with probability 0.95. Confidence intervals are denoted by mean ± width.
The (relative) width of the interval depends on the length of the simulation. In general,
longer simulation runs will generate smaller confidence intervals (of course, there are
exceptions from this rule!).

What, if we are not satisfied with the width of the confidence interval for
POPULATION? Fortunately, HIT offers the possibility of specifying the desired width
with the aid of the CONTROL statement.

- 84 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

8 .3 .5 . The CONTROL Statement

We now turn our attention to the (for simulation obligatory) CONTROL statement.
Apart from the TRACE option, which will be discussed later, the CONTROL statement
specifies STOP conditions for the simulation. The simulation will cease if one of the
STOP conditions is satisfied. STOP conditions must always be given in connection
with an evaluation object, and are tested whenever processes of that component are
being simulated.

The syntax of the CONTROL statement is as follows:

CONTROL [TRACEALL]
AT evaluation_object_1 [STOP stop_condition_1] [TRACE];
...
AT evaluation_object_n [STOP stop_condition_n] [TRACE];

8 .3 .5 .1 . Start and Stop Conditions

The stop_conditions are special boolean expressions, which may consist of the
following operands:

• CPUTIME value {e.g., 500 seconds}
• MODELTIME value {e.g., 10000 time units}
• EVENTS value {e.g., 1000}

[DUE TO hierarchy] {e.g., all}
• CONFIDENCE LEVEL probability {e.g., 98 (%)}

WIDTH interval_width {e.g., 5 (%)}
MEASURE stream {e.g., POPULATION}
[DUE TO hierarchy] {e.g., all}

These operands can be combined with AND and/or OR operations, denoting that the
simulation stops when the specified combined condition is satisfied. Note that no
brackets are allowed, but AND has higher precedence than OR.

The stop conditions CPUTIME and MODELTIME are intuitively clear. Via EVENTS n
the simulation can be stopped when n processes have left the component denoted by the
evaluation object.

For CONFIDENCE LEVEL consider the following alternative CONTROL statement
for experiment_sim:

CONTROL AT disk
STOP

CONFIDENCE LEVEL 95 WIDTH 5.0 MEASURE POPULATION
ORCPUTIME 10000;

This CONTROL statement ensures that the simulation will not cease until the true value
for POPULATION lies with 0.95 probability within the interval [mean-5%,
mean+5%]. This could lead the simulation to run for quite a long time until the STOP
condition is satisfied. The uncontrolled consumption of large amounts of computing
time can be prevented by specifying a maximal simulation time as done above. The
simulation will consume at most 10000 seconds of computing time. Of course, it may
be the case that a width of ±5.0% can not be achieved under this restriction. But we are

8. On Simulative Evaluation - 85 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

lucky: The results are displayed in the table below. Compare them with the results
above.

The width of the confidence interval for POPULATION is now less than 5%. The other
performance values apparently also gained in accuracy.

Summing up, we see that with the aid of the CONTROL statement we are able to
specify the required accuracy of the results as well as the duration of the simulation.

8 .3 .5 .2 . The TRACE Option

In fact, the CONTROL statement has another important feature, namely the TRACE
option. It is a debugging facility to trace the course of an experiment. There are two
possibilities:

• TRACEALL : traces the event sequences for all components. All area
transitions of processes form events.

• TRACE : traces only the event sequence for the associated evaluation
object every time an event takes place.

We give some hints for using the TRACE option:
• Normally, if you are (only) tracing a simulation, MODELTIME or EVENTS will be

the most appropriate STOP condition.
• Do not use TRACEALL and TRACE in combination!
• The trace information will be automatically written into a trace file. Be cautious!

Printing trace files may be a waste of paper! For a detailed explanation of the trace
files we refer to the Reference Manual.

- 86 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

8 .3 .6 . Measurement Intervals

To specify measurement time intervals for evaluation objects, HIT offers local START
and STOP conditions which could be given in the MEASURE statement as follows:

MEASURE stream_list
AT evaluation_object
ESTIMATOR estimator_list
OUTPUT TABLE link_name
START start_condition
STOP stop_condition

These START and STOP conditions are local in the sense that they affect only the
measurement at the associated evaluation object and have no influence on the duration
of the whole simulation.

The START condition helps us to ignore, for example, the transient phase of the
simulation. The STOP condition indicates that further measurements with respect to the
specified evaluation object are of no interest to us.

The operands of the START condition can be either CPUTIME, MODELTIME or
EVENTS while the operands of the STOP condition can be either MODELTIME,
EVENTS, CONFIDENCE LEVEL or even CPUTIME.

The OUTPUT option may follow the estimator. It serves to specify a link name for the
results. In the control file this link name can be bound to a file which can be named
explicitely. Moreover you can choose between a formatted table and a dump by
substituting the keyword TABLE above by the keyword DUMPFILE. A dump file can
be used for further processing, e.g., for generating graphical output, not discussed
here.

Alternatively the ESTIMATOR and/or the specifications following it may also be
defined in the EVALUATIONOBJECT declaration as a default for all measurements at
that evaluation object.

EVALUATIONOBJECT
evaluation_object-name VIA component_identification
DEFAULT

ESTIMATOR estimator_list
OUTPUT TABLE link_name
START start_condition
STOP stop_condition

Note that all these default specifications can be overwritten in every MEASURE
statement. For a complete description please see the HI-SLANG Reference Manual.

8. On Simulative Evaluation - 87 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

8 .4 . Hints and Warnings

8 .4 .1 . Wide Range of Parameters

If you cannot solve your problem by separable or Markovian models the execution of
simulative experiments is in place. But try to explore the relevant parameter space by
simplified analytical models. Perform simulations for a few selected parameter sets
only. Be economical in the execution of simulative experiment series!

8 .4 .2 . Hierarchical Models

In case of multi-layered models it may be possible that large differences in the
frequencies of high-level and low-level events prevent the determination of performance
estimations which are statistically significant.

You should consider techniques like off-line analysis of isolated components or the
aggregation of detailed lower layers to simplified components. Note that HIT offers
automatic aggregation of separable component types (and some extensions)! Tailor your
models in a fashion which is amenable to submodel aggregation techniques!

8 .4 .3 . Length of Simulation Runs

Always use confidence level as estimator for streams of interest, but do not choose too
small confidence interval widths for the respective STOP conditions. As a rule of thumb
you should know that halving a confidence interval (under the assumption of a fixed
confidence level) quadruplicates the length of the simulation!

Additionally you may use %PARM=UPDATES to display the number of updates
which have occured on each stream.

8 .4 .4 . Tracing Simulations

If you use CONTROL TRACEALL your tracefile will normally become very
voluminous. Better use CONTROL AT evaluation_object TRACE and/or the
procedures trace_off and trace_on to restrict the trace to some components and/or some
time intervals of interest.

8 .4 .5 . Influence of the SEED Parameter

It is well known that the results of simulation are influenced by the start value of the
pseudo-random number generator. For purposes of validation the default value for the
seed parameter can be altered as follows:

EVALUATE MODEL model1 : examples (0.15, LET seed := 5);

where the seed should be set to an odd integer! The default value for the seed parameter
is 13 for each evaluation executed. If you want a continuous sequence of seed values
you can write

EVALUATE MODEL model1 : examples (0.15, LET seed := last_seed);

9. The Model World for Simulation - 89 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9. The Model World for Simulation

9 .1 . Overview

The objective of this chapter is

• to introduce all those HI-SLANG features which can mainly be used
- for simulations (for specifying model types and component types), or
- within the body of the experiment block (independent from the solution method).

9 .2 . Basic HI-SLANG Data Structures and Statements

9 .2 .1 . Simple Data Types

The simple data types in HI-SLANG are:

• INTEGER • TEXT
• REAL • INFILE
• BOOLEAN • OUTFILE
• CHARACTER • POINTER FOR record_type

REAL will be internally represented as LONG REAL, i.e., with the maximal accuracy
available. INFILE and OUTFILE enable sequential data processing similar to PASCAL
textfiles. POINTERs and RECORDs are described in the HI-SLANG Reference
Manual.

Variables and constants may be declared over these basic types:

VARIABLE count : INTEGER;
product : REAL DEFAULT 1.0;
indata : INFILE;

CONSTANT five : INTEGER DEFAULT 5;
PI : REAL DEFAULT 2*arcsin(1);
E_POWER_PI : REAL DEFAULT 2.3140692632E01;

Variables have an appropriate implicit DEFAULT value (e.g., INTEGER with 0, REAL
with 0.0, BOOLEAN with FALSE).

