
HI-SLANGHI-SLANG

REFERENCEREFERENCE
MANUALMANUAL

Document Version 3.6.00

f o rf o r t h et h e
H i e r a r c h i c a lH i e r a r c h i c a l E v a l u a t i o nE v a l u a t i o n T o o lT o o l

HITHIT
Version 3.6.000

HI-SLANG REFERENCE MANUAL

FOR THE HIERARCHICAL EVALUATION TOOL HIT

Christel Wysocki (Editor)
Achim Wilde (Editor)

Martin Büttner
Beate Fricke
Othmar Klaaßen
Siegfried Nolte
Michael Sczittnick
Harald Stahl
Norbert Weißenberg

Copyright © 1990-99: Universität Dortmund, Informatik IV.
ALL RIGHTS RESERVED.

Abstract:

The Hierarchical Evaluation Tool HIT is a software tool for performance evaluation of
computing systems during all phases of their life cycle. The hierarchical model de-
scription language HI-SLANG allows to build deeply structured models in a very
modular way. Quantitative model evaluation can be performed by simulative or
analytical methods.

HIT has been developed at the chair of Prof. Dr. H. Beilner, Department Informatik IV,
Universität Dortmund. The project, HIT, has been partially supported by the Nixdorf
Computer AG and the BMFT (German Federal Ministery of Research and Tech-
nology).

This document is released for internal and external use. Corrections, comments, criti-
cism and suggestions for improvement of this document are welcome.

Address:
Universität Dortmund
Informatik IV
Prof. Dr.-Ing. H. Beilner
D-44221 Dortmund

Telefon: (Germany)-(231) 755-2411
Telefax: (Germany)-(231) 755-4730
E-Mail: hit@ls4.informatik.uni-dortmund.de

Contents - i -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

0. Foreword . 1
0.1. References and Acknowledgement...1
0.2. Warranty...1
0.3. What is new?...2

1. Introduction. 3
1.1. Design Objectives of HI-SLANG/HIT..3
1.2. Language Summary..5
1.3. Syntax Notation..8
1.4. Structure of the Reference Manual..9
1.5. Structure and Operation of HIT..10

2. Lexical Elements .15
2.1. Set of Characters...15
2.2. Lexical Symbols and Separators...16
2.3. Names..16
2.4. Numbers..17
2.5. Characters..17
2.6. Character Strings...18
2.7. Comments...18
2.8. Compiler Directives...19
2.9. Reserved Words..19

3. Programming Kernel of HI-SLANG...... .21
3.1 Declarations of Variables and Constants...21

3.1.1. Variables and Constants of Simple Data Types....................22
3.1.2. Variables and Constants of Type ARRAY.........................23

3.2. Expressions..27
3.2.1. Arithmetic Expressions...27
3.2.2. CHARACTER Expressions30
3.2.3. TEXT Expressions..30
3.2.4. BOOLEAN Expressions31
3.2.5. Precedence Rules for Evaluating Expressions.....................35

3.3. Statements..36
3.3.1. Assignment and Type Conversion..................................36
3.3.2. Conditional Statements...38

3.3.2.1. IF Statement..38
3.3.2.2. CASE Statement..39
3.3.2.3. BRANCH Statement..40

3.3.3. LOOP Statements .. .41
3.3.3.1. Infinite Loop..41
3.3.3.2. WHILE Loop..42
3.3.3.3. UNTIL Loop..42
3.3.3.4. FOR Loop...43
3.3.3.5. TIMES Loop..45

3.3.4. BLOCK Statement..45

- ii - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.4. Procedures..47
3.4.1. Procedure Declarations...47
3.4.2. Procedure Calls..48

3.4.2.1. Procedures without Results..48
3.4.2.2. Procedures Returning Results......................................49

3.4.3. Parameters and Transmission Modes...............................52
3.4.3.1. Parameter Transmission Modes...................................52

3.4.3.1.1. Call by Value..53
3.4.3.1.2. Call by Name..53
3.4.3.1.3. Call by Reference...54

3.4.3.2. Arrays as Formal Parameters.......................................54
3.4.3.3. Default Values for Parameters.....................................54
3.4.3.4. Specification of Actual Parameters..............................55

3.5. RESULT Statement...56
3.6. Text Processing and I/O...57

3.6.1. Structure of Files..57
3.6.2. File State Queries..58
3.6.3. Opening and Closing Files...58
3.6.4. Reading from Texts and Files59
3.6.5. Writing to Texts and Files..62

3.7. Records and Pointers..64
3.7.1. Record Types..64
3.7.2. Declaration of Record Objects and Pointers........................65
3.7.3. Dynamical Generation of Records66
3.7.4. Operations on Records and Pointers................................67
3.7.5. Access to Record Elements via Dot Notation......................68
3.7.6. Access to Record Elements using the WITH Statement..........69
3.7.7. Records and Pointers as Parameters................................70

4. Model Description.. .71
4.1. Services and Process Generation..71

4.1.1. Services72
4.1.1.1. Services with Parameters..74
4.1.1.2. Services Returning Results...74
4.1.1.3. Services with USE Declarations...................................75
4.1.1.4. Procedures with USE Declarations...............................77

4.1.2. Declaration of Processes and Process Names78
4.1.2.1. Declaration of Processes..78
4.1.2.2. Declaration of Process Names.....................................79

4.1.3. Dynamic Process Generation..80
4.1.3.1. CREATE Statement...82
4.1.3.2. SUBMIT Statement...83

4.1.4. Service Calls...84
4.1.5. Special Statements within Services85

4.1.5.1. CONCURRENT Statement..85
4.1.5.2. Spend and Hold..88
4.1.5.3. CHAIN Statements..89

4.2. Components and Component Types...92
4.2.1. Component Types...92

4.2.1.1. Component Types with Parameters..............................94
4.2.1.2. PROVIDE Declaration..94
4.2.1.3. COLLECT Block..96
4.2.1.4. REFER Part...97

Contents - iii -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.2.2. Component Control...99
4.2.2.1 Component Areas...99
4.2.2.2. Component Control Procedures................................100
4.2.2.3. The State of a Component...101
4.2.2.4. The State of a Process...103

4.2.3. HI-SLANG Control Procedures .. .104
4.2.3.1. The Spend Server..106
4.2.3.2. INSPECT Statement..107
4.2.3.3. SELECT, SETSPEED and TIMESLICE....................109

4.2.4. Component Declarations .. .112
4.3. Standard Component Types..114

4.3.1. Server........ .114
4.3.2. Counter...114
4.3.3. Semaphor .. .115
4.3.4. Tokenpool..115
4.3.5. Synchsend116
4.3.6. Nowaitsend..116
4.3.7. Ftserver...117
4.3.8. Prioserver..117
4.3.9. Observer..117

4.4. Model Types..118
4.5. Model Structure and Virtual Declarations.....................................120

5. Model Analysis .123
5.1. Streams..124

5.1.1. Declaration of Streams..124
5.1.1.1. Type EVENT..125
5.1.1.2. Type STATE..125
5.1.1.3. Type COUNT...126

5.1.2. Standard Streams..127
5.1.3. Update Statement..129
5.1.4. Undefined Results of Streams.....................................129

5.2. Representation of Results..131
5.2.1. GRAPH Statement..131
5.2.2. HISTOGRAM Statement...134

5.3. Specification of Start and Stop Conditions...................................135
5.3.1. CPU Time..136
5.3.2. Model Time..136
5.3.3. Number of Events...137
5.3.4. Confidence Interval...138
5.3.5. Accuracy139

5.3.5.1. Accuracy Stop for the MARKOV Solver...................139
5.3.5.2. Accuracy Stop for the LIN2 Solver...........................140

5.3.6. Specification of GLOBALSTOP..................................140
5.3.6.1 Width of Confidence Interval....................................140
5.3.6.2 Number of Updates...140

5.4. Specification of Evaluation Attributes...141
5.4.1. Estimator Specification...141
5.4.2. OUTPUT Specification...142
5.4.3. START and STOP Specifications.................................143
5.4.4. GLOBALSTOP144

5.5. Declaration of Evaluation Objects..145

- iv - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.6. Load Filtering Hierarchies..147
5.6.1. Declaration of Load Filtering Hierarchies........................148
5.6.2. Load Filtering Hierarchies Defined by Triplets..................149
5.6.3. Load Filtering Hierarchies Defined by Hierarchies150
5.6.4. Load Filtering Hierarchies Defined by MERGE.................151

5.7. MEASURE Statements..156
5.8. CONTROL Statement...158

5.8.1. STOP.... .158
5.8.2. Trace Specifications...159

5.9. Evaluation Statements..160
5.9.1. EVALUATE Statements..160
5.9.2. AGGREGATE Statements...161

5.10. EXPERIMENT Block...163

6. HI-SLANG Source Structure .165
6.1. The Block Concept...166
6.2. Scopes of Identifiers...166

7. Installation Dependent Properties........169
7.1. SIMULA System Dependencies...169
7.2. Operating System Dependencies..170
7.3. Hardware Dependencies..170

8. Control of the HIT System... .171
8.1. File Objects and Link Names...171
8.2. The Control File...173

8.2.1. Setting Parameters (%PARM).....................................174
8.2.1.1. Compiler Options..174
8.2.1.2. Printing Options..175
8.2.1.3. Analyzer Options..177

8.2.2. Binding Link Names (%BIND)...................................178
8.2.3. Accessing Mobase Objects...181
8.2.4. Declaring a Modelling Base (%MOBASE).......................183
8.2.5. Specifying Operating System Commands (%CMD)............184
8.2.6. Defining File Name Defaults (%DEFAULT)....................185
8.2.7. Dialogue Support..187
8.2.8. Comments..187
8.2.9. Defining Configurations..188

8.3. Compiler Directives...189
8.4. Control File Example..193

9. Literature. .195

Contents - v -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A. HIT Syntax Rules. .199
A.1. HI-SLANG Syntax..199
A.2. Token Syntax..214
A.3. Compiler Directives...215
A.4. Control File Syntax...215
A.5. Nonterminal-Index..217

B. HIT Syntax Diagrams.. .219
B.1. HI-SLANG Syntax..219
B.2. Token Syntax...233

C. Lexical Units .235
C.1. Reserved HI-SLANG Keywords..235
C.2. Reserved HI-SLANG Symbols...236
C.3. ASCII and EBCDIC Tables..237

D. Modelling Environment.. .239
D.1. Operators and Precedence Rules...240
D.2. Predefined Procedures..241

D.2.1. Arithmetic Functions..242
D.2.1.1. Trigonometric Functions...242
D.2.1.2. Other Arithmetic Functions.......................................242
D.2.1.3 Installation-dependent Functions...............................243

D.2.2. Character Functions...244
D.2.3. Random Number Generators......................................245
D.2.4. Modelling Support Procedures....................................248
D.2.5. I/O Support Procedures .. .255

D.3. Context-Dependent Predefinitions...257
D.3.1. Predefinitions for Arrays...258
D.3.2. Predefinitions in Services..258
D.3.3. Predefinitions in Component Types260

E. Restrictions for the HIT Solvers .261
E.1. Restrictions for the Analytical Solvers...261

E.1.1. Restrictions Common to all Analytical Solvers..................261
E.1.1.1. Stations...261
E.1.1.2. Chains...262
E.1.1.3. Distributions...262
E.1.1.4. Control Statements..262
E.1.1.5. Programming Features..263
E.1.1.6. Evaluations...263

E.1.2. Further Restrictions for DOQ4264
E.1.2.1. Stations...264
E.1.2.2. Chains...264
E.1.2.3. Distributions...264
E.1.2.4. Evaluations...265
E.1.2.5. Aggregation and Use of Aggregates..........................265
E.1.2.6. Algorithm Selection..266