Most simple-typed expressions possible in HI-SLANG can be compared to those in
conventional programming languages. In spite of that the constructs AND THEN and
OR ELSE need more consideration.

i < 5 AND THEN a[i] < > 0;
b(i,j) OR ELSE b(j,i);

In the first expression, the part a[i] < > 0 will only be executed if i is less than 5. In the
second expression, b(j,i) will only be executed if b(i,j) is false.

- 90 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

9 .2 .2 . Structured Data Types

Besides records and pointers not described here HI-SLANG provides arrays and
especially dynamic arrays.

9 .2 .2 .1 Arrays

Arrays can be declared over all basic types as well as over the structured types
COMPONENT and SERVICE. Constants of type ARRAY are also allowed.

The dimension of an array is given by the number of specified index ranges. An index
range is given by l..u, where l and u are the lower and upper bound, respectively.

Even for array variables DEFAULT values can be given, e.g.,

VARIABLE arr : ARRAY [0..4] OF CHARACTER
DEFAULT ['a', 'b', 'c', 'd'];

arr1 : ARRAY [1..2, 1..3] OF INTEGER
DEFAULT [[2,3,5], [3,7,6]];

The array arr1 will contain the following values: 2 3 5
3 7 6

9 .2 .2 .2 . Dynamic Arrays

Dynamically sized arrays are possible: The lower or upper bound of an index range at
declaration is not given as a constant but as a variable or even as an expression. See the
following example:

VARIABLE dyn_arr: ARRAY [b1..b1+2*n] OF INTEGER;

The variables appearing in the expression must be declared in an outer block (e.g., as
parameters). The index range of dyn_arr is determined at execution time of the
declaration part and will be fixed afterwards.

Note that in HI-SLANG the dimension and index ranges of an array used as formal
parameter are not fixed a priori. They are determined by the actual given field.

The statement part of an outer block including the array field may contain the following
CASE statement in order to manage arrays of different dimensions:

CASE field.dimension
WHEN 1 : ... field [i] …
WHEN 2 : ... field [i,j] …
...

END CASE;

Note that the dimension of an array is an attribute of each array and can be adressed via
dot notation by array_name.dimension. Moreover the array attributes lower_bounds[i]
and upper_bounds[i] exist for 1 ≤ i ≤ dimension.

9. The Model World for Simulation - 91 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .2 .3 . Assignments

We distinguish single assignment statements and multiple assignment statements:

var :=expression; {single assignment}
var1, var2, var3 :=expression; {multiple assignment}

In multiple assignments all variables get the same value. In contrast multi-value
assignments are possible, where the variables within the list normally get different
values:

(var1, var2, var3) := function_call; {the function returns three values}

There is a type conversion between INTEGER and REAL. If a REAL expression is
assigned to INTEGER variables, the value will be rounded and then converted. If an
INTEGER expressions is assigned to a to REAL variable, the value will be converted.
There are no other type conversions (e.g., between CHARACTER and TEXT) in HI-
SLANG.

All elements of an array can be assigned by a single statement:

mat := 0;
mat1 := mat2;
mat := [[0,0,0],[0,0,0]];

This is also possible in the DEFAULT part. The first assignment results in setting all
elements of the INTEGER (or REAL) array mat to zero. The latter assignment is
equivalent to the first assignment. By the second assignment, the following conditions
must be met:

• mat1 and mat2 must be type consistent.
• mat1 and mat2 must have the same dimension as well as the same index range

within each dimension.

- 92 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

9 .3 . Handling of Files and Texts

From the performance modelling viewpoint the contents of this section is of minor
interest. But for sake of completeness we give a short overview on file and text
handling. We suggest to skip this section and use it as reference material.

The assignment statement is also defined for files:

f1 := f2;

Here f1 and f2 must both be either INFILE or OUTFILE variables. The corresponding
file will not be copied but one can address the file by f1 as well as by f2.

For TEXT variables assignments may look like this:

t :="This is a text";
t1,t2 :="";
t1 :=t2;
t1 :=t1 & "longer"

The operation "&" concatenates the text, "" denotes the empty text. Texts can be
lexicographically compared by means of the following operations:

=, <, >, <=, >=, < >, # (both <> and # stand for unequal)

HI-SLANG I/O statements are similar to those of the programming language PASCAL.
The following statements are available:

• OPEN, CLOSE
• READLN, WRITELN
• READ, WRITE

The first four statements are only defined for INFILEs and OUTFILEs, while READ
and WRITE are also applicable for TEXTs. The LN suffixes only initiate a line feed.

9 .3 .1 . OPEN and CLOSE

Before a file can be accessed it has to be opened. By this the INFILE or OUTFILE
variable is connected to an external file via a link name. All file accesses are performed
via a buffer of the specified length:

OPEN f, "link_name" LENGTH 80;

After last access to the file it has to be closed by simply writing

CLOSE f;

9. The Model World for Simulation - 93 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .3 .2 . WRITE Statement

The WRITE statement serves to print a series of values to an external file, formatted
according to their type (INTEGER, REAL, TEXT, CHARACTER, BOOLEAN). For
example

WRITE "a(", n, ',', m, ") :", a(n,m);

displays "a(1, 2) : 16.475" if the variables n and m and the real array element a(1, 2)
have these values.

Instead of a file (the default file is SYSOUT) also a TEXT variable can be used:

VARIABLE t1, t2, t3 : TEXT;
t4 : TEXT DEFAULT "example";

CONSTANT t5 : TEXT DEFAULT "!";

t2 := "This ";
t3 := "is " & "an ";
WRITE TEXT t1, t2, t3, t4, t5;

After the execution of WRITE statement the TEXT t1, which will be newly generated,
has the following contents:

"This is an example!"

To show the formatting of the output, we give some examples.

• BOOLEAN values are printed as 0 and 1; for CHARACTERs their value is printed:

WRITE FILE outf, TRUE; ==>1
WRITE FILE outf, FALSE; ==>0
WRITE TEXT t, '_'; ==>_

• In the case of TEXT, INTEGER and REAL field declarations for output formatting
can be used. Otherwise a default field width is used.

"OK" :: 5 ==> 'OK ' {the field width is five}
"RESULT=" :: 6 ==> 'RESULT' {better use field width seven or more}

256 :: 3 ==> '256' {exact fit}
256 ==> ' 256' {default width is eleven}

17.5665 :: 5 ==> ' 1.7566E+01' {floating point representation}
17.5665 :: 3 :: 10 ==> ' 17.566' {fixed point representation}
17.5665 ==> '1.756650E+01' {default seven significant digits}

- 94 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

9 .3 .3 . READ Statement

The READ statement assigns an input value to a variable according to the types of the
given variables. The following types are possible: TEXT, INTEGER, REAL,
BOOLEAN and CHARACTER.

Again instead of a file (default SYSIN) a TEXT variable can be used. Consider for
example the following READ TEXT statement which is to be executed after the WRITE
TEXT statement above. The text t1 is splitted into t2 and t3:

READ TEXT t1, t2, t3 :: 6;

Because the default length of a text is 1, the variables will have the following values, if
t1 has the value assigned by the previous example:

t2 : "T"
t3 : "his is".

9 .3 .4 . Eof, Lastitem and Eoln

There are three functions to control the reading of files:

• eof (f) returns TRUE if no more characters (inclusive blanks!) are encountered in
the INFILE f.

• lastitem (f) will return TRUE, if only blanks are encountered in the rest of INFILE
or if the end of the file is reached.

• eoln (f) will return TRUE if no more characters (inclusive blank!) in the actually
accessed line of the INFILE can be read, i.e., the end of the line is reached.

Note that in these functions the INFILE parameter f has the standard input file SYSIN
as a default. The following example illustrates how to read all records of a file named
my_file referenced by the link name DATA:

VARIABLE my_file : INFILE;
...
OPEN my_file "DATA" LENGTH 80;
READLN FILE my_file;

WHILE NOT eof (my_file) LOOP
{reading and processing the records, e.g., by means of READ}

END LOOP;

CLOSE my_file;

Note that this is not a perfect example for accessing a file. If only blanks follow the last
item read and no next line is in the file, then eof will yield false and the next call of
READ (for a numerical item) will constitute an error. It is better to use lastitem instead
of eof in this case. Lastitem skips blanks. If DATA is bound to a non-existing file a run
time error will occur at the OPEN statement.

Moreover don´t use READLN with a list of variables if you are not sure weather the
end of the file has already been reached. A previous eof query does not suffice, since
READLN first skips to the next record and then reads the variables.

9. The Model World for Simulation - 95 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .4 . More Control Statements

Compared to METHOD ANALYTICAL more constructs are permitted for METHOD
SIMULATIVE, e.g., the CASE statement, the FOR loop and the CONCURRENT
statement.

9 .4 .1 . The CASE Statement

The CASE statement is used to select which sequence of statements should be executed
next, depending on the value of the expression following the keyword CASE.

CASE expression
WHEN exp1 : {statements}
WHEN exp2 : {statements}

WHEN expn : {statements}
ELSE : {statements}

END CASE;

The expressions (choices) following WHEN must be of type INTEGER,
CHARACTER or TEXT. Lists of expressions separated by commas are also possible.
The usual strict type rules apply and the choices must have the same type as the
expression following the keyword CASE. The ELSE clause is optional.

As an example consider the following definition of cpu requests depending on the kind
of access:

CASE access {access is a CHARACTER variable}

WHEN 'r' : cpu_request (5.0); {read}
WHEN 'w' : cpu_request (10.0);{write}
WHEN 'u': cpu_request (10.0);{update}
WHEN 'd' : cpu_request (2.0); {delete}

ELSE : cpu_request (0.5);
WRITELN "illegal access ", access, " at model time ", TIME :: 3 :: 10;

END CASE;

If the value of access is different from 'r', 'w', 'u' or 'd', the service request will be
followed by a message. Try to guess the format of the message specified by the
WRITELN statement!

9 .4 .2 . The FOR Loop

The FOR loop deals with cases where we go round a loop a certain number of times.

FOR var := exp1 STEP exp2 UNTIL exp3 LOOP
{statements};

END LOOP;

- 96 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

exp1, exp2 and exp3 must be INTEGER or REAL expressions and var must be an
INTEGER or REAL variable. Please note, that STEP exp2 cannot be omitted. Another
form of the FOR loop admits a list of expressions. The loop is executed for every
member in the list.

FOR var := exp1, exp2, ..., expn LOOP
{statements};

END LOOP;

Besides the use of the FOR loop in the specification of model types it can be used in the
experiment specification. Note that this possibility is independent from the evaluation
method: for specifying experiments all HI-SLANG features can be used independant of
the solution method used.

A typical application for this kind of loop is the execution of experiment series. Actual
values for the parameterization of models can be assigned in this way:

EXPERIMENT model_analysis METHOD SIMULATIVE;

VARIABLE speed : REAL;
BEGIN

FOR speed := 1.0, 2.5, 5, 20, 100
LOOP

EVALUATE MODEL mod : mt (speed);
...
END EVALUATE;

END LOOP;
END EXPERIMENT;

9 .4 .3 . The CONCURRENT Statement

The CONCURRENT statement is used for the modelling of parallelism. It can be used
in services only. An example for the CONCURRENT statement is:

CONCURRENT

proc1_computing (amount1);
TO

proc2_computing (amount2);
TO

proc1_computing (amount3);
proc2_computing (amount4);

END CONCURRENT;

The three parts separated by the keyword TO will be executed in parallel (concerning
model time). The statement is finished when all of its branches have terminated.

9. The Model World for Simulation - 97 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .5 . More on Services

The syntactical structure of services admitted for METHOD ANALYTICAL has already
been given. But a few points must be taken into account:

• The only restriction imposed on the parameters of a service is, that call by name is
not admitted.

• Declaration of local variables is possible.
• In the body of a service, other statements apart from control statements and service

calls can be used. Even CREATE statements may occur here.

9 .5 .1 . The CREATE Statement

The CREATE statement is responsible for generating processes which execute service
descriptions dynamically during run time. It can be used in the following four forms:

• CREATE n PROCESS service_name (actual parameters) AT time1;
• CREATE n PROCESS service_name (actual parameters) AFTER time2;
• CREATE n PROCESS service_name (actual parameters) EVERY time3;
• CREATE n PROCESS service_name (actual parameters);

The two latter forms are already known from METHOD ANALYTICAL. Some
examples for the generation of processes are:

CREATE 10 PROCESS batch_task AT 0;
CREATE 1 PROCESS batch_task EVERY negexp (7.5);
CREATE 2 PROCESS job (x, 13.7) AFTER 217.5;
CREATE 1 PROCESS job (,,) EVERY negexp (1/iat);
CREATE 56 PROCESS dialog_task;

The first statement generates an initial filling of the model. If you can make a good
guess at the mean population of the model, you can shorten the transient phase of a
simulation in this way.

A continous Poisson arrival stream of batch tasks is specified in the second CREATE
statement. The third statement creates exactly one process with actual parameters x and
13.7 after 217.5 time units, whereas the following statement creates a Poisson arrival
stream of objects having default values. The last statement shows the standard way to
generate a fixed number of permanent processes. Note that statements one and three are
not allowed for METHOD ANALYTICAL!

The time given in the CREATE statement refers to the model time, not to the CPU time.

- 98 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

9 .5 .2 . The SUBMIT Statement

Another possibility of creating processes dynamically at run time is supported by the
SUBMIT statement. When the SUBMIT statement is executed only one process is
generated. But this process is named. The name (or names) must be declared by:

PROCESS p_name1, p_name2, ...: NAME FOR service_name;

or even by a one-dimensional static ARRAY of names:

PROCESS p_array_name : ARRAY [1..4] OF NAME FOR service_name;

The SUBMIT statement has the following syntax:

SUBMIT service_name (actual_parameters) NAME process_name;

Additionally the timing specification AT, AFTER and EVERY can be given as in the
CREATE statement. For processes like those defined above (which do have a name)
service parameters can be accessed by means of the dot notation. In HIT the service
parameters are used to model the process state.

In the following example the service parameter, i.e., the state of the process called
p_name is accessed via dot notation: p_name.much.

TYPE ct COMPONENT;

TYPE st SERVICE (much : REAL);
...

END TYPE st;

PROCESS p_name: NAME FOR st;
PROCESS print : state_print;

TYPE state_print SERVICE;
BEGIN

LOOP
hold (10);
WRITE time, p_name.much;

END LOOP
END TYPE state_print;

BEGIN
SUBMIT st (17.5) NAME p_name;

END TYPE ct;

9 .5 .3 . Static Process Declaration

Processes can also be generated statically by a declaration. It looks quite similar to the
declaration of a process name, explained above: A process can be declared and
immediately generated by

PROCESS p1, p2, ... : service_name (actual_parameters)

or even by a one-dimensional static ARRAY of processes:

PROCESS p_array : ARRAY [1..4] OF service_name (actual_parameters);

9. The Model World for Simulation - 99 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .5 .4 . Service Arrays

A service may use a number of similar services, called a SERVICE ARRAY. Calling
one of the services of a service array is similar to accessing an array element, i.e., by
indexing.

Service arrays must be bound to the provided services of a component array. Other
ways of binding are not possible. Here is a small example to illustrate the use of a
SERVICE ARRAY:

TYPE compute SERVICE;
USE

SERVICE ARRAY store (...); {The parameter list is optional}
END USE;

BEGIN
...
store [3] (...); {The round brackets embrace the actual parameters}
...

END TYPE compute;

{We assume the existence of a component type ct, which provides a service called file_it}
...

COMPONENT ca : ARRAY [1...4] OF ct; {declaration of an array of components of type ct}

REFER compute TO ca EQUATING
compute.store WITH ca. file_it;

END REFER;

As defined by the REFER part, the statement store [3] within the service compute will
cause the execution of file_it of the third element of the component array ca.

Note that the index of the service array must not exceed the boundaries of the associated
component array, otherwise a run time error results. It is often favourable to specify the
boundaries of the component array as a parameter of the service, since the attribute
dimension does not exist for component arrays. Note that the USE declaration of the
service array does not contain any bounds (similar to array parameters of procedures).

9 .5 .5 . Services Supplying Results

Services can also supply results! See the following example.

TYPE fun_st SERVICE (t: REAL) RESULT REAL;
USE

...
END USE;

BEGIN
...
RESULT time - t; {time is the current model time}

END TYPE fun_st;

Just as a procedure with result, results are returned after the creation and execution of a
process of service fun_st. The call of services should be identical to a function call,
otherwise (e.g., in CREATE/SUBMIT statements) the result is lost (although it may
sometimes be reasonable to call services and ignore the results).

- 100 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

9 .6 . Procedures

For simulative models a lot of additional random drawing procedures, predefined
procedures and even user-defined procedures are available.