E.1.2.6.1. Exact Analysis...266
E.1.2.6.2. Approximative Analysis................................266
E.1.2.6.3. Remarks on Scaling......................................266

- vi - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1.3. Further Restrictions for LIN2267
E.1.3.1. Stations...267
E.1.3.2. Chains...267
E.1.3.3. Distributions...267
E.1.3.4. Evaluations...268
E.1.3.5. Aggregation and Use of Aggregates..........................268
E.1.3.6. Algorithm Selection..268

E.1.4. Further Restrictions for MARKOV...............................269
E.1.4.1. Stations...269
E.1.4.2. Chains...270
E.1.4.3. Distributions...270
E.1.4.4. Evaluations...270
E.1.4.5. Aggregation and Use of Aggregates..........................271
E.1.4.6. Algorithm Selection..271

E.2. Restrictions for the Simulative Solver...272
E.2.1. Restrictions on Modelling..272
E.2.2. Restrictions on Evaluation273
E.2.3. Aggregation and Use of Aggregates..............................273

F. The HIT Standard Modelling Base..... .275
F.1. Standard Component Types...276

F.1.1. Server........ .277
F.1.2. Counter...278
F.1.3. Semaphor .. .280
F.1.4. Tokenpool..281
F.1.5. Synchsend283
F.1.6. Nowaitsend..285
F.1.7. Ftserver...287
F.1.8. Prioserver..289
F.1.9. Observer..291

F.2. Standard Services...293
F.2.1. Watcher...293

F.3. Standard Component Control Procedures...................................294
F.3.1. ACCEPT...... .295
F.3.2. OFFER..... .295
F.3.3. SCHEDULE...295
F.3.4. DISPATCH..297

G. Description of Output Formats .299
G.1. Format of the Listing...300

G.1.1. Common Elements of the Listing300
G.1.1.1. Numeration within Listings.......................................300
G.1.1.2. Page Titles..301
G.1.1.3. Completion Messages and Message Tables................301

G.1.2. Compiler Listing303
G.1.2.1. Control File Listing...303
G.1.2.2. Assembled Source Listing...303
G.1.2.3. XREF Listing..304

G.1.3. Analyzer Listing...306
G.1.3.1. Solver Information of DOQ4....................................308
G.1.3.2. Solver Information of LIN2......................................309
G.1.3.3. Solver Information of MARKOV..............................310
G.1.3.4. Solver Information of SIMUL...................................311

G.2. Format of the Standard Output...314

Contents - vii -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.3. Format of Results..315
G.3.1. Format of a Table .. .315
G.3.2. Format of a Dump File .. .320
G.3.3. Format of a Histogram323
G.3.4. Format of a Graph324

G.4. Format of an Aggregated Component Type................................326
G.5. Format of a Trace..328

G.5.1. Event Trace328
G.5.1.1. First Format of Trace Records.....................................328
G.5.1.2. Second Format of Trace Records.................................330
G.5.1.3. Third Format of Trace Records...................................331

G.5.2. State Trace331

H. Advice on Error-Identification.. .333
H.1. Error Messages and Warnings of HIT...333
H.2. Unexpected Analyzer Behaviour..334

H.2.1. Additional Outputs..334
H.2.2. Code Inspection...334

H.3. SIMULA Compile Errors...336

I. An Example. .337
I.1. Description of the Model..337

I.1.1. Model Type system...338
I.1.2. Component Type console_type....................................339
I.1.3. Component Type installation340
I.1.4. Component Type dms..340

I.2. Description of the Experiment..341
I.3. Listing with XREF...343

I.3.1. Compiler Listing343
I.3.2. Analyzer Listing...356

I.4. Terminal Output..358
I.5. Table Output...362
I.6. Dump File Output...366
I.7. Trace Output...367
I.8. Histogram Output...369

J. Index. .371

0. Foreword - 1 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

0. Foreword
This reference manual describes syntax and semantics of HI-SLANG and contains all
the information important for running and using (the language interface of) the HIT
system. It refers to the HIT system version as indicated on the front page.

0.1. References and Acknowledgement

The manual is made for advanced users of HIT/HI-SLANG. For a general and informal
overview (e.g., for beginners) see /Weis92a/. Related documents describing HIT en-
vironments are the HITGRAPHIC User's Guide (/Sczi93/) and the OMA User's Guide
(/Weis92b/).

Complex applications and examples of modelling with HIT can be found in /BeSt87/
(centering on simulation techniques), /BeMW88/, /Beil85/ and /Beil89/ (centering on
analytical solvers, aggregation and the modelling environment) as well as /Beil88/ (in
German), /BuPS88/ and /PaSt89/ (modelling of logistic systems). Many diploma
thesises written at the chair Informatik IV, Universität Dortmund, contain detailled ex-
amples, but are written in German.

Currently there are installation guides for HIT for the operating systems BS2000
(/WaHo92/) and most UNIX like systems (/Weis92c/). For UNIX systems there is
additionally a HIT User's Guide (/LeWe92/).

This reference manual is based on the German version /Stew89/, written by
H.Scholten, R.Speckmann, F.-J.Stewing, N.Weißenberg and L.Wiggershaus. While
translating it, many improvements and additions have been made, e.g., by the referees
J.Mäter, F.Beilner and H.Deike-Glindemann. Most typing has been done by I.Koch
and N. Weißenberg. For manual version 1.0.00 significant additions have been made
by M.Sczittnick, V.Strell, R.Schelleter, L.Wiggershaus and N.Weißenberg. Most
people of Universität Dortmund, Informatik IV have given valuable hints to improve the
manual.

0.2. Warranty

The information contained within this document or the tool, HIT, is subject to change
without notice. The Universität Dortmund, Informatik IV, makes no warranty of any
kind with regard to this material or the tool, HIT, including, but not limited to, the
implied warranties of merchantabilty and fitness for a particular purpose. The
Universität Dortmund shall not be liable for errors contained herein or for incidental
consequential damages in connection with the furnishing, performance, or use of this
material.

The tool, HIT, is furnished under a license and may be used only in accordance with
the terms of that license. It may not be provided or otherwise made available to any
other person. No title to and ownership of the tool, HIT, is hereby transferred. It is
provided "as is" without warranty of any kind.

All rights are reserved. No part of this publication may be photocopied, reproduced, or
translated into another language without the prior written consent of the Universität
Dortmund.
Copyright © 1996, University of Dortmund, Informatik IV

- 2 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

0.3. What is new?

This is the sixth edition of the English HI-SLANG Reference Manual, which has been
reworked and re-edited to improve clearness. This is the temporary last version of the
Reference Manual.

Compared to version 3.4.00 of this manual and HIT version 3.4.000 only a few
changes are fundamental. The following main changes apply:

• Local Record Types

The restriction that record types cannot be declared within model types or component
types is eliminated.

• UTILIZATION for prioserver

The stream UTILIZATION is usable for components of type server and prioserver
from now on.

• FREQUENCY INTERVAL for STATE streams

The estimator FREQUENCY INTERVAL is also eligible for STATE streams (beside
EVENT streams).
For a STATE stream, the amount of time the state is within the interval is
accumulated. (For an EVENT stream, the number of occurrences of values in an
interval is counted.)

• Addition of some control file parameters (%PARM):

- WARNACCESS: Switch to produce warnings if used objects should be
declared locally.

- FREQUENCYFORMAT: This option controls the table output of the
estimator FREQUENCY.

- TRACEFORMAT: This option affects the format of the event trace of a
simulation.

• Implementation of counter and synchsend modified

The implementation of the standard component types counter and synchsend has
been modified because of problems with arrays as formal parameters in LUND
Simula.

1. Introduction - 3 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

1. Introduction
Aspects of performance play an important role in the whole life cycle of a computer
system beginning in the design stage. Apart from this, other requirements like
functional correctness and reliability have to be obeyed.

The system's fulfillment of the requirements with respect to performance has to be
taken into consideration by the designer in the phase of conception already, according to
the underlying specifications. At this stage, apart from his own experience and intu-
ition, which are not reconstructable for others, the designer is aided by mathematical
models and measurements taken from simulation models and (at a later stage) from
prototypes of the computing system. Often the use of prototypes is, on account of the
large expenses, only possible in a very restricted way, because the necessary iterations
of design steps may result in the product becoming obsolete before it becomes market-
able.

Aspects of performance are also essential for the choice and configuration of a system
for one specific application. Examples are the choice and configuration of an operating
system for a large computer in a computer centre or the introduction or expansion of a
local area computer network in an office environment.

In the following phase of operation, the real performance behaviour is controlled by
monitors (hardware/software). The evaluation of these measurements serves as a base
for the optimization (tuning) of the system and as support in adapting it to new applica-
tions.

Since the effects of changes do not become evident before observation in further real
operation, there is the risk of incorrect decisions, which then may appear directly as
negative performance behaviour to the user.

The interpretation of the measurements from a simulation model or a prototype without
corresponding support of specially developed tools as well as the design of mathemat-
ical models requires mathematical knowledge, which the designer does usually not
have. Conversely, a mathematician called on supporting performance evaluation, first
would have to laboriously acquire all details of the computer system to be analyzed.

1.1. Design Objectives of HI-SLANG/HIT

The outlined situation calls for a supporting tool for systematic performance evaluation
securing all the demands (performance, efficiency) a computer system has to fulfill. In
particular, such a tool should be flexible to use in the whole life cycle of the system, in
the phase of design and realization as well as at the point of choosing a computer sys-
tem for a specific application and also in the following phase of operation. The usage of
this tool should be possible for anyone who has to judge the performance behaviour of
a computer system at any phase of its life cycle, without further mathematical knowl-
edge.

Furthermore, such a tool should support team-work, particularly in the phase of design.
Performance evaluation, even of complex systems, should be possible at reasonable
expense.

HIT (HIerarchical Evaluation Tool) was conceived as a tool for performance evaluation
to perform most of the precedingly motivated requirements:

- 4 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- As a modelling tool it can be applied during all phases of the life cycle of a computer
system.

- The specification language HI-SLANG (HIT S ystem LANGuage) supports the
structural description of models of computer systems, in which among other things
accepted methods from the area of software engineering are applied:

• A vertical model structuring based upon the concept of hierarchical, virtual ma-
chines.

• A horizontal structuring in form of mutually excluded modules.

• Support of the methods of divided labour in the specification of models, with the
possibility of isolated specification of single vertical and horizontal model el-
ements. A modelling base provides managing versions and configurations of
model elements as well as of the model as a whole. Additionally, the HIT system
controls resulting consistency problems.

• The functionally oriented specification of models by transfer of the widespread
functional hierarchy of calls into the area of quantitative models.

- The evaluation of the models is done automatically according to the specification of
the user, by use of analytical (algebraical or numerical) and simulative techniques
and requires only few special mathematical knowledge of the user.

- Even complex models can be evaluated with tenable expense due to the efficient
analysis techniques and the possiblility of pre-evaluation of model elements.

Another important design goal of HIT was portability. HIT is completely implemented
in Standard SIMULA (see /SIMULA87/ or /Pool87/), a high level programming
language which has become wide-spread recently.

Thus HIT does not only run on most main frames but as well on UNIX workstations
(Sun, DEC) and UNIX-PC's (PC'386, ...).

Summary:

HIT is a universal tool for performance evaluation operational on a wide range of hard-
ware and operating systems, and is applicable particularly for the performance evalu-
ation of computer systems in all phases of their life cycles. The specification language
HI-SLANG, based upon the concepts of modern, high level programming languages,
enables everyone to independently produce performance analyses with support of the
tool HIT. Team-work for module design is supported by a modelling base.

1. Introduction - 5 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

1.2. Language Summary

A HI-SLANG program (hit_unit) is a complete, independent unit which can be com-
piled, evaluated or pre-evaluated by itself. As a rule, such a progam is composed of two
parts, which can be specified separately: the model description and the description of
the experiment, by which the model is to be analyzed.