9 .6 .1 . More Random Drawing Procedures

In Section 2.6., the random drawing procedures negexp and draw have been intro-
duced. Section 7.5. contains the definition of cox and coxg. In the following we
present the most important random drawing procedures, which can be used in
simulations only.

• uniform (a, b)

Uniform is a real function with real parameters a and b.

If a ≤ b the value will be a drawing from a uniform distribution
between a and b, i.e., each value in the interval [a,b] is
drawn with the same probability.

If a > b a run time error will result.

• erlang (a, b)

Erlang is a real function with real parameters a and b.

If a ≥ 0 and b ≥ 0 the value will be a drawing from the Erlang distribution
with mean 1/a and standard deviation 1/(a* b). b < 1
results in a small variation, b=1 yields the exponential
distribution, b > 1 results in a large variation.

If a < 0 or b < 0 a run time will error result.

• normal (m, s)

The value given by this function is normally distributed with mean m and standard
deviation s. Normal is a real function with real parameters m and s.

Furthermore, all random drawing procedures known from the host language SIMULA
(discrete, histd, linear, poisson, randint) are available in HIT. See the HI-SLANG
Reference Manual, please.

9. The Model World for Simulation - 101 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .6 .2 . Predefined Procedures

Besides the random drawing procedures there are a lot of other procedures predefined
in HI-SLANG:

• The set of arithmetic functions available consists of the standard trigonometric
functions (sin, arccos, tanh, ...) as well as abs, sqrt, log and the like.

• For text and file handling procedures like digit, letter, eoln can be used.

• Modelling support procedures are available as, e.g., time, cpu_time, stop_-
evaluation, transfer_results (intermediate results) and get_result (e.g., to control
evaluation series depending on earlier results).

• Simulative trace control: Via trace_state information about the current location of
processes can be added to the trace file (state trace, done automatically when the
simulator detects a deadlock). Via trace_on and trace_off the event trace can
temporally be supressed.

For more details see the HI-SLANG Reference Manual.

9 .6 .3 . User-Defined Procedures

Apart from services HIT also provides procedures, whose execution is invoked by a
call. A procedure call is a statement, or if it is used like a function it is an expression if
exactly one value is returned as result. Multi-valued procedures are a special HIT
feature.

If other procedures from lower layers are to be used (called), they must be explicitly
imported via a USE declaration part. The HI-SLANG notation of the USE declaration is
identical to the USE declaration of services. Note that a procedure cannot use services!
Moreover procedures cannot consume model time. Third procedures are not subject to
component control, e.g., they cannot be scheduled.

• Procedure with result:

PROCEDURE f (r : REAL DEFAULT 0.0;
n1, n2 : INTEGER)
RESULT REAL, INTEGER;

{Declaration of local variables, constants and/or procedures}
BEGIN
...
RESULT 27.09, 49;
END PROCEDURE f;

This procedure returns a pair (x,n), where x and n are of type REAL and
INTEGER, respectively. Here are some possible calls of the procedure f, which are
completely equivalent.

(x, n) := f (0, 8, 15);
(x, n) := f (, 8, 15);
(x, n) := f (, 8, LET n2 := 15);

- 102 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

• Procedure with USE part:

PROCEDURE proc2 (x:REAL);
USE PROCEDURE

proc1 (.....);
...

END USE;
BEGIN

{statements}
proc1 (.....);
...

END PROCEDURE proc2;

Of course procedures with USE part may also deliver results and vice versa. The
following notes applying to all kinds of procedures are advisable:

• Number and type of formal and actual parameters must be compatible.
• Formal parameters without default value must be substituted by an actual parameter.
• Procedures can be called recursively.
• LET parameters (keyword-parameters) must not be followed by other parameters.
• Time consumption, e.g., service calls in procedures is not admitted.

The default parameter transmission mode is "call by value" for all simple types except
for POINTER, INFILE and OUTFILE and "call by reference" for all structured types
respectively. "call by name" can optionally be used in all cases (but only for parameters
of procedures, not for component types and services). As an example consider the
following list of formal parameters, where for n and z the default transmission
mechanism has been changed:

PROCEDURE f (NAME n : INTEGER;
 VALUE z : ARRAY OF BOOLEAN;
 REFERENCE f1 :INFILE);

BEGIN
...

END PROCEDURE f;

9. The Model World for Simulation - 103 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

9 .7 . An Extensive Mini Example

To give an impression of HI-SLANG we continue with an example, which shows as
many HI-SLANG features as possible on a single page.

%ANALYZER
%BIND "FILE" TO data.file
%END

VARIABLE afile : INFILE;
CONSTANT file_length : INTEGER DEFAULT 80;

TYPE system MODEL (t:REAL DEFAULT 5; n_sim, n_ula:INTEGER);

TYPE in_out SERVICE (id: TEXT);
USE SERVICE fetch (t : REAL);
END USE;

VARIABLE i : INTEGER DEFAULT 0;
BEGIN

WHILE NOT lastitem(afile)
LOOP

READ FILE afile, i; {spends approx. log(i) }
fetch(normal(1+entier(log(i)),1)); {sec. to read number i}
WRITELN id, " writes", i::8, " at", time::3::10;

END LOOP;
END TYPE in_out;

COMPONENT man : server(LET schedule := immediate);

REFER in_out TO man EQUATING
in_out.fetch WITH man.request;

END REFER;

BEGIN
CREATE n_sim PROCESS in_out("SIM"); {tasks from SIM}
CREATE n_ula PROCESS in_out("ULA") EVERY t; {tasks from ULA}

END TYPE system;

EXPERIMENT analysis METHOD SIMULATIVE;

VARIABLE s, u : INTEGER;
BEGIN

FOR s := 0 STEP 10 UNTIL 10 LOOP
FOR u := 1 , 3, 5 LOOP

OPEN afile, "FILE" LENGTH file_length;

EVALUATE
MODEL i_o : system (, s, LET n_ula := u);
EVALUATIONOBJECT one_man VIA i_o.man

DEFAULT ESTIMATOR MEAN, STANDARDDEVIATION;
BEGIN

MEASURE POPULATION, TURNAROUNDTIME AT one_man;
CONTROL AT one_man STOP CPUTIME 10 OR EVENTS 30;

END EVALUATE;

CLOSE afile;
END LOOP;

END LOOP;
END EXPERIMENT;

- 104 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

The example starts with some percent statements, where the file data.file containing
some numbers is bound to a link name.

The HI-SLANG source is composed of a model type with name system and an
experiment specifying an evaluation series of models of that type. The global
declarations in the first lines hold for both parts.

The model is simple: There is a man (represented by a component) able to perform the
task (service) in_out to write the name of his orderer together with integers read from a
file until the end of the file is reached. The man needs approximately n seconds
(normally distributed with variance 1) to read and write a number with n digits. The
connection between man and his task is established in the refer part, specifying that the
service fetch used within in_out is to be satisfied by the standard service request of the
server man. The occurence pattern of the tasks is specified by create statements.

The experiment part describes an evaluation series. For each parameter combination (s,
u) an evaluation of a model object named i_o is performed. Each evaluation is
preceeded by opening the file. As a result we obtain a table containing mean value and
standard deviation of POPULATION (number of tasks present) and TURNAROUND-
TIME (completion time for a task) at the component man (adressed by one_man). This
table is written to a file named by the file name generator (see Appendix A.). The
simulation stops after 30 events or if 10 cpu seconds have been spent.

Notice that we presented a flat model, but refining this model can be done by replacing
man by a more detailed component. On the other hand the model can be transformed to
a component providing the service in_out. In this way hierarchical models can be built
as we have seen in a previous chapter.

10. Predefined Component Types - 105 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

10. More Predefined Component Types

In HIT we can store component types in modelling bases or in files and make them
available for other HIT users. The component types specially tailored to Markov models
(counter, prioserver, ftserver) have been introduced in earlier sections. Of course these
types are also admitted for simulative evaluation except ftserver.

Now we introduce the rest of the predefined component types which are members of
the HIT standard mobase. Please note, that all of them can only be used if you choose
simulation.

10 .1 . Semaphor

An object of type semaphor represents a general semaphore. The initial value can be
specified via the parameter sem_init (>0). The default value of sem_init is 1, yielding a
binary semaphore.

A semaphore provides the services P and V.

P; If possible, the semaphore variable will be decremented by one, otherwise the
requesting process will be passivated.

V; The semaphore variable will be incremented by one and a passivated process
may be activated.

Semaphores are known from operating systems to synchronize processes or to protect
critical regions. The following example shows how to protect a critical region with the
help of a semaphore.

TYPE semaphor COMPONENT (sem_init : INTEGER DEFAULT 1);
PROVIDE SERVICE

p; v;
END PROVIDE;
...

END TYPE semaphor;

Note that the default (and only meaningful) schedule discipline is fcfs-like and that
sem_init is only the initial value of the semaphore and not an upper bound. By
executing only V-operations the semaphor value can infinitely be incremented.

An alternative implementation of a semaphore can be made with the help of the
component type counter, see the chapters on Markov models. In this case random and
priority scheduling disciplines are possible.

Due to historical reasons a semaphore in HIT indeed spells semaphor, without an "e" at
the end!

- 106 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

The following example demonstrates the use of a binary semaphore to protect a critical
region within a service:

%COPY "SEMAPHOR"
...

COMPONENT binsem : semaphor (LET sem_init := 1);

TYPE xwrite SERVICE;
USE SERVICE

passeer;
verlaat; {passeer and verlaat are notions due to Dijkstra}
...

END USE;

BEGIN
...
passeer; {if passeer (=p) is successfull, the critical region can be entered}
... {critical region, e.g., exclusive file access}

verlaat; {verlaat (=v) switches the semaphore variable to its original value}
...

END TYPE xwrite;

REFER xwrite, ... TO binsem ... EQUATING
xwrite.passeerWITH binsem.p;
xwrite.verlaat WITH binsem.v;
...

END REFER;

10 .2 . Tokenpool

The component type tokenpool models a pool of tokens, which can be allocated,
released, destroyed and produced by using the provided services. The following type
declaration shows the interface of tokenpool.

TYPE tokenpool (no_of_tokens : INTEGER) COMPONENT;
PROVIDE SERVICE

allocate (number : INTEGER);
release (number : INTEGER);
destroy (number : INTEGER);
produce (number : INTEGER);

END PROVIDE;
...

END TYPE tokenpool;

A request to allocate, e.g., by allocate(n), demands for a number of tokens and waits
until those tokens are allocated. If the number of free tokens is greater than or equal to
the number of requested tokens the allocation will happen without delay. Otherwise the
requesting process is passivated until the number of free tokens matches. The number
of free tokens can be increased by release, which frees a number of allocated tokens, or
by produce, which creates a number of "new" tokens. Free tokens can be removed
from the token pool by calling destroy.

10. Predefined Component Types - 107 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

Please note that destroy(n) and allocate(n) will result in passivation of the calling
process if n exceeds the number of free tokens. Also note that in contrast to the counter
the limits of available tokens can be manipulated at run time.

One of the most famous applications of a tokenpool is the representation of
simultaneous resource possession. The simultaneous use of active components, (like
cpu and io devices) and passive resources like main storage can be modelled as follows.

%COPY "TOKENPOOL"
...

COMPONENT main_storage : tokenpool (LET no_of_tokens := 1024);

The default (and only meaningful) scheduling discipline of a tokenpool is fcfs-like.
Also dispatch and the other control procedures may not be set. A process can allocate
and release n byte of main storage by calling allocate(n), and release(n), respectively.

For this example calls of destroy and produce are of minor interest.

10 .3 . Synchsend

A component object of type synchsend enables two processes to communicate with
each other in one direction: one process as sender and the other as receiver. If
communication takes place in both directions, or if more than two processes exchange
messages, then several component objects (or even a component array) must be
declared.

The sender and receiver are synchronized when exchanging messages in the sense that
some access operations will be delayed by either of them until an appropriate state of the
other is reached. Synchsend provides the two services send and receive as given in the
type declaration below. The buffer is implemented by a text variable.

TYPE synchsend COMPONENT;
PROVIDE

SERVICEsend (what : TEXT);
receive RESULT TEXT;

END PROVIDE;
....

END TYPE synchsend;

The following example demonstrates the use of synchsend for a synchronous
unidirectional communication between a sender and a receiver process.

%COPY "SYNCHSEND"
...

COMPONENT commun : synchsend;

Two services sender and receiver (normally belonging to different components) may
then communicate over an enclosed synchsend component in the following way:

- 108 - IV. FEATURES FOR SIMULATIVE MODELS

HIT and HI-SLANG. An Introduction

TYPE sender SERVICE; TYPE receiver SERVICE;

USE SERVICE USE SERVICE
send(x :TEXT); receive RESULT TEXT;

END USE; END USE;

VARIABLE message : TEXT; VARIABLE message : TEXT;

BEGIN BEGIN
. .
. {produce message} .
. .
send (message); message := receive;
. .
. . {consume message}
. .

END TYPE sender; END TYPE receiver;

10 .4 . Nowaitsend

The component type nowaitsend enables the communication of processes. In contrary
to synchsend, the sender, in general, does not have to wait until the receiver receives
the messages. It may further produce messages and send them while the buffer is
empty. The receiver must obviously wait for the sender in case of an empty buffer.

Note that the buffer is implemented by a TEXT Array. The capacity of the buffer is
given by the integer parameter no_of_buffers (default=1). The type declaration and
application are similar to those of synchsend.

TYPE nowaitsend COMPONENT (buffer_size : INTEGER);
PROVIDE

SERVICEsend (what : TEXT);
receive RESULT TEXT;

END PROVIDE;
....

END TYPE nowaitsend;

If we want to introduce a component of type nowaitsend, e.g., with buffer size 100, we
can do this as follows:

%COPY "NOWAITSEND"
...

COMPONENT proc_comm: nowaitsend (100);

Sending and receiving are done by send (mess_text1) and mess_text2 := receive
respectively. If communication occurs between different components (as usual), one of
them (or both) have to enclose the component.

10. Predefined Component Types - 109 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

10 .5 . Observer

The standard component type observer can be used to produce intermediate result
outputs. The observer has no provided services, but internally creates one process
which will interactively prompt the user for new time points for the next intermediate
results, if the parameter interactive is set. An initial observation model time interval can
be set by the real parameter obs_interval. The interactive observer will then produce the
results, print the current model time and amount of cpu time used, and query for one of
the following alternatives:

q : quit simulation
s : s top observing, continue simulation
c : keep current model time interval and continue observing
n : as c, but switch to non-interactive mode
<real value n.nnEnn> : set new interval, continue observing

It has the following interface:

TYPE observer COMPONENT
(obs_interval : REAL;
 interactive : BOOLEAN DEFAULT FALSE);
...

END TYPE observer;

To use the observer it has to be copied from the standard modelling base. An observer
component should preferable be declared within the model type or global to the model
type.

%COPY "OBSERVER"

COMPONENT obs : observer (500, TRUE);

Normally the results are directed to a file (the default is OUTPUT TABLE "TABLE")
and can in this case not be watched interactively. Thus the observer should be used in
combination with OUTPUT TABLE "SYSOUT".

P a r t VP a r t V

A P P E N D I C E SA P P E N D I C E S

AppendicesAppendices

A - FA - F

A. How to Run HIT - 113 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

APPENDIX A. How to Run HIT

In this chapter a brief introduction to the usage of the HIT system in different
environments is given.

For every operating system HIT has been ported to there exists an operating system
procedure to activate HIT (see the next sections). This procedure calls the HI-SLANG
compiler and then the SIMULA compiler and linker to create executable code. After this
the compiled and linked module (i.e., the analyzer) will be executed to calculate the
desired performance indices. The object manager OMA is always accessible via a
similar, operating system procedure.

There are many parameters to control the operation of HIT. All parameters have default
values and are therefore optional. For a detailed list please see the corresponding HIT
User's Guide. The main parameters which always exist are:

control the name of the control file used by HI-SLANG compiler and
analyzer. If you do not use this parameter both the compiler and the
analyzer will ask for a control file separately. Suppose you have
none, you must enter the file name of your HI-SLANG program
then.

task the entry point of the procedure. Possible values are:

com: start with HI-SLANG compilation
sim: start with SIMULA compilation
exp: only perform the experiment (run the analyzer, e.g., with

other input data)

option the exit point of the procedure. The value check stops HIT after the
completion of the HI-SLANG compilation

sizecomp the size of the working storage for the HI-SLANG compiler

sizeexp the size of the working storage for the generated analyzer

If the user does not provide special file bindings in his control file all files generated,
e.g., the result files, are named by the HIT file name generator. The file name patterns
are given in the next sections. The user may define a different file name pattern by using
"%DEFAULT pattern" in his control file. See the Reference Manual.