HI-SLANG provides a number of data types, operations, and control statements for the
algorithmic description of model behaviour, which are known from other high level
programming languages (the progamming language kernel of HI-SLANG). In addition,
the language covers special elements for the description and analysis of models.

Syntactically, a HI-SLANG program consists of an experiment block with its
declaration part representing the model description and its statement part representing
the model analysis. The model description or parts of it can be placed in front of the
experiment block resulting in a better survey and increased flexibility for modelling. At
the beginning of the experiment block the method which is to be used for performance
analysis should be specified. The options are an analytic-algebraical solver (an exact
method for separable networks, approximate methods for: "large" separable networks,
special non-separable networks and performance bounds), an analytic-numerical solver
for models of computer systems which can be represented by Markov chains, and
simulation for more general models. The realization of series of evaluations can be
achieved by an arrangement of evaluation statements in control structures.

Model description covers the description of one or more models (model types) for their
complete performance analysis and/or the description of one or more model parts
(component types) for pre-evaluation (creation of a substitute server).

The static structure of a model consists of a model type, which itself contains hier-
archical, nested components (objects) described by component types. Using a virtual
declaration (ENCLOSE), a component can simultaneously be part of various other
components. Although arbitrary model structures may be specified in this way, only
models or component types having the structure of a directed, cycle-free graph with a
root can be evaluated.

Behaviour patterns are modelled as processes, their types are described by services.
Within the model type and within every component type, processes can be created and
started as local processes using the CREATE statements or by static declarations of
processes. CREATE, for example, enables the time-controlled generation of one or
more local processes at a fixed point of model time or in fixed intervals. Within
services, local processes can also be initiated event-driven by CREATE. In this system
of parallel processes, the execution of a process can be sequential or by itself concurrent
using a dedicated control structure (CONCURRENT statement).

With a PROVIDE-declaration (ADT-property of components) components can make
services available to the environment. These services can be used by services of other
components declaring such services with USE, followed by a local identifier. The
binding of used services to provided services of components takes place in the REFER-
part of the surrounding component type. By the (nested) call of services, a process can
propagate hierarchically down the model structure.

- 6 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The local processes and service executions are controlled by the components they run in
(monitor property of components). In this regard, a process can be in one of three
coarse states in this component, related to its possible progress:

- It can momentarily be excluded from all progress.
- It may have a right to progress or it is progressing.
- It may have terminated his activities.

In HIT terminology, the process is always in one of three component areas,
corresponding to those states (entry area, service area, exit area). The transition of
states respectively the transport between those areas results from predefined procedures
or component control procedures, formulated by the user.

The local processes of the model type define the load of the model. By a service call a
machine consisting of all the components declared in the model type is loaded. This
combination of a calling load and a called machine repeats itself within all components
of the model. An amount of (local) processes, the load, is opposed to a machine, con-
sisting of the locally declared components. The machine is loaded by calls of the
services provided by the machine. A model, described with HI-SLANG, therefore con-
sists of a hierachy of load-machine pairs, its lowest layer usually built of components of
a standard type server. This component type provides the basic service request (amount:
REAL), in which the parameter expresses the amount of , e.g., the work to be done
resulting in a time the component is occupied. Applying the operations spend and hold
it is possible to "consume" model time without explicit usage of a component of type
server.

In analysis there is a distinction between the complete analysis of a model and the pre-
analysis of model parts. The pre-analysis is specified by an AGGREGATE statement
and, under observance of certain conditions, causes the creation of a state-dependent
substitute server for a model part, described by a possibly complex component type.

The EVALUATE statement in the statement part of the EXPERIMENT block initiates
the creation and analysis of the model. It is possible to analyze the so-called evaluation
objects, which are attached to the components (or component areas). The specific evalu-
ation for certain identified load portions (service calls) is achieved by the declaration of
so-called load filtering hierarchies. Local processes within components of higher layers
or the current component may cause the load.

For this purpose, evaluation objects and load filtering hierarchies are declared in the
declaration part of the EVALUATE statement and have to be specified completely in
terms of the model hierarchy or the calling hierarchy respectively.

The actual description of measurements and evaluations occurs in MEASURE state-
ments. Streams to be measured are local to components. Beside standard streams as,
e.g., THROUGHPUT and POPULATION, it is possible to evaluate user-defined
streams of the component.

Results can be presented in form of tables, machine-readable files or graphical output.

The complete specification of a measurement consists of the stream(s) to be evaluated,
and the evaluation object attached to the component in which the stream is declared.
Furthermore, load filtering hierarchies, estimators, the form of result representation and
perhaps a measuring time interval may be specified. The last four specifications, the so-
called evaluation attributes, can already get defaults when declaring the evaluation
object.

In the case of simulation, some interaction possibilities for observation and control of
the simulation runs are available. A CONTROL statement within the EVALUATE

1. Introduction - 7 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

statement serves as a specification of the end of the simulation by criteria like elapsed
CPU- or model time, occurance of a fixed number of events or by reaching a predefined
confidence interval related to a measurement. In the case of numerical analysis it is only
possible to specify stop conditions relative to the consumed CPU-time and/or to the
demanded accuracy of the results within such a CONTROL statement.

The programming kernel of HI-SLANG provides variables and constants of simple
type (INTEGER, REAL, BOOLEAN, CHARACTER, TEXT), of structured type
(ARRAY) as well as terms built from elements of such types. Furthermore records and
pointers can be used, which can be created and accessed by special operations or
statements (partly known from, e.g., PASCAL or SIMULA).

Further statements are the assignment, the BLOCK statement with a local declaration
part, the condition statement, especially one with several possible cases (CASE) or with
branching according to probabilities. Additionally, a number of LOOP statements, one
of them specifying an endless loop, that is necessary for modelling permanent activities,
are available. Even open and closed chains (known from queueing network
terminology) can be specified directly.

There are procedures with very flexible mechanisms of parameter transmission modes:
apart from three different transmission modes, known for instance from SIMULA (call
by name, call by value, call by reference), it is possible to define actual parameters as
positional parameters and/or as keyword parameters. Formal parameters with a default
may be omitted when the actual parameters are defined. Procedures or services with one
result value may be used within terms, while those with multiple result values may only
be used within assignments.

Language constructs for file handling enable sequential file accessing similar for ex-
ample to PASCAL or SIMULA. As file objects either operating system files or objects
within a modelling base are accessible.

There is a standard modelling base providing a great amount of useful component types
as building blocks. The user may create own collections according to his needs.

- 8 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

1.3. Syntax Notation

The formal description of the syntax is written in a modified Backus-Naur form. The
following conventions are valid:

- Capitalized identifiers of extra bold print are terminals (reserved words) of HI-
SLANG, e.g.:

PROCEDURE

- Identifiers printed in small letters are non-terminals (syntactical categories), e.g.:

formal_parameters

- All non-terminals, ending with -name or -identifier, belong to the syntactical cat-
egory name or identifier respectively. The prefix is regarded as a semantic comment:

procedure-name

- The derivation symbol '::=' attaches the possible derivations to every non-terminal.
Several derivations for one non-terminal are separated by line feed and a vertical
line:

mode ::=
VALUE

| NAME
| REFERENCE

- If not all possible derivations of a non-terminal are listed, the omission is marked by
three points:

simple_type ::= ...
| INTEGER
| REAL

The omitted derivations are listed and explained in other places:

simple_type ::= ...
| BOOLEAN
| CHARACTER
| TEXT

simple_type ::= ...
| INFILE
| OUTFILE

simple_type ::= ...
| POINTER FOR recordtype-name

- Optional parts are specified in square (meta-)brackets:

1. Introduction - 9 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

END PROCEDURE [procedure-name] ;

- 10 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- Possible repetitions are marked by [separator ...], the terminal separator connecting
the repeated units. The separator may be a blank:

formal_parameters ::=
(parameter_declaration [; ...])

sequence_of_statements ::=
statement [...]

If the repetition does not only refer to the last non-terminal in front of the '['-meta-
character, the repeatable unit has to be placed between braces {}:

array_bounds ::=
[{simple_real_expression .. simple_real_expression} [, ...]]

- Meta characters, (e.g., [,] , { , }) are printed in contour style if they are not used as
meta characters but as terminals, as in the example above.

1.4. Structure of the Reference Manual

This reference manual consists of nine chapters and ten appendixes (A up to J)
including an index. The chapters two up to five present a complete description of syntax
and semantics of HI-SLANG. Chapters which in turn consist of several subchapters
begin with a short outline of these subchapters. All subchapters concerning the repre-
sentation of single language constructs are structured in a uniform way.

After a short description of the purpose of the concerned language construct, the corre-
sponding syntax is defined. The notation for representation of the syntax is explained in
Section 1.3. Subsequently syntactical particularities and restrictions not obvious from
the context-free representation of the syntax are explained. The detailled description of
the semantics, which calls attention to potential particularities and typical mistakes, fol-
lows next. Examples illustrate possible applications of the described language con-
struct. Within all chapters identifiers used in examples or predefined identifiers of HI-
SLANG are referred in italics style, whereas the identifiers of component control pro-
cedures are written upper-case.

The index at the end of the reference manual provides references to the pages, on which
the concerned language construct also gets additional (perhaps more detailed) men-
tioning. It also refers to sections where language constucts are described which may be
fitted into the described construct, corresponding to the syntactical structure. Further-
more, the index covers references to central terms of the HIT-model view and of
modelling in general.

The language is described bottom-up, which expresses that, beginning with the lexical
elements (Chapter 2.), more and more complex constructs are represented step by step
up to complete programs and models, respectively (Chapter 5.). The description is
devided in the programming language kernel of HI-SLANG (Chapter 3.), covering the
language constructs which are known from high level programming languages, and the
elements of model description (Chapter 4.) and model analysis (Chapter 5.).

The chapters six to nine explain the language environment of HI-SLANG and contain
all the information necessary for the application of HIT: program structure and
precompilation (Chapter 6.), installation dependent properties and restrictions (Chapter

1. Introduction - 11 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

7.), and the control of the HIT-system (Chapter 8.). A survey of structure and
operation of the compiler is already given in Section 1.5. These chapters are not uni-
formly structured, their structure depends on the treated contents. The references to lit-
erature (Chapter 9.) conclude the main part of the reference manual.

The appendices present different information relevant to the application of HIT in a
compact form. This includes, as a summary and extension of the description of HI-
SLANG, a survey of the complete syntax (Appendix A. and B.), a listing of reserved
words and symbols (Appendix C.), and a listing of operators and precedence rules,
predefined procedures and constants (Appendix D.).

Appendix E. describes all restrictions on the use of the different solvers and on the stat-
istical evaluation in the case of simulation. This includes, as a special case, the restric-
tions on the (analytic-algebraical) pre-analysis of component types. The contents of the
HIT standard modelling base is illustrated in Appendix F. Next come the description of
output formats (Appendix G.), and some advices on error identification (Appendix H.).

A comprehensive example in Appendix I., which uses most language constructs of HI-
SLANG, and an index (Appendix J.) of all central terms of the HIT model world and of
all language elements of HI-SLANG conclude the reference manual.

1.5. Structure and Operation of HIT

A major aim in designing HIT was portability. Therefore, HIT was implemented in
such a way that HI-SLANG programs first are translated by a precompiler (HI-SLANG
compiler) to SIMULA and then by a SIMULA compiler to executable code. The HI-
SLANG compiler itself is implemented in SIMULA.

The higher programming language SIMULA was chosen, because a lower expense of
implementation could be expected on account of the powerful class concept of
SIMULA; in particular, it was possible to use the standard SIMULA class "simulation"
for the implementation of the simulator. Furthermore all predefined functions and con-
trol structures of SIMULA could be integrated into HI-SLANG. An efficient imple-
mentation of the HIT system additionally required the availability of dynamic arrays.