- 114 - V. APPENDIX

HIT and HI-SLANG. An Introduction

A.1. Guide for UNIX

For using the HIT system on a workstation (or even a PC) under some UNIX-like
operation system, the shellscript hit is available. Moreover the graphical interface
HITGRAPHIC can be used (on SUN workstations).

HIT may be used by more than one user at the same time. In this case the shellscript hit
has to be called from different directories because some output files have fixed names.

With installation-directory being the name of the directory the HIT system is installed
in, starting the HIT system looks like this

installation-directory/hit

It is useful to define an alias for this or better to set a path in the .login file by

set path=($path installation-directory)

The script may then be called like this:

hit [control [task]]

Control and task are positional parameters, while all other parameters are implemented
by environment variables. Such parameters can be set typing, e.g.,

env option=check sizecomp=8000 hit control_file

Do not use blanks around the '='-characters !

After every run of the HIT system, some new files exist in the current directory. Some
files are created by the shellscript hit . Their names can only be modified by the
parameter prefix of hit which has the string "t." as a default value. Normally the
following files exist:

t.hitcode the analyzer to be run
t.hitcode.sim the generated code of the HI-SLANG compiler
t.compiler the standard output file of the compiler
t.experiment the standard output file of the analyzer

More important for the user are the files created by the HIT system itself. Their names
may be defined in the control file, or the file name generator of HIT may be used. The
latter is automatically used for files having a standard link name which is not bound in
the control file. It generates file names t.<c>.<l> where <c> is the name of the control
file stripped of the directory prefix and a suffix .ctl or .hit and <l> are the three leading
letters of the standard link name, e.g., lis for listing, tab for table.

For a control file named my_dir/example/ex1.ctl
the standard name of the listing is t.ex1.lis
and your results are found in t.ex1.tab
within the current directory!

A. How to Run HIT - 115 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

A.2. Guide for BS2000

For using the HIT system in a BS2000 environment the procedure HIT is available.
Calling the HIT system looks as follows:

DO $UserId.HIT [, CONTROL = <file name>] [<other parameters>]

UserId stands for the user identification the procedure is situated on your computer
system. After a run of the HIT system you find some temporary files created by HIT:

#HIT.CODE.LOAD the analyzer to be run
#HIT.CODE the generated code of the HI-SLANG compiler
#HIT.SYSLST.COMPILER the standard output file of the compiler
#HIT.SYSLST.EXPERIMENT the standard output file of the analyzer

More important for the user are the files which are by default named by the HIT file
name generator. It creates temporary files #<c>.<l>, where <c> is the name of the
control file and <l> is the link name. So by default your results will be written to
#<control file name>.TABLE.

A.3. Guide for VM/CMS

For using the HIT system in a VM/CMS environment the REXX procedure HIT EXEC
is available. Starting the HIT system look as follwos:

HIT FNAME FTYPE [FMODE] [(<other parameters>)]

Here the usual parameter control is split into three parameters FNAME, FTYPE and
FMODE due to file name conventions. The other parameters may follow.

Special parameters are

SIZE the memory size for one analyzer run (default 4096K)
(SIZE is the sizeexp parameter, currently there is no sizecomp

parameter)

OUTPUT PRINT the output is send to the line printer
TERM the output is displayed on the terminal only

After a run of the HIT system by default you find your results in files named by the file
name generator. It generates file names HIT <l>, where <l> is the link name. So by
default your results will be written to HIT TABLE.

- 116 - V. APPENDIX

HIT and HI-SLANG. An Introduction

APPENDIX B.Handling of the HIT System

The HIT system is integrated with the so-called HIT File Access Network (HIT-FAN).
HIT-FAN supports the development and configuration of HIT models from modules
like component types, services, procedures or arbitrary pieces of HI-SLANG code.
These modules can be either files or members in a modelling base (called mobase) and
are accessed or created via HIT-FAN. Every logical file which is used (or created)
during the processing of a HIT model is linked by HIT-FAN to a physical file or to a
member of a mobase. Moreover the HI-SLANG compiler is controlled by FAN.

B.1.Some Compiler Control Statements

The following compiler control statements may appear at any place in the HI-SLANG
source text. They are used to invoke various listing options of the compiler. Note that
all of then start with a '%'-character, which must appear in column 1.

%NOSOURCE

The formatted HI-SLANG listing will be usually written into a file. This option
suppresses the HI-SLANG listing until a %SOURCE statement is encountered.

%PAGE

A form-feed will be inserted.

%TITLE This is a title

Similar to the PAGE statement, a form-feed will be inserted. Additionally the text
written in the control statement will be printed as a title at the head of the page. This title
will be preserved on the following pages until it is overwritten by a new title.

% arbitrary comment

Source text lines which contain a "%" in the first column and a blank in the second
column are considered to be comments:

% This is a comment
%No comment; error!

The second example is wrong formatted and will lead to an error! Another way to
include comments in your source text is the use of braces {...}. We do use both
possibilities. Please note, that such comments must be terminated in the same line.

%COPY "link name"

The file bound to the link name (in the control file) is textually inserted at this position.
This facility can be used to access logical units of text (e.g., component types and
experiments) from separate files or separate "design objects" within a modelling base.

B. Handling of the HIT System - 117 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

B.2 . The Control/Configuration File

The linking of physical objects to logical objects is defined by control records, which
can be placed either at the beginning of a HI-SLANG source file or in a separate control
file. Calling HIT you have to supply the name of the file containing the control records.
If your control file is incomplete, HIT requires for the resolution of unresolved
references by

%BIND "link_name" TO ?

As a consequence you can use HIT even with an empty control part. The control part
has a structure as follows:

%COMMON
{control records common to the HI-SLANG compiler and the analyzer}

%COMPILER
{control records for the HI-SLANG compiler}

%ANALYZER
{control records for the analyzer}

%END
{last statement of the control part, now the HI-SLANG source can follow}

All parts are optional. Comments can also be included, starting by '%', followed by at
least one blank. There are several control records; the most important are %PARM and
%BIND.

B.2 .1 . %PARM. Compilation and Analyzer Options

The admitted parameters in a %PARM record are either concerned with the compilation
of HI-SLANG sources or with the formatting of the HI-SLANG listing or with
analyzing models. The parameters are given by

%PARM = parameter [,...]

For a complete list see the HI-SLANG Reference Manual. Most important are the
following options:

CHECK

The HI-SLANG source is only checked for syntactical and semantical correctness. No
generation of SIMULA code (neither of executable code) is performed.

NOSOURCE

Normally a listing of the HI-SLANG source (including the control part) is generated.
NOSOURCE supresses the HI-SLANG listing.

- 118 - V. APPENDIX

HIT and HI-SLANG. An Introduction

XREF

A cross reference listing is generated and appended to the listing. Test it!

NOWARN

Additional to error messages, HIT normally provides warnings. NOWARN suppresses
warnings.

INDENT =[character] number

The HI-SLANG listing is indented (i.e., shifted right) to show the block structure of
the program. The number determines the number of indented shifts per block level. You
can optionally specify a character which is used for threading between block-begin and
block-end. (We suggest a blank or '|'.)

UPDATES

Additional to the mean value, the number of updates to a stream will be displayed in
tables resulting from a simulation. By %PARM=MINMAX even minimal and maximal
values which have occured in the observation interval can additionally be displayed
within the mean value table fields.

B.2 .2 . %BIND. Binding and Linking

The %BIND record is used to bind logical link names to physical files or to members of
a modelling base. Besides the link names you define, e.g., by %COPY or OPEN
statements there are a lot of link names predefined, e.g.,

"TABLE" for the tabular result output
"LISTING" for the compiler source listing (including messages and XREF)
"TRACE" for the Markovian or simulative trace output
"PREANA" for the aggregation output.

You may bind these link names to define your own file names, disabling the HIT file
name generator. Moreover you can alternatively or additionally bind the link names to
members in a modelling base. A %BIND statement has the structure

%BIND "link name" TO file_object

As file_object you can specify either the name of a physical file or you can specify a
member of a modelling base. We shortly explain the second case by some examples,
where we presuppose the existence of a HIT-specific modelling base. See the OMA
User's Guide for more informations. The general structure of the %BIND statement in
that case is

%BIND "link_name" TO mobase_name (parameters)

The mobase_name specifies the name of your (private) modelling base. The list of
parameters contains up to four entries, which specify the object to be included as
follows:

B. Handling of the HIT System - 119 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

1. The representation of the module to be included. You can choose between
HISLANG, PRECOM, PREANA, CONTROL, SIMULA and DATA. PRECOM is
a pre-compiled intermediate representation of the object, PREANA is associated
with a pre-analyzed (i.e., aggregated) component type.