In the following, a rough survey of the structure and operation of the HI-SLANG com-
piler will be given. For more details concerning the techniques used to construct the
compiler and the implementation language SIMULA see /Wolf86/ and /MuWe87/.

The modular structure of HIT is illustrated by the diagram on the next page. An excep-
tional position is held by the FAN module (File Access Network): it controls all input
and output interfaces of the compiler and of the (generated) analyzers. Every file object
read or created can be bound to a file or to an object in a modelling base, shortly called
mobase. This is specified in the control file. Thereby the HIT system is able to read
objects directly from a mobase and write as many objects as desired into one or more of
such data bases. The object access procedures are separated in a special modul to be
able to support other object management systems. The FAN system is described in
more detail in Chapter 8.

A further program also using the FAN system is HIT-OMA. It serves for all operations
on file objects which do not occur through the HIT system or which cannot be carried
out with HIT. There is a standard mobase for HIT which contains a number of
SIMULA and HI-SLANG objects required as standards in modelling and which there-
fore are predefined.

- 12 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Details of HIT-OMA can be looked up within the HIT-OMA User's Guide (see
/Weis92b/), while the elements of the standard mobase are described in Appendix F.

HI-SLANG programs are translated to SIMULA in four steps (passes) and one prolog
(pass 0):

(0) Initially the FAN system may interpret a control file, which may contain several
parameters for the translation of a HI-SLANG source (e.g., INDENT, XREF)
and bindings of file objects. Next the main program of the compiler is executed
which activates all other moduls and which may collect and emit (error-)messages
for the single passes and for the whole process of translation.

This last task is also supported by the FAN system therefore controlling an error
message library. This library is produced by OMA from an editable file. This
increases portability and maintainability, since single messages can be changed or
all error messages can be translated, for example, from English to German.

(1) The first pass is realized by a scanner and a parser working together, the latter
being contained in Module PASS 1. These modules can read several HI-SLANG
sources and other representations of model elements from files or mobases with
support of the FAN-system. Except for the first HI-SLANG source, these
sources are included by %COPY. Besides source texts there exist:

- aggregated component types, which are created by a so-called pre-analysis.
These types consist of a HI-SLANG component interface for the parser and a
component body (which contain a table of REAL values) not read until a later
stage, when evaluation runs are carried out.

The scanner provides the PASS 1 with lexical HI-SLANG units, which are trans-
formed to an IN-SLANG representation. IN-SLANG (INternal System
LANGuage) consists of instances of SIMULA classes, which represent a table
of symbols and an attributed syntax graph. IN-SLANG is defined by a large
number of SIMULA classes, which serve as a local communication interface for
all compiler modules. A generator was used to simplify the implementation of the
HI-SLANG compiler. It has generated the scanner and the (recursive-descent-)
parser based on approximately 180 HI-SLANG keywords and symbols and a HI-
SLANG grammar consisting of about 450 productions.

1. Introduction - 13 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Legend:

PREANA: contains an aggregated component type
(n): precompiler pass number (see below)

Overview of Structure and Operation of the HIT system

FAN (0)

Scanner / PASS1 (1)

PASS2 (2)

Control file (parameters and bindings)

control file
listing

assembled source
listing

HI-SLANG source and
%COPY files (HISLANG,PREANA)

IN-SLANG (syntax graph)

IN-SLANG (attributed)

PASS3 (3)

XREF

XREF listing

IN-SLANG (linked) SCG (4)ACG (4)

SIMULA SIMULA

HIT solvers
(external SIMULA classes)

SIMULA compiler and linker

gen. Analyzer / SIMULA run time system PREANA files

tables, dumpfiles, graphs, histograms, traces

(SIMULA procedures)

INFILEs
OUTFILEs

OMA

Mobases

- 14 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(2) In the second pass the semantical correctness of the generated syntax graph is
checked by the modul PASS 2. At the same time its attributes are filled with
values.

The attributed IN-SLANG graph can furthermore be used for the production of a
cross reference listing of all different types and objects occuring in the assembled
HI-SLANG source. This listing is created by the modul XREF after completion
of PASS 2.

(3) In the third pass, the modul PASS 3 checks some consistency regarding hierarchy
and EVALUATE statement. Additionally some attributes of IN-SLANG are filled
with values.

(4) In the last pass a code generator translates the attributed syntax graph into the in-
tended SIMULA code. Two different code generators exist, one for simulation
and another for the analytical methods, corresponding to the different methods of
performance evaluation of computer systems.

Both code generators are realized as subclasses of the same superior class, which
contains the basic functions for code generation. The code generators construct a
main program, which takes access to different precompiled external classes. The
S imulative Code Generator SCG creates the main program for a simulator,
whereas the Analytical Code Generator ACG produces code for transferring the
model parameters to data structures and for the call of an (exact or approximate)
solver.

(5) The generated programs use precompiled, external classes (called HIT solvers),
which are the leaves of the following class hierarchy:

FAN

RESULT

ANALYT ASIMUL

ADOQ4 ALIN2 AMARK

Within this FAN class hierarchy a SIMULATION class hierarchy is nested, so
that any analyzer is based on the concepts of both hierarchies (multiple inherit-
ance).

1. Introduction - 15 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The following analyzer classes are at disposal:

- The class ASIMUL contains the basic functions for the simulator. The em-
ployed data structures are predefined by SIMULA.

- The class ADOQ4 (DOrtmund Queueing Analyzer 4) contains solvers for the
exact and approximate analysis and aggregation of separable or non-separable
networks (for the model class solvable with DOQ4 see /MuNS85/ and
/KLMN88/).

- The class ALIN2 (LINearizer 2) contains an approximate solver for (large)
separable networks (for the solvable model class see /Knau88/). Furthermore,
LIN2 also allows the calculation of exact upper and lower bounds
(performance bounds) for the mean values of the desired performance
measures (see /KnND89/).

- The class AMARK implements a numerical solver for markov chains (for the
solvable model class see /MuNS85/ and /MuRo87/).

The analytical methods have the class ANALYT in common. This class consists
mainly of the modul USEFAA (UniverSal Environment For Analytic Algo-
rithms), which contains data structures and operations on these data structures
used by all algorithms.

All solver classes coincide by using the class RESULT, which provides func-
tions mainly serving the formatted representation of results. Furthermore, RE-
SULT contains basic functions which are not provided by SIMULA, but are of
common importance (e.g., cox-distribution, log, eoln, eof).

(6) In the last step (no part of the HIT system, indicated by broken lines in the dia-
gram above) the SIMULA code is translated and linked to executable code by the
SIMULA compiler. This object code is called analyzer and executed under
control of the SIMULA run time system for calculation and representation of the
desired performance values in form of tables, dump files or even simple graphs
or histograms. In case of a so-called pre-analysis, an aggregated component type
is created which is represented in HI-SLANG and which can be used as a
substitute for the original component type.

In case of simulation, an event trace can be produced in additon to the execution.
Furthermore, methods for file handling are at disposal.

- 16 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

2. Lexical Elements
This chapter defines the lexical elements of the language HI-SLANG. By this we think
of the set of characters the language is based on, and of the lexical symbols that are
composed of them. Lexical symbols are considered to be names, reserved words, num-
bers, characters, character strings, comments and compiler directives. The syntax of
lexical symbols will be perceived by the scanner.

Please note that the length of an input line to read must not be longer
than 132 characters.

2.1. Set of Characters

The set of characters to construct the elements of the language consists of

- letters:

letter ::=
A | B | ... | Z | a | b | ... | z

- digits:

digit ::=
0 | 1 | 2 | ... | 9 |

- special characters:

special_character ::=
" | # | % | & | ' | (|) | * | + | , | - | . | / | : | ; | < | = | > | [|] | { | } | _

- and the blank.

We do not distinguish between capital and small letters, except for characters within
character strings or within comments. Moreover, any other ASCII or EBCDIC charac-
ter, depending on the installation of the HI-SLANG compiler, may be used. For some
of the special characters shown below, a substitution is provided (for instance for IBM
VM/CMS installations):

' [' ⇔ ' (. '

'] ' ⇔ ' .) '

' { ' ⇔ '(*'

' } ' ⇔ '*)'

2. Lexical Elements - 17 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

2.2. Lexical Symbols and Separators

A HI-SLANG source is a sequence of lexical elements that are arranged from the left to
the right within a line and from the top to the bottom through the lines. The end of a line
as well as blanks and comments are used as separators.

Names, numbers and symbols may not contain blanks. A symbol is any special char-
acter except '_' as well as one of the following character combinations:

. . | <> | <= | ** | // | >= | :: | := | (. | .) | (* | *)

A lexical element must be terminated before the end of a line.

Compiler directives (see Chapter 8.) differ from the other lexical elements in the
following manner: they start with a percent character as the first character different from
blank or tab in the line, and they are limited by the end of the line. Compiler directives
permit only blanks and tabs as separators. They will not be scanned by the scanner but
by a preprocessor included in the HI-SLANG compiler.

2.3. Names

Names are used for constructing identifiers. Underscores '_', also several in succes-
sion, are allowed. All characters within a name are significant.

name ::=
letter [letter_or_digit_or_underscore [...]]

letter_or_digit_or_underscore ::=
letter

| digit
| _

Names begin with a letter. As just mentioned before, we do not distinguish between
capital and small letters, for example the names IO_TIME and io_time are identical. Just
like symbols names are terminated by the end of a line. Moreover they must not be
longer than 70 characters.

Examples:

Franz_Josef
A1
aBC_
this_is_a_very_long_but_correct_hi_slang_name

- 18 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

2.4. Numbers

There are two categories of numbers: INTEGER numbers and REAL numbers. INTE-
GER numbers are of the simple data type INTEGER. REAL numbers are of the simple
data type REAL.

number ::=
digit [...] [.digit [...]] [E [unary_operator] digit [...]]

unary_operator ::=
+ | -

(In this case the symbol […] means an iteration of previous element without separator.)

A number always starts with a digit. An INTEGER number consists only of digits
whereas a REAL number consists of digits and contains a decimal point '.' and/or the
exponential character 'E'. A decimal point must be followed by at least one digit. An
exponential character may be followed by a digit or a unary_operator, which itself must
be followed by a digit. Exponent parts are based on 10. The representable scope of
numbers and the precision depends on the installation.

Examples:

1234 {INTEGER number}
0.1234E4 {REAL number}
1234.0 "
123400E-2 "
12340.0E-1 "

2.5. Characters

Depending on the installation of the HI-SLANG compiler, permitted characters are all
ASCII or EBCDIC characters between quotes. Quotes are the character delimiters.

character ::=
'ascii_or_ebcdic_character'

ascii_or_ebcdic_character ::=
<one of the ASCII- or EBCDIC-characters>

A character, limited by quotes, must be terminated before the end of the line.

Examples:

'A'
'+'
' ' {blank}
''' {character delimiter as character}

2. Lexical Elements - 19 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

2.6. Character Strings

Character strings, also called TEXTs in HI-SLANG, consist of no, one or more than
one characters, the character set (ASCII or EBCDIC) depends on the installation. They
are embraced by double quotes as string delimiters. If the string delimiter is to be part of
the string itself, it must be specified twice.

string ::=
"[ascii_or_ebcdic_character [...]]"

A string may not contain more than 70 characters and may not exceed line bounderies.
For creating longer strings one uses the concatenation operator '&', which concatenates
two strings to a new one. The length of a string is determined by the number of
characters between two string delimiters. The length of the empty string is 0.

Examples:

"" {empty string, length 0}
" ", "A", """" {strings, length 1}

Note:

"A" is a character string, 'A' is a character.

2.7. Comments

Comments are permitted at any place within a HI-SLANG-program. Like blanks, they
are skipped by the scanner. The comment text is located between the comment de-
limiters '{' and '}'. It may consist of any ASCII and EBCDIC characters with the
exception of '{' and '}'. '{' and '}' may be substituted by '(*' and '*)', for instance in
HIT installations on VM/CMS machines.

A comment must be terminated before the end of a line. If you want to comment out a
set of lines you can use compiler directives (see Section 2.8 or 8.3.)!

comment ::= ...
| { [ascii_or_ebcdic_character [...]] }

Examples:

{This is a comment.}
{}
% This is a comment.

%RESET comment_out
%IF comment_out THEN
arbitrary_lines
%FI

- 20 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

2.8. Compiler Directives

Compiler directives serve for controlling the HI-SLANG compiler. They start with a
'%' character, which should be the first character of a line different from blank or tab,
directly followed by the name of the directive. Directives with a blank following the '%'
sign are considered to be comments.

comment ::=
| % ' ' [ascii_or_ebcdic_character [...]]

Compiler directives are limited by the end of the line. They may appear at any place in
the HI-SLANG source. Fore more details see Section 8.3.

Examples:

%COPY "SEMAPHOR"
% This is a comment
% COPY "SEMAPHOR" is also a comment, due to the blank before COPY

2.9. Reserved Words

Reserved words as, e.g., BEGIN and END are written in capital letters in this reference
manual, but can also be written lower-case. User-defined names may not be identical to
them. A complete list of reserved words of HI-SLANG is contained in Appendix C.1.

3. Programming Kernel of HI-SLANG - 21 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3. Programming Kernel of HI-SLANG
This chapter describes the programming kernel of HI-SLANG which is used as a base
for modelling computing systems and for the analysis of the models.

3.1Declarations of Variables and Constants

HI-SLANG models are objects composed of other objects. Every object has a type and
is associated with a name. This chapter describes the rules for the declaration of variable
and constant objects.

HI-SLANG offers different kinds of objects, for instance constants and variables of
simple or structured types and procedures. In addition, there are some special object
types necessary for describing and analyzing models.

An object is created by a declaration. A declaration defines one or more objects and a
name which can be used to access the object. A name for an object may be used tex-
tually before its declaration. An implicit declaration of names is not allowed in HI-
SLANG programs.

common_declaration ::= ...
| variable_or_constant_declaration

Declaring constants or variables of a simple or structured data type causes them to be in-
itialized by default values.

The use of an object's name preceding its declaration will create a node of the syntax
tree with the name being its only attribute. The missing attributes are added to the node
when the declaration of the object is found in the program source during following pas-
ses. If a declaration cannot be found, the compiler yields an error message.

The block concept of HI-SLANG, also known from other higher programming lan-
guages, solves conflicts concerning the use of names and their scopes.

Expressions included in declarations of constants of simple data types are evaluated
while compiling the HI-SLANG program. Expressions within declarations of objects of
other types are not evaluated but passed to the SIMULA compiler following the HI-
SLANG compiler.

- 22 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.1.1. Variables and Constants of Simple Data Types

Constants and variables are created by a declaration. Correspondingly their names are
notified to the program. When a variable or constant object is declared, a simple or
structured data type is assigned to it. In the following, we will consider only simple
data types, such as INTEGER, REAL, BOOLEAN, CHARACTER and TEXT.

variable_or_constant_declaration ::= ...
| variable_or_constant simple_object_declaration [...]

simple_object_declaration ::=
object-name [, ...] : simple_type [DEFAULT expression] ;

variable_or_constant ::=
VARIABLE

| CONSTANT

simple_type ::= ...
| INTEGER
| REAL
| BOOLEAN
| CHARACTER
| TEXT

The object specification (VARIABLE, CONSTANT) is followed by the name of the
object or a list of names for several objects which are separated by commas. A colon ':'
separates the name list from the type specification. So for declaring several objects
using the same object specification, the latter needs not to be repeated.

Constant objects have to receive a default value, variable objects may, but don't necess-
arily have to receive one. An object is initialized by a default value using the keyword
DEFAULT that must be followed by an expression.The expression must yield a value
of the same type as the declared object. If not, type conversion must be possible.

An expression which is a default of a constant is evaluated by the HI-SLANG compiler
and therefore it may not consist of variables, formal parameters, procedure calls, except
arithmetic functions or standard functions for handling characters (regard Appendix
D.2.1. resp. D.2.2.). Constants used within these expressions must be declared in a
surrounding (outer) block or textually before in the same block.

For example declarations as

CONSTANT a : INTEGER DEFAULT -5;
CONSTANT b : INTEGER DEFAULT -a;

are allowed, but only in this order.

An expression being the default of a variable is evaluated by the SIMULA system. It
must not contain any objects declared in the same block except constants declared
textually before. So if CONSTANT is replaced by VARIABLE the example above
constitutes an error.

3. Programming Kernel of HI-SLANG - 23 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

List of names within variable declaration are initialized by the same default value
because the DEFAULT expression is evaluated exactly once whenever the program
reaches the block of the declaration.

The following table gives the range of values and standard defaults for simple typed
objects:

type default range of values
INTEGER 0 installation-dependent
REAL 0.0 installation-dependent
BOOLEAN FALSE FALSE, TRUE
CHARACTER char (0) installation-dependent
TEXT NOTEXT NOTEXT (i.e., empty string) or a

character string, restriction of length
depends on the installation

char is a standard procedure. char (0) delivers the first ASCII or EBCDIC character.

Examples:

VARIABLE popul1, popul2 : INTEGER; {initialized with 0}
VARIABLE amount : REAL DEFAULT 10.0;

flag : BOOLEAN DEFAULT TRUE;

CONSTANT a : CHARACTER DEFAULT 'a';
string : TEXT DEFAULT "CPU TIME:";

3.1.2. Variables and Constants of Type ARRAY

An array is a homogeneously structured data type. It connects several elements of the
same type. Array elements may be of simple data types, record types, component types,
procedures and services. In the following we introduce the declaration of array
variables and array constants, where the array elements are of simple data type.

variable_or_constant_declaration ::= ...
| variable_or_constant array_object_declaration [...]

array_object_declaration ::=
object-name [, ...] :
ARRAY [array_bounds [, ...]] OF simple_type
[DEFAULT expression_or_aggregate] ;

array_bounds ::=
simple_real_expression .. simple_real_expression

expression_or_aggregate ::=
expression

| aggregate

aggregate ::=
[expression_or_aggregate [, ...]]

- 24 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

An array is characterized by the number of indices (the dimension of the array), the
lower and upper bounds of every index and by the type of the array elements. At run
time lower bound ≤ upper bound must hold.

Indices must be of type INTEGER (REAL expressions will be converted to INTEGER
indices by rounding).

Index bounds are defined by arithmetic expressions. Variables appearing in these
expressions must be declared in a surrounding block. Constants appearing in these
expressions must be declared in a surrounding block or textually before in the same
block. If there are names of variables and procedures within these expressions the array
is called a dynamic array. This is an array that has a variable number of elements
which depends upon the results of the expressions. Arithmetic expressions used as
bounds of arrays directly within an experiment block may not contain variables or
procedure calls. Some predefined procedures as especially marked in the overview in
Appendix D.2. may not be used for array bounds definition within the hit unit and
experiment block.
Array bounds expressions are evaluated while running the program, when the run time
system reaches the block or scope of the array declaration. All array bounds
expressions in the declaration part (of the block) are evaluated prior to any default
expressions in the declaration part.

Please note that a list of names within a dynamic array declaration means a declaration
of arrays with same bounds.

Each array of simple data type or record type has the attribute dimension and the attri-
butes lower_bounds and upper_bounds, all of which can only be read. These attributes
support the access to dynamic arrays and to arrays being passed as parameters. For
instance, if arrays are defined as formal parameters, their dimension is not specified.
Specification occurs when the current array object is handed over. Array attributes are
accessed by a dot notation, the attribute following the array name.

Example: {accesses to array attributes}

VARIABLE turn: ARRAY [1..2, 1..3] OF REAL;

turn.dimension {=2}
turn.lower_bounds [1] {=1}
turn.upper_bounds [1] {=2}
turn.lower_bounds [2] {=1}
turn.upper_bounds [2] {=3}

Array elements of variable arrays may have a default value. Those of constant arrays
must have a default. The default values for an array may be given as an aggregate. It is
also possible to specify a simple expression here, the value of this expression will in-
itialize all array elements.

The expressions of an aggregate must be of the same type as the array, or they must be
convertable to it.

Expressions in aggregates to initialize a constant array are evaluated during compilation
of the HI-SLANG source. Therefore they may not consist of variables, formal
parameters and no other procedures than arithmetic functions or standard procedures for
character handling (see Appendix D.2.1., D.2.2.).

3. Programming Kernel of HI-SLANG - 25 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

These procedures and operators may operate on other constants if they have been
declared before (in surrounding outer block or textually before in the same block). For
example the following declarations are allowed, but only in this order:

CONSTANT a : INTEGER DEFAULT -5;
CONSTANT b : ARRAY [1..5] OF INTEGER DEFAULT -a;

Aggregate expressions for initializing variable arrays are passed to the SIMULA sys-
tem. They must not contain any objects declared in the same block. So if CONSTANT
is replaced by VARIABLE the example above constitutes an error.

Furthermore, the following must coincide with:

• the dimension of the aggregate expression and the dimension of the array

• the number of expressions within a "sub-aggregate" (between '[' and ']') and the
number of the array indices in the corresponding index range.

For dynamic arrays, it is not possible to check this while compiling a program.

Aggregate assignments (i.e., the assignment of default values to array elements) of an
n-dimensional array must be specified as a one-dimensional aggregate of elements of a
(n-1)-dimensional array, n>1.

Example:

variable A [1..3, 1..4] of integer default [[11, 12, 13, 14],
[21, 22, 23, 24],

 [31, 32, 33, 34]];

The aggregate assignment for this example array is handled in the following way:
the 2-dimensional array A is specified as a one-dimensional aggregate of 3 elements of
a one-dimensional array (each with 4 elements); thus the first element of the first "sub-
aggregate" ([11, 12, 13, 14]) is assigned to the first "sub-array" (A[1, .]) (A[1, 1] :=
11; A[1, 2] := 12; …) and so on.

If the elements of a variable array are not initialized explicitly, they acquire the standard
default values of their type (see Section 3.1.1.).

The access to an array element is gained by specifying its name followed by the indices
of the array element. These may be arithmetic expressions embraced in square brackets
('[', ']'; see identifier). Square brackets can be substituted by '(.' and '.)', for example
on HIT installations in VM/CMS.

Examples:

CONSTANT n : INTEGER DEFAULT 10; {constant from the same or the surrounding block}

{array variables}

VARIABLE table : ARRAY [1..10] OF INTEGER;
matrix : ARRAY [1..n, 1..n] OF REAL;
bit_vector : ARRAY [-1..n+1] OF BOOLEAN;

- 26 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

{record array; complex : see Sect ion 3 .7 .1 .}

RECORD c_matrix : ARRAY [1..4, 1..4] OF complex (1);

{array of constants with aggregates}

CONSTANT days : ARRAY [1..7] OF TEXT DEFAULT
["SUN", "MON", "TUE", "WED", "THU", "FRI", "SAT"];

{array of variables with aggregates}

VARIABLE alpha : REAL DEFAULT 90.0; {declared in an outermost block}

VARIABLE turn : ARRAY [1..2, 1..2] OF REAL DEFAULT
[[cos (alpha), -sin (alpha)],
[sin (alpha), cos (alpha)]];
{e.g., turn [2, 1] = sin (alpha)}

tab : ARRAY [1..10] OF INTEGER DEFAULT 0;

square : ARRAY [1..3, 1..1, 1..3] OF REAL DEFAULT
 [[[1.0, 0.0, 0.0]],

[[0.1, 1.1, 0.1]],
[[0.0, 0.0, 1.0]]];

{dynamic array}

VARIABLE dyn_lim : INTEGER; {variable from the surrounding block}

VARIABLE dyn_matrix : ARRAY [1..dyn_lim, 1..dyn_lim] OF REAL;

3. Programming Kernel of HI-SLANG - 27 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.2. Expressions

An expression is a formula that describes the computation of a value. The value has a
(standard) data type which depends on the types of the operands and the operators oc-
curing in the expression. We do not regard expressions and operations on records and
pointers here (they are treated in Section 3.7.4.). The OF operator within primary
below will be introduced in Section 4.2.2.3. All other operators are known from other
programming languages.