2. The type of the object, e.g., COMPONENT, PROCEDURE etc.; notice that this
information may be omitted.

3. The name of the object. This name must begin with a letter followed by letters,
digits, dots or underscores. The first 12 characters of the name are significant. If
this parameter is omitted, it is assumed to be identical with the link_name.

4. Specifies whether the object is protected (P) or unprotected (U). If an object is
protected it can only be overwritten if this access is also specified with P. Reading
access is always possible. The default value is U.

Some examples shall demonstrate the usage:

%BIND "installation" TO mylib (HISLANG)

The link name "installation" is bound to an object with the same name (name omitted)
and module HI-SLANG. By, e.g., %COPY "installation" this HI-SLANG source can
be read out of the modelling base named mylib.

%BIND "preana" TO mylib (,,cpu,P)

The predefined link name "preana" (you can use lower- or upper-case letters) is bound
to the modelling base mylib. The execution of the corresponding AGGREGATE
statement stores the aggregate named cpu as a protected member of that data base.
Module and type are automatically set.

- 120 - V. APPENDIX

HIT and HI-SLANG. An Introduction

APPENDIX C.HIT Experiment Syntax Sketch

This appendix sketches the most important parts of the experiment block of the HI-
SLANG syntax in a BNF-like form, being the most complicated part of the HI-SLANG
syntax. The syntax for describing models is quite similar to that of high level
programming languages. For a complete syntax and even HI-SLANG syntax diagrams
see the Reference Manual.

experiment ::=
EXPERIMENT experiment-name METHOD method;

[VARIABLE
{ object-name [, …] : simple_type [DEFAULT expression]; } […]]

BEGIN
statement […]

END EXPERIMENT [experiment-name];

method::=
ANALYTICAL "method-name"

| SIMULATIVE

simple_type::= …
| INTEGER
| REAL

statement::= …
| for_loop
| aggregate_statement
| evaluate_statement

for_loop::= ...
FOR variable-identifier := expression [, ...]

LOOP
statement […]

END LOOP;

aggregate_statement::=
AGGREGATE componenttype-name;

{ CREATE expression PROCESS service-name; } […]
END AGGREGATE;

evaluate_statement::=
EVALUATE

MODEL model-name : model_type-name
[({ [LET parameter-name :=] expression] } [, …] }] ;

EVALUATIONOBJECT
{{ evaluationobject-name VIA component-identifier } [, …]

[DEFAULT estimator_part]
HIERARCHY

{ hierarchy-name [, …] default_or_merge ; } […]

C. HIT Experiment Syntax Sketch - 121 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

BEGIN

{ MEASURE stream [,…]
 AT evaluationobject-name
[DUE TO hierarchy-name [, …]]
[estimator_part]

[CONTROL [TRACEALL]
{[AT evaluationobject-name]
 [STOP start_or_stop_condition]
 [TRACE] } […] ;]

END EVALUATE;

estimator_part::=
[ESTIMATOR estimator [, …]]
[OUTPUT TABLE "linkname" [, DUMPFILE "linkname"]]
[START start_or_stop_condition]
[STOP start_or_stop_condition] ; } […]

default_or_merge::=
DEFAULT (component-name [, service-name [, use-name]]) [. ...]

| MERGE hierarchy-name [, …]

start_or_stop_condition::=
{ CPUTIME expression
| MODELTIME expression
| EVENTS expression

[DUE TO hierachy-name]
| CONFIDENCE LEVEL expression

WIDTH expression
MEASURE stream
[DUE TO hierarchy-name]

| ACCURACY expression
} [AND | OR …]

stream::=
THROUGHPUT

| TURNAROUNDTIME
| POPULATION
| OCCUPATION
| UTILIZATION
| SCHEDULE_RATE
| PREEMPT_RATE
| stream-name

estimator::=
MEAN

| BOUNDS
| STANDARDDEVIATION
| CONFIDENCE LEVEL expression
| FREQUENCY INTERVAL [{ expression .. expression } [, …]]

- 122 - V. APPENDIX

HIT and HI-SLANG. An Introduction

APPENDIX D. More HI-SLANG Features

This appendix sketches some more features, which are not handled in this Introduction,
but in the HI-SLANG Reference Manual. Moreover it sketches the recent changes to
HIT.

• User-defined component control procedures.
Components in HIT are dynamic and autonomous systems (up to a certain degree),
the progress of processes is goverend by predefined rules for accept, schedule,
dispatch and offer. The HIT user can write his own component control procedures
in HI-SLANG (or even in SIMULA).

• Predefined Procedures.
There are much more procedures predefined than listed in Section 9.6.2. E.g., every
component provides several procedures to determine its population, and for every
service its state can be determined by predefined procedures.

• Pre-compilation
Procedures, services, component types and total experiments can be transformed
from HI-SLANG to PRE-SLANG (pre-compiled HI-SLANG).

• Graphical output.
There are features to produce graphs and histograms (on a line printer).

• Records and pointers.
In HIT there exists a concept for records and pointers similar to PASCAL.

• Solver information.
The analyzer listing is extended by solver information, which, e.g., gives the
reasons, why a certain algorithm within the desired solver was selected. For
MARKOV it contains detailed state information.

Recent additions to HIT 3.1.000 are: the CHAIN statements, more efficient synchsend
and nowaitsend components, the observer, trace control procedures, some %parm
options, and the declaration of user-defined streams in components. For a more
complete list see version 1.1.00 of the Reference Manual, Chapter 0.

E. References - 123 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

APPENDIX E.References

/Beil85/ Beilner, H.:
Workload Characterization and Performance Modelling Tools, Proc. of
the International Workshop "Workload Characterization of Computing
Systems",
Pavia, Italy, 1985 (North Holland)

/BeMW88/ Beilner, H.; Mäter, J.; Weißenberg, N.:
Towards a Performance Modelling Environment: News on HIT,
Proc. of the 4th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation,
Palma de Mallorca, 1988 (Plenum Publishing Corporation)

/BeSt87/ Beilner, H.; Stewing, F.J.:
Concepts and Techniques of the Performance Modelling Tool HIT,
Proc. of the "European Simulation Multiconference, ESM '87",
Vienna, Austria, 1987

/Beil89/ Beilner, H.:
Structured Modelling - Heterogeneous Modelling
Proc. of the 1989 European Simulation Multiconference, Rome, 1989

/BüPS88/ Büser, M.; Pape, D.; Stewing, F.J.:
Simulation of Integrated Information and Material Flow in Logistics
Systems: An Application of the Modelling Tool, HIT;
Proc. of European Simulation Multiconference, Nizza, 1988

/Heck91/ Heck, E. (ed.):
HITGRAPHIC User's Guide,
Universität Dortmund, Informatik IV, 1991

/LiSS89/ Litzba, D., Sczittnick, M., Stewing, F.J.:
Yet another simulation output analysis algorithm: the autoregressive,
online-update evaluation technique of the modelling tool, HIT
Proc. of the 3rd European Simulation Congress, Edinburgh, 1989

/Weis92/ Weißenberg, N. (ed.):
HI-SLANG Reference Manual,
Universität Dortmund, Informatik IV, 1992

/Weis91/ Weißenberg, N.:
HIT-OMA User's Guide,
Universität Dortmund, Informatik IV, 1991

/Wolf86/ Wolf, H.:
Outil de Modelization et d'Evaluation HIT, Proc. of the "Workshop on
Computer Performance Evaluation",
Sophia Antipolis, France, 1986, (in French)

All papers and documents referenced above are available on request.