3.2.1. Arithmetic Expressions

An arithmetic expression results in an INTEGER or a REAL value. The nonterminal
simple_real_expression denotes arithmetic expressions in the following syntax:

simple_real_expression ::= ...
| [unary_operator] term [adding_operator ...]

adding_operator ::=
+ | -

term ::=
factor [multiplying_operator ...]

multiplying_operator ::=
* | / | // | MOD

factor ::=
primary [** ...]

primary ::=
identifier [OF identifier]

| number
| (simple_real_expression)

identifier ::=
{name [[simple_real_expression [, ...]]] [actual_parameters] } [. ...]

Examples:

2.0
a {a is REAL or INTEGER variable}

(b [3]) {b is REAL or INTEGER array}
f (3) {f is INTEGER procedure}

- 28 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Numbers, variables and constants, calls of procedures and services returning one result
value, accesses to elements of structured objects (arrays, records) and INTEGER or
REAL expressions in parentheses can appear as operands. There are two unary
operators for arithmetic expressions: '+' and '-':

unary operator type of operand type of result
 + INTEGER INTEGER

REAL REAL

 - INTEGER INTEGER
REAL REAL

Examples:

-a
+2.0 {equivalent to 2.0}
-(a+b)
-(5*matrix [6, 1])
-rank ('a') {rank is a standard procedure}

Binary operators in arithmetic expressions may be addition operators ('+', '-') and
multiplication operators ('*', '/', '//', '**', MOD). Arithmetic expressions can appear
as their operands. The following tables show the admissible operators and the resulting
types of the expressions, which depend on the used operand types:

Addition: Subtraction:

 + INTEGER REAL_ - INTEGER REAL
INTEGER INTEGER REAL INTEGER INTEGER REAL
REAL REAL REAL REAL REAL REAL

Multiplication: Division:

 * INTEGER REAL / INTEGER REAL
INTEGER INTEGER REAL INTEGER REAL REAL
REAL REAL REAL REAL REAL REAL

Integer division: Modulo:

 // INTEGER REAL MOD INTEGER REAL
INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER
REAL INTEGER INTEGER REAL INTEGER INTEGER

Exponentiation:

 ** INTEGER REAL
INTEGER REAL REAL
REAL REAL REAL

3. Programming Kernel of HI-SLANG - 29 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Expressions, when used as operands, need only be parenthesized if the desired
sequence of computation is not achieved by precedence rules. Parentheses are permitted
for means of clearness, too. Expressions with operators of the same precedence will be
evaluated from left to right.

For normal division, integer division and the modulo operation one has to observe that
the operand on the right hand side may not be equal to 0. Integer division and modulo
demand operands of type INTEGER. Here REAL values are rounded and converted to
INTEGER values.

Examples:

-(a+b)
a*c+b {will be evaluated just like (a*c)+b }

e**f*g {will be evaluated just like (e**f)*g }
e**f**g {will be evaluated just like (e**f)**g }

-3+4+5-1 {yields the same result as }
(((-3)+4)+5)-1

3.4 MOD 1.5 {will be evaluated like ... }
3 MOD 2 {and yields 1 }

2.5 MOD 2.4 {will be evaluated like ... }
3 MOD 2 {and yields 1 }

Exponentiation with negative values in both arguments is not checked by the HI-
SLANG compiler, but depends on the run time system of the SIMULA compiler.

- 30 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.2.2. CHARACTER Expressions

CHARACTER expressions yield a value of type CHARACTER. Operands of them
may be CHARACTER constants or CHARACTER variables, CHARACTER elements
of structured objects, the standard procedure char, or calls of procedures and services
which result in exactly one CHARACTER value. The operands of a CHARACTER
expression may be parenthesized. Of course INTEGER expressions may occur within
CHARACTER array indices and expressions of the corresponding type may serve as
actual parameters of CHARACTER procedures (see syntax of identifier).

simple_expression ::= ...
| character
| identifier
| (expression)

Examples:

'a'
char (10) {the standard procedure char yields the 10th }

{ASCII or EBCDIC character in this case }
(char_variable)

char (rank (f (x)) {rank is the invers of char; (f is a CHARACTER function) }

char_array [x+y]

3.2.3. TEXT Expressions

TEXT expressions yield a value of type TEXT. Operands of them may be string con-
stants (with a maximal length of 70 characters) or string variables, TEXT elements of
structured objects, and calls of procedures and services which result in exactly one
TEXT value. The operands of a TEXT expression may be parenthesized. The only op-
erator in TEXT expression is the binary concatenation operator '&'.

simple_text_expression ::=
simple_text [& ...]

simple_text ::=
string

| identifier
| (simple_text_expression)

Examples:

"texts"
"tex" & "ts" {="texts"}
("texts")
(("tex") & ("ts"))
days [1] & "DAY" {="SUNDAY"; see also examples in Section 3.1.2.}
"H" & "A" & "L" & "T" {="HALT"}

3. Programming Kernel of HI-SLANG - 31 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.2.4. BOOLEAN Expressions

Boolean expressions result in TRUE or FALSE. They may contain operator NOT or
binary operators, especially relational operators:

boolean_expression ::=
TRUE

| FALSE
| disjunction [EQV disjunction]

disjunction ::=
conjunction [or_else ...]

or_else ::=
OR [ELSE]

conjunction ::=
{[NOT] relation } [and_then ...]

and_then ::=
AND [THEN]

relation ::=
simple_expression [relational_operator simple_expression]

relational_operator ::=
= | < | > | <= | >= | <> | #

simple_expression ::= ...
| identifier
| (boolean_expression)

Operands of boolean expressions are constants or variables of type BOOLEAN,
boolean elements of structured objects, relations and calls of procedures and services
that yield exactly one boolean value. The keywords TRUE, FALSE are also allowed as
boolean constants.

Examples:

VARIABLE bit : BOOLEAN;
bit_vector : ARRAY [1..8] OF BOOLEAN;

TRUE
bit
bit_vector [1]

- 32 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The only applicable unary operator in boolean expressions is the NOT operator. It ne-
gates the value of a boolean operand, which must be a boolean expression that may be
parenthesized.

 NOT TRUE FALSE
FALSE TRUE

Examples:

NOT bit_vector [1]
NOT (a=b)
NOT (TRUE)

Note:

The keywords TRUE and FALSE, when used as operands must be
parenthesized.

Binary operands in boolean expressions may either be relational operators ('=', '<',
'>', '<=', '>=', '<>', and '#') or logical operators ('EQV', 'AND', 'OR'). Logical
operators allow only boolean expressions as operands . Relational operators allow
arithmetic expressions, CHARACTER or TEXT expressions; '=', '<>' and '#' also
allow boolean expressions. Terms consisting of relational operators and their operands
are boolean expressions.

EQV / = TRUE FALSE AND TRUE FALSE
TRUE TRUE FALSE TRUE TRUE FALSE
FALSE FALSE TRUE FALSE FALSE FALSE

<>, # TRUE FALSE OR TRUE FALSE
TRUE FALSE TRUE TRUE TRUE TRUE
FALSE TRUE FALSE FALSE TRUE FALSE

The operators EQV or '=' compare two boolean expressions for equivalence and yield
either TRUE or FALSE. The operators '<>' and '#' (which may be read as XOR)
compare two boolean expressions for inequality and yield either TRUE or FALSE. The
AND operator delivers TRUE, if all operands have the value TRUE. The OR operator
delivers TRUE, if at least one operand has the value TRUE. All operands of a boolean
expression are evaluated. The sequence of evaluation depends on the HIT installation.
This may cause side-effects.

To avoid these side-effects the operators AND THEN and OR ELSE are provided.
Their semantics correspond to those of AND and OR, respectively, but only the first
operand is evaluated if it defines the result of the expression clearly. Using AND THEN
leads to the next operand not being evaluated unless the previous one results in TRUE.
OR ELSE leads to the next operand not being evaluated unless the previous one results
in FALSE. Boolean expressions with the operators AND THEN and OR ELSE are
called conditional boolean expressions.

3. Programming Kernel of HI-SLANG - 33 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

VARIABLE flag1, flag2 : BOOLEAN;

flag1 EQV flag2
{= TRUE, because flag1 and flag2 are initialized by FALSE}

flag1 AND (TRUE) {= FALSE}
flag1 OR flag2 OR (TRUE) {= TRUE}

(flag1 AND flag2) OR (TRUE) {= TRUE}

flag1 AND THEN flag2 {= FALSE; 2. operand will not be evaluated}
NOT flag1 OR ELSE NOT flag2 {= TRUE ; 2. operand will not be evaluated}

Comparing two operands requires them to be of the same type, except for the compari-
son of INTEGER and REAL numbers. In this case, the INTEGER number is converted
to REAL and the comparison deals with REAL values. The result of a comparison al-
ways is of type BOOLEAN.

Operator Meaning
= TRUE : both operands are equal

FALSE : else
< TRUE : the left operand is less than the right one

FALSE : else
> TRUE : the left operand is greater than the right one

FALSE : else
<= TRUE : the left operand is less than or equal to the right one

FALSE : else
>= TRUE : the left operand is greater than or equal to the right one

FALSE : else
<>, # TRUE : both operands are not equal

FALSE : else

Two real expressions should not be compared using '=' or '<> (resp. '#') (because of
possible inaccuracies in REAL representations).

The comparison of TEXT expressions depends on the internal character coding. Two
text elements are equal if they coincide in their length and in all of their characters. Text
comparison means that all characters of the text are compared, regarding their respective
positions. Text elements are compared from left to right. The first different character
determines the decision which of the text strings is smaller or greater.

The text with the smaller character with regard to character coding, or the text with less
characters, is the smaller text.

- 34 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

"TEXTS" > "TEXT"
"text" <> "TEXT"
"texts" > "texti"
"abc" <> "abc " {note the blank}

"Attention" < "C"
"attention" < "C" {the EBCDIC case }
"attention" > "C" {the ASCII case }

"T"&"E"&"X"&"T"&"S" = "TEXTS"
"A" > ""

All of the above examples result TRUE. CHARACTER expressions can also be com-
pared with each other based on the internal coding:

Examples:

CONSTANT a, c : INTEGER DEFAULT 2;
CONSTANT b : BOOLEAN DEFAULT TRUE;

'a' = 'b' {= FALSE}
a < c {= FALSE}

a+1 >= c+1 {= TRUE}
a > c AND b {= FALSE}

b OR (c+3 < 5) {= TRUE}
"text"&"s" <> "text" {= TRUE}

"text" < "texts" AND b {= TRUE}

Examples:

VARIABLE i : INTEGER DEFAULT 2;
j : INTEGER DEFAULT 4;
k : REAL DEFAULT 0.5;

j <> 0 AND THEN i/j <> k {= FALSE; 2. operand will be evaluated}

Just as in arithmetic expressions, operands in boolean expressions can be parenthesized
if the desired sequence of evaluation differs from that specified by precedence rules.
Parentheses for the purpose of clearness are allowed. Boolean expressions with oper-
ators of the same precedence are evaluated from left to right.

3. Programming Kernel of HI-SLANG - 35 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.2.5. Precedence Rules for Evaluating Expressions

Precedence rules determine the process of computing an expression. The syntax of HI-
SLANG determines the following priorities for the operators of HI-SLANG:

(1) = lowest priority EQV
(2) OR, OR ELSE

(3) AND, AND THEN
(4) NOT
(5) =, <, >, <=, >=, <>, #
(6) +, -, &
(7) *, /, //, MOD
(8) **
(9) = highest priority (expression), OF

Operators of higher priority are applied prior to operators of lower priority. Operators
of the same precedence are applied from left to right. Expressions embraced in
parentheses are of highest priority. Expressions within parentheses are also computed
according to the precedence order described above. Using parentheses, the programmer
is able to define the desired order of subexpression evaluation.

Examples:

VARIABLE a, b, c:INTEGER DEFAULT 3;

a+b*c {yields the value 12}
(a+b)*c {yields the value 18}
a*b*c {yields the value 27}
(a*b)**c {yields the value 729}

- 36 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.3. Statements

This chapter describes the application of assignment statements, conditional statements,
loop statements and block statements. Other statements, such as procedure calls, result
assignments, input and output statements etc., will be described in following chapters.

sequence_of_statements ::=
statement [...]

statement ::= ...
| simple_statement
| compound_statement

simple_statement ::= ...
| assignment_statement
| empty_statement

compound_statement ::= ...
| conditional_statement
| loop_statement
| block_statement

empty_statement ::=
;

The execution of an empty statement entails no action. The statements in a sequence of
statements are executed one after the other.

3.3.1. Assignment and Type Conversion

An assignment replaces the actual value of a variable or of an element of a structured
object by a new value described by an expression or an aggregate. By using a multiple
assignment, one value can be assigned to several variables or elements of structured
objects simultaneously. Assignments involving records or pointers are not treated in
this section. They are dealt with in Section 3.7.4.

The variables or elements of a structured object on the left hand side of an assignment
and the expression or aggregates on its right hand side must be of the same type or,
otherwise they must be convertible.

Assignments made to elements of a structured object require the object to be defined as
a variable. Assignments to array variables demand consideration of the array´s di-
mension and its index bounds.

3. Programming Kernel of HI-SLANG - 37 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

assignment_statement ::= ...
| common_assignment

common_assignment ::=
identifier [, ...] := expression_or_aggregate ;

An assignment will be executed by computing the expression on the right hand side
first. Next, the computed value is given to the variable, unless the variable denotation
contains expressions like array indices or procedure calls. These expressions
determining the indices of the array element are calculated first (i.e., before computing
the right hand side expression and performing the assignment). Of course this
calculation has to yield values within the array bounds.

Multiple assignment is accomplished in the following manner: the first variable on the
left side of the assignment operator ':=' acquires the value of the right hand side. Now,
from right to left, the variables on the left hand side are successively assigned the new
value, the latest updated variable serving each time as the right hand side of the next
assignment. The same is valid for assigning a value to array elements.

Type conversion is allowed for INTEGER and REAL variables only. The conversion
from INTEGER to REAL will not change the interpretation of the value as real number.
The conversion from REAL to INTEGER occurs by rounding the REAL value to an
INTEGER value and requires the REAL value to be representable as INTEGER.

Note:

If there are array variables or expressions in the list on the left and right hand side of
a multiple assignment, then all indices and expressions will be computed first (left to
right) before any assignment is performed (as seen in the examples).

Examples:

VARIABLE i: INTEGER;
x, y: REAL;

a, b, c: ARRAY [1..6] OF INTEGER;

x, i, y := 1.2; {corresponds to:}

y := 1.2;
i := y; {i = 1, conversion REAL → INTEGER}
x := i; {x = 1.0, conversion INTEGER → REAL}

a[i], i := a[i] + 4; {corresponds to:}

i := a[i] + 4; { i = 4, since a[1] = 0 }
a[1] := i; { a[1] = 4, since index is evaluated first }

c := [1, 2, 3, 4, 5, 6];
a := 0; {all array elements of a are set to 0}

a, b := c;

- 38 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.3.2. Conditional Statements

Conditional statements offer the possibility of controlling the execution of the program
with regard to one or more conditions.

conditional_statement ::=
if_statement

| case_statement
| branch_statement

3 .3 .2 .1 . IF Statement

In an IF statement, either one sequence of statements or no statements at all are selected
for execution. The selection depends on the value of a boolean expression.

if_statement ::=
IF boolean_expression
THEN sequence_of_statements
[ELSE sequence_of_statements]
END IF ;

An IF statement is executed by computing the boolean expression following the
keyword IF first. If the evaluation of the expression results in TRUE, the statements of
the THEN branch are carried out. If the result is FALSE and an ELSE branch exists,
the statements of the ELSE branch are executed. The IF statement is terminated by
END IF. Both the THEN branch and the ELSE branch may in turn contain IF
statements themselves. The IF-END IF pairs clearly define the nesting structure.

Note:

Since every statement is terminated by a semicolon, there is always a semicolon be-
fore ELSE or END IF.

Examples:

VARIABLE a, b, c : INTEGER;

IF a < b THEN {1}
a := a + 1;
IF a = b THEN {2}

a := 0;
ELSE {2}

IF a < b AND c > 0 THEN {3}
c := 0;

END IF; {3}
c := c + 1;

END IF; {2}
ELSE {1}

a := a - 1;
END IF; {1}

3. Programming Kernel of HI-SLANG - 39 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3 .3 .2 .2 . CASE Statement

A CASE statement selects either one or no statements from a choice of several alterna-
tive (sequences of) statements. The selection depends on the value of an INTEGER,
CHARACTER or TEXT expression. The expression may not be of the type REAL or
BOOLEAN. In the sequence of statements to chose from, statements of any kind
except EVALUATE are allowed.

case_statement ::=
CASE simple_expression
{WHEN simple_expression [, ...] :

sequence_of_statements } [...]
[ELSE : sequence_of_statements]
END CASE ;

A list of expressions (or one expression) following WHEN precedes each eligible se-
quence of statements. The values of these expressions are compared with the value of
the expression behind the keyword CASE. If the first of these comparisons become
TRUE only the corresponding sequence of statements will be executed. A list of
expressions following a WHEN is implicitly connected with OR-operations.

All of these expressions must deliver a value of type INTEGER, CHARACTER or
TEXT. The type of the expressions behind the keyword WHEN must correlate to the
type of the expression behind the keyword CASE, the latter being computed first. As a
consequence an error message is yielded (also in the case of INTEGER and REAL type
clash, where usually a type conversion takes place).

If the evaluation of the expression behind the keyword CASE yields a value that does
not exist in any of the WHEN lists, the ELSE branch is executed (supposing it exists,
otherwise the empty statement will be executed). The ELSE branch necessarily forms
the last part of the CASE statement.

Examples:

VARIABLE i1, i2 : INTEGER;
t, c : TEXT;

CASE (0.4 * (i1 + i2)) // 5
WHEN 1, 3 : i1, i2 := 0;
WHEN 2, 4 : i1, i2 := 1;
WHEN 0 : i1, i2 := -1;
END CASE;

CASE t & c
WHEN "text" : t := "text" & "s";
WHEN "text"&"s" : c := "";
ELSE : t := "tex"; c := "t";

END CASE;

- 40 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3 .3 .2 .3 . BRANCH Statement

The BRANCH statement serves to select either one or no sequence of statements out of
a choice of several alternatives. The selection is based on probabilities.

branch_statement ::=
BRANCH
{PROB simple_expression : sequence_of_statements } [...]
[ELSE : sequence_of_statements]
END BRANCH;

Each alternative sequence of statements within the PROB statement is preceded by a
REAL expression. Its value determines the probability of selecting the alternative. Con-
sequently the value of the expression must be within the interval [0..1]. The sum of all
probabilities has to be equal to or less than 1.0, otherwise an error message occurs.

The ELSE branch is optional. If there is one, it covers the difference between the sum
of probabilities and 1.0. This difference may be 0.0, but not negative. The statements
of the ELSE branch are selected depending on this difference in probability. If there is
no ELSE branch, no statement will be selected in this case.

Please note that the expressions (simple_expression) are evaluated in accordance to the
order of appearance but only until the sum of the expressions is greater than the drawn
random number.

Examples:

VARIABLE a : REAL DEFAULT 0.7;
b : REAL DEFAULT 1.0;

BRANCH
PROB 0.3 : a := 0.5;
PROB a : a := 0.6;

END BRANCH;

BRANCH
PROB (b-a)/2+0.1 : a := 0.4;
ELSE : a := 0.3;

END BRANCH;

a := 0;

BRANCH
PROB a : b := 1; a := 0;
PROB b : b := 0; a := 1;

END BRANCH;

3. Programming Kernel of HI-SLANG - 41 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.3.3. LOOP Statements

The LOOP statement determines, whether the sequence of statements within a so called
basic loop is not performed at all, performed exactly once, or performed several times.

loop_statement ::=
infinite_loop

| while_loop
| until_loop
| for_loop
| times_loop

3 .3 .3 .1 . Infinite Loop

The infinite loop combines statements that are to be repeated without termination. Such
an infinite loop can only terminate due to external conditions as for example the end of
requested cpu time or model time in case of simulative experiments.

infinite_loop ::=
basic_loop ;

basic_loop ::=
LOOP

sequence_of_statements
END LOOP

The infinite loop is nothing else than the basic_loop, which is part of any other loop
statement. The infinite loop is important for modelling reasons, and it should be used
mainly to call time consuming services.

Examples:

VARIABLE sum, run : INTEGER;

LOOP
sum := sum + run;
run := run + 1;
spend (sum / run);

END LOOP;

- 42 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3 .3 .3 .2 . WHILE Loop

The WHILE loop causes the repeated execution of a sequence of statements as long as
the boolean expression following the WHILE keyword results in TRUE. This expres-
sion represents the termination criterion of the WHILE loop.

while_loop ::=
WHILE boolean_expression basic_loop;

The termination criterion defined by the boolean expression is evaluated and checked
before each repetition. If the result is TRUE, the sequence of statements will be ex-
ecuted. If the result is FALSE, the execution of the WHILE loop terminates. The END
LOOP of the basic_loop syntactically terminates the WHILE loop. If the first evaluation
of the termination criterion already results in FALSE, the WHILE loop is not executed
at all.

A WHILE loop can cause an infinite loop if the termination criterion is not altered
within the loop, or it is altered in such way that the value of the terminating condition is
never FALSE. In case of simulative model evaluation, such a statement may lead to a
program that runs infinitely, unless the WHILE loop is terminated by an external
condition.

Example:

VARIABLE sum, run : INTEGER;

run := 1;

WHILE sum < 6 * run
LOOP

sum := sum + run;
run := run + 1;

END LOOP;

3 .3 .3 .3 . UNTIL Loop

The UNTIL loop initiates the repeated execution of a sequence of statements as long as
the boolean expression following the UNTIL keyword results in TRUE. This ex-
pression represents the termination criterion of the UNTIL loop.

until_loop ::=
basic_loop UNTIL boolean_expression;

The sequence of statements within the basic loop is executed at least once. After every
repetition of the basic loop the termination criterion is checked by evaluating the
boolean expression. If the test results in FALSE, the basic_loop is run once more. If it
results in TRUE, the loop terminates.

Similar to WHILE loops, one can generate infinite loops using UNTIL loops. In case
of simulative model evaluation this may cause programs running infinitely.