- 124 - V. APPENDIX

HIT and HI-SLANG. An Introduction

APPENDIX F.Index

%
%ANALYZER 103; 117
%BIND 55; 118
%COMMON 55; 117
%COMPILER 43; 117
%COPY 116
%COPY command 43
%DEFAULT 113
%END 117
%NOSOURCE 116
%PAGE 116
%PARM 117
%SOURCE 116
%TITLE 116

A
absorbing state 66
accept 24
ACCURACY 21; 67; 77; 79
AFTER 97
AGGREGATE 120
AGGREGATE statement 54; 56
aggregated component type 53
aggregation 7; 65; 87
all 26; 50
always 24
analytic-algebraical 7; 21
AND THEN 89
announce queue 23
approximate estimates 77
approximate solution technique 59
arithmetic functions 101
ARRAY 90; 98
array aggregate 69
ARRAY of names 98
ARRAY of processes 98
assignment 91
AT 97
autonomous systems 122
AVERAGE 32

B
blocked 61
blocking 61; 68
BOOLEAN 89
bottleneck 20
BOUNDS 21
BRANCH 12
BRANCH statement 33
break down 73
BS2000 115
buffer 108

bus 28; 61

C
call by name 102
call by reference 102
call by value 102
calling HIT 18
CASE statement 95
central server 35
CHAIN statements 33
CHARACTER 89
CHECK 117
CLOSE 92
CLOSED_CHAIN 34
coefficient of variation 61; 69
comment 116
communication 107
communication systems 61
compiler control statement 116
component 5
component arrays 46
Component Control Mechanism 23
component control procedures 122
component object 46
component type 46
COMPONENTs 4; 12
concatenate 92
CONCURRENT statement 96
confidence interval 77; 79; 87
CONFIDENCE LEVEL 79; 83
configuration 5
CONSTANT 89
constants 89
CONTROL 67; 121
control file 113
control part 18
control record 117
CONTROL statement 84
control statements 12; 32
COUNT 80
counter 67; 70
cox 69
coxg 69
Coxian distribution 61; 67
cprio 70
CPU 27
CPUTIME 67
cpu_time 101
crandom 70
create 104
CREATE statement 14; 97
critical regions 105
cs 41

F. Index - 125 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

D
data streams 80
deadlock 66
DEFAULT 89; 120
default specifications 86
degradation 28; 73
design 5
design styles 4
deterministic distribution 69
dialog task 27
digit 101
dimension 90
discrete event simulation 7
discrete, 100
disk unit 27
dispatch 25
distribution function 69
division of labour 53
DOQ4 7; 21; 54; 59; 61
dormancy 73
draw 31
DUE TO all 50
DUMPFILE 86
duration 78
dynamic arrays 90

E
Eager/Sevcik 21
ENCLOSE 47
enclosed components 47
entry area 23
eof 94
eoln 94; 101
equal 25
Erlang 69; 100
ESTIMATOR 86
Ethernet 28
EVALUATE 120
EVALUATE statement 15
evaluation object 85
evaluation series 15
EVALUATIONOBJECT 86; 120
EVENT 80
event sequence 85
EVERY 97
example1 14; 16
example2 35; 37; 39
executable code 113
exit area 23
exp2agg 55
experiment 6; 120
experiment block 15; 56; 82; 120
experiment1 17
experiment2 40; 50
exponential phase 69

F
FAN 116
fault tolerant server 67; 73
fcfs 24
fcfs scheduling 59
FCFS-scheduling 7
file name generator 18; 113
FOR 120
FOR loop 15; 95
FREQUENCY INTERVAL 79
ftserver 73
functional aspect 66

G
general probabilistic distributions 61
geometric 32
get_result 101
global balance equation 65
graphical output 86
graphs 122

H
Heterogeneous Modelling 123
HI-SLANG 3
HI-SLANG compiler 18
HI-SLANG syntax diagrams 120
hierarchical model 39
hierarchical model analysis 53
hierarchical modelling 35
HIERARCHY 120
histd 100
histograms 122
HIT 113
HIT model world 4
HIT standard mobase 105
HIT-FAN 116
HITGRAPHIC 123
hold 30
horizontal refinement 35; 41
hyper-exponential distribution 69
hypo-exponential distribution 69

I
I/O statement 92
idle processor 73
IF statement 33
immediate 24
INDENT 118
INFILE 89; 92
INTEGER 89
inter-instantiation time 14
io_subsystem 44

- 126 - V. APPENDIX

HIT and HI-SLANG. An Introduction

L
lastitem 94
last_seed 87
layers 4; 5
lcfspr 24
length of the simulation 87
LET 102
letter 101
levels 4; 5
LIMIT 66
LIN2 7; 21; 61
linear 100
link name 43; 86; 116
LISTING 118
load 5; 11
load filtering hierarchy 49
LOOP 120
LOOP statement 32
losses 61
lower_bounds 90

M
machine 5; 12
main memory 61
Markov 65
Markov chain 7
Markov models 67
Material Flow 123
McKenna and Mitra 21
MEAN 79
MEASURE 82; 121
MEASURE statement 86
measurement time interval 86
memory constraint 71
memory management 70
MERGE 51; 121
METHOD 82
mix-dependent speeds 61
model 5
model object 30
model time 101
model type 30
modelling base 4; 105; 118
modules 4
multi-level aggregation 57
multi-level/multi-layered model 37
multi-processor 28
multi-value assignment 91
multiple assignment 91
multiple resource holding 61
multiprocessor 73

N
negexp 12; 31; 59

non-blocking 71
non-exponential distribution 67
non-preemptive 59; 60; 67
non-standard stream 81
normal 100
NOSOURCE 117
nowaitsend 108
NOWARN 118
number of states 66
numerical evaluation 65
numerical technique 7; 67

O
observation value 81
observations 79
observer 109
OCCUPATION 80
off-line analysis 53; 87
offer 26
OMA 113
OPEN 92
OPEN_CHAIN 34
operating system 113
OR ELSE 89
OUTFILE 89; 92
OUTPUT option 86

P
P 105
parameter transmission mode 102
parameterization 14
passive resources 61
PBH 21
performance bounds 21
performance indice 19
performance measure 77
performance values 7
permanent processes 32
point estimate mean 77
POINTER 89
pointers 122
poisson 100
Poisson arrival stream 97
POPULATION 19; 77; 80
pre-analysis 53; 54
pre-analyzed component types 7
Pre-compilation 122
PRE-SLANG 122
PREANA 118
predefined component types 105
preemptive 59; 67
PREEMPT_RATE 80
prionp 60
prioprep 59
priority preemptive repeat 59

F. Index - 127 -

Universität Dortmund, Informatik IV Version 1.2.00, July 1999

priority scheduling 7; 68
prioserver 60
PROB 33
probability 33
procedure 101
PROCESS 98
process pattern 11
process state 98
product form network 7
PROVIDE part 46

R
random 68
random drawing procedure 100
random scheduling 68
rates 80
READ statement 94
REAL 89
receiver 107
Records 122
REFER part 13; 104
refinement 35
relevant parameter space 87
reliable 78
repair units 73
request 12
resampling 59
response time 19
restrict 68
restricted capacity 67; 68
RESULT 99; 101
result files 113
results 99; 102
reusability 53
REXX 115
robustness property 61
round 91

S
schedule 24
SCHEDULE_RATE 80
script 114
sdequal 25
sdshared 25
seed 87
semaphor 105
semaphore 62; 71; 105
sender 107
separable models 59
separable network 7
server 5; 12
service 11; 29; 97
service area 23
SERVICE ARRAY 99
service mix 61

service requests 23
service type 29
SERVICEs 4
shared 25
simple data type 89
SIMULA 7; 18; 113
simulation 77
simultaneous resource possession 107
Solver information. 122
solvers 6
speed 25
spend 30
standard modelling base 73
STANDARDDEVIATION 79
START and STOP conditions 86
START condition 86
start value 87
STATE 80
state space 66
state space explosion 65
state vector 70
state-dependent speed 28
statistical evaluation mode 80
statistical nature 78
statistical variability 77
steady-state 77
STOP condition 84; 86
stop_evaluation 101
stream 19; 81
Structured Modelling 123
SUBMIT statement 98
synchronisation features 65
synchronization 7; 62; 67
synchsend 107

T
table 83; 86; 118
temporary files 115
terminal 27
TEXT 89; 92
thrashing 28
threshold 28
THROUGHPUT 19; 80
time 101
TIMES loop 32
timing specification 98
tokenpool 62; 106
TRACE 85; 118
TRACE option 84
TRACEALL 85
trace_off 87; 101
trace_on 87; 101
trace_state 101
trajectory 77; 78; 80
transfer_results 101
transient phase 78

- 128 - V. APPENDIX

HIT and HI-SLANG. An Introduction

transition rate matrix 65
triples 49
TURNAROUNDTIME 19; 80

U
uniform 100
UNIX 114
UNTIL loop 32
UPDATE 81
UPDATES 118
upper bound 90
upper_bounds 90
USE declaration 11; 101
user-defined stream 81
UTILIZATION 19; 80

V
V 105
validation 87
VARIABLE 89
Variables 89
vertical refinement 35; 44
VIA 86
virtual machines 4
VM/CMS 115

W
what-if questions 20
WHILE loop 32
width 79; 83
working storage 113
Workload 123
WRITE statement 93

X
XREF 118