3. Programming Kernel of HI-SLANG - 43 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

VARIABLE sum, run : INTEGER;

LOOP
sum := sum + run;
run:= run + 1;

END LOOP UNTIL sum >= 6 * run;

3 .3 .3 .4 . FOR Loop

The FOR loop initiates a number of executions of the basic_loop specified in the head
of the FOR loop.

for_loop ::=
FOR variable-identifier := loop_value_list basic_loop;

loop_value_list ::= ...
| simple_real_expression STEP simple_real_expression

UNTIL simple_real_expression

First of all, a so-called loop variable is assigned an initial value by using the expression
that follows the assignment operator. The loop variable has to be declared in the same
block to avoid modification of the loop variable by concurrently executing processes.
Next, the arithmetic expressions behind the keywords STEP (the increment value of the
FOR loop) and UNTIL (termination value) are evaluated. The basic_loop will be gone
through only if the increment value is positive (≥ 0) and the initial value ≤ termination
value or if the increment value is negative (≤ 0) and the initial value ≥ termination
value. In all other cases, the basic_loop will not be executed.

The loop variable is incremented or decremented based on the increment value after
every cycle of the loop. The loop terminates when the value of the loop variable is
equal to the termination value or exceeds it. All arithmetic expressions to determine the
increment value and the termination value are newly computed after every execution of
the basic_loop. These expressions should contain no function calls that could cause
side effects.

The loop variable as well as all three expressions must be of type INTEGER or REAL.
Any conversion is based on the type of the loop variable, which must be declared be-
fore in the same block. An assignment to the loop variable should occur in the head of
the FOR loop only, because assignments to this variable within the basic_loop would
violate the idea of the FOR loop and may lead to infinite loops. Infinite loops can also
occur if variables used within the increment value expression or termination value ex-
pression are reassigned within the basic_loop. Termination of the FOR loop implies the
loop variable remaining at its last received value that caused the loop termination.

Example:

VARIABLE sum, run : INTEGER;

FOR run := -1 STEP -1 UNTIL -13
LOOP

sum := sum - run;
END LOOP;

- 44 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Using a FOR loop with a value list one can, e.g., easily control evaluation series with
non-equidistant or non-arithmetic parameter values:

loop_value_list ::= ...
| expression [, ...]

The statements of the basic_loop are run through as long as there are expressions in the
list. The respective expression is always evaluated before execution and its value is
handed over to the loop variable. This variable has to be declared in the same block and
needs to be of a simple data type. All expressions within the expression list either have
to be of the same type or they have to be convertible.

Example:

EXPERIMENT exp;
VARIABLE r_run : REAL;

c_run : CHARACTER;
...

BEGIN
FOR r_run := 0, 0.7, 0.8, 5.7, 5.8
LOOP

FOR c_run := 'r', 'w'
LOOP

EVALUATE MODEL m : mod_type (c_run, r_run);
...

END EVALUATE;

END LOOP;
END LOOP;

END EXPERIMENT exp;

3. Programming Kernel of HI-SLANG - 45 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3 .3 .3 .5 . TIMES Loop

A TIMES loop initiates an average number of executions of a basic_loop, the average
being determined by an arithmetic expression in the head of the loop.

times_loop ::=
AVERAGE simple_real_expression TIMES basic_loop;

A TIMES loop is performed as follows: first the arithmetic expression, having to yield
an INTEGER or REAL value, is evaluated. The result of the expression determines the
average number of repetitions of the basic_loop which must be ≥ 0.

The distribution behind AVERAGE is geometric; it is interpreted as

x := simple_real_expression; WHILE draw(x/(x+1)) basic_loop;

Example:

VARIABLE sum, run : INTEGER;

AVERAGE 13 TIMES
LOOP
sum := sum + run;
run := run + 1;
END LOOP;

3.3.4. BLOCK Statement

A BLOCK statement opens a new scope for names. It contains declarations and state-
ments.

block_statement ::=
BLOCK

common_declaration [...]
BEGIN

sequence_of_statements
END BLOCK;

A BLOCK statement is executed by dealing with the declaration part first and then run-
ning the sequence of statements.

The declaration part of a BLOCK statement only allows declarations of variables or
constants, records, pointers and procedures. The validity of these objects is limited to
the extent of the block indicated by the BLOCK-END BLOCK keywords. Outside of
this block the declared names and objects are no longer valid.

BLOCK statements may be nested. This facilitates multiple usage of the same name in
several different blocks. Name conflicts can be solved in the same manner as in other
higher level languages: the scope of a name is determined by the block the name is
declared in, with the exception of all inner blocks in which this name is also declared.

- 46 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Any kind of statement, except an EVALUATE statement and an AGGREGATE state-
ment, is allowed within a block.

Example:

BLOCK {block 1}
VARIABLE a, b : REAL;

i, j, k : INTEGER;
BEGIN

i := 1; {i of block 1}
k := 2; {k of block 1}

BLOCK {block 2a}
VARIABLE i, l : INTEGER;

BEGIN
j := 10; {j of block 1}
i := 3; {i of block 2a}

IF i > k THEN {i of block 2a, k of block 1}

BLOCK {block 3}
VARIABLE b : BOOLEAN;

BEGIN
b := i = j; {b of block 3, i of block 2a, j of block 1}

END BLOCK; {end of block 3}

END IF;

END BLOCK; {end of block 2a}

BLOCK
VARIABLE k : INTEGER; {block 2b}

BEGIN
i := k + 2; {i of block 1, k of block 2b}

{i := l + 2 leads to an error, because l is only known within block 2a }

END BLOCK; {end of block 2b}

a := b + i * j; {a, b, i and j of block 1}

END BLOCK; {end of block 1}

3. Programming Kernel of HI-SLANG - 47 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.4. Procedures

Procedures are separated, executable subprograms. They are triggered by procedure
calls. They support a structuring of the program because repeatedly occuring statement
parts can be combined to one part.

Procedures consist of a declaration part and a statement part. They are therefore re-
garded to be a block and local elements are consequently not available outside the block.
A proper communication with surrounding program parts is only possible by using pa-
rameters or USE declarations.

3.4.1. Procedure Declarations

In case of simulative experiments, declarations of procedures are allowed anywhere,
provided that declarations are generally permitted. In case of analytical experiments,
declarations of procedures are not allowed in the model description.

common_declaration ::= ...
| procedure_declaration

procedure_declaration ::=
PROCEDURE procedure-name [formal_parameters]
[RESULT simple_type [, ...]];

[use_declaration_part]
[common_declaration [...]]

[BEGIN sequence_of_statements]
END PROCEDURE [procedure-name];

A procedure is divided into the head of the procedure and the body of the procedure.
The head contains conventions for calling the procedure (the interface). These are the
name of the procedure and its formal parameters which make communication with the
environment of a procedure call possible. Calling the procedure causes the formal pa-
rameters to be substituted by a corresponding set of actual parameters. All formal pa-
rameters can be used in the body of the procedure.

A procedure may contain definitions of results. Procedures returning results may be
employed on the right hand side of a special kind of multiple assignment (result value
assignment). If they have exactly one result, they may also appear in simple
expressions.

The body of a procedure may contain a USE declaration (use_declaration_part), a com-
mon_declaration part and a sequence of statements following the keyword BEGIN.
Within the declaration part, only the definition of constants, variables, records and other
procedures is allowed. The USE declaration part is not discussed in this section (it is
treated in Section 4.1.1.4.).

The running of a procedure does not consume any time under the aspect of modelling.
Therefore, only statements which do not consist of time-consuming operations (this
means they do not contain service calls) are allowed in a procedure body. Furthermore,
special statements for model evaluation (Section 5.) are not permitted, excepting the
UPDATE statement.

- 48 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Within the body of a procedure that returns results, an assignment statement for the
result variables should exist. This is the result assignment. If such an assignment is
missing or cannot be reached, the default values are handed over to the calling
environment.

Examples:

PROCEDURE count_1 (x, y : INTEGER);
VARIABLE r1, r2 : REAL;

BEGIN
r1 := 1;
r2 := 2;

x := x + r1; {These two assignments have no effects to outer parts of }
y := y + r2; {this block; see also transmission modes, Section 3.4.3. }

END PROCEDURE count_1;

PROCEDURE count_2 (x, y : INTEGER) RESULT INTEGER, INTEGER;
VARIABLE r1, r2 : REAL;

BEGIN
r1 := 1;
r2 := 2;

RESULT x + r1, y1 + r2;
END PROCEDURE count_2;

3.4.2. Procedure Calls

Procedures with one result (functions) can be called within expressions and
assignments, while calls of procedures without result are statements
(simple_statements). Procedures with more than one result can only occur in
assignment statements.

procedure_or_service_call ::=
procedure_or_service-identifier;

identifier ::=
{name [[simple_real_expression [, ...]]] [actual_parameters] } [. ...]

Please note that the identifier only consists of the name and possibly actual parameters.

3 .4 .2 .1 . Procedures without Results

Procedures without results are called by using their names followed by a list of actual
parameters, provided that the procedure definition contains a formal parameter part.

simple_statement ::= ...
| procedure_or_service_call

3. Programming Kernel of HI-SLANG - 49 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

In case of simulative model evaluation (self-defined) procedures may be called wher-
ever statements are admissible. Corresponding to the use of variables, the procedure
employed has to be declared within the calling block or in a previous surrounding
block.

A procedure call first initiates the transmission of an actual parameter set to the formal
parameters in obedience to the parameter transmission modes specified in the head of
the procedure. Subsequently, the declaration part is worked off and instances of all lo-
cal objects are created. Then the statement part is executed. After finishing the last
statement the procedure object is removed including its local objects.

Procedures may be activated (either directly or indirectly) recursively. Each recursive
procedure call causes a local instantiation of all objects. It is important to terminate the
recursive procedure in time, so that memory overflow and run time errors can be
avoided.

Example:

PROCEDURE count_3 (NAME count : INTEGER; x, y : INTEGER);
BEGIN

IF x > y THEN
count := count + 1;
count_3 (count, x+1, y+2);

END IF;
 END PROCEDURE count_3;

 {Call of count_3 in a statement part somewhere within the program. }

IF a > b THEN
count_3 (a, b, c);

END IF;

3 .4 .2 .2 . Procedures Returning Results

Procedures returning results are called in the same way as procedures without results,
but in addition procedures with exactly one result may be used as operands in
expressions. The type of the procedure has to coincide with or has to be convertable to
the type of the expression in which it is called (primary, see Section 3.2.1.). It is also
possible to call procedures with results on the right hand side of assignments:

assignment_statement ::= ...
| result_assignment

result_assignment ::= ...
| (identifier [, ...]) := procedure_or_service_call;

Number, type and type sequence of the variables on the left hand side of a result as-
signment must relate to number, type and type sequence of the variables of the result
definition in the head of the procedure (these conditions also apply for the result
assignments within the body of the procedure). If the types do not coincide, they have
to be convertible.

- 50 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Results should be defined properly by result statements within the body of the
procedure (see Section 3.5.). Otherwise, default result values are put to the disposition
of the calling environment.

If the procedure has exactly one result, the variable on the left hand side of an
assignment need not be parenthesized. Such an assignment can be considered just like
any other "normal" assignment. Here all identifiers (if there is a list) are assigned to the
same result value (multiple assignment).

result_assignment ::= ...
| identifier [, ...] := procedure_or_service_call;

Following the block concept, the called procedure has to be declared within the block it
is used in or in a surrounding one.

The call of a procedure with results causes the actual parameters to be transferred to the
formal parameters of the procedure, utilizing the parameter transmission mode specified
in the head of the procedure. Subsequently the declaration part is worked off. All local
objects are instantiated. Now the body of the procedure is executed. Following this
execution, the result values (determined by the last executed RESULT statement) are
supplied to the environment and the local object instances are eliminated.

Note:

The results of a multi result procedure are implemented as name parameters (see
Section 3.4.3.1.2.). Thus the following equivalence holds:

PROCEDURE proc (r1:P1; ...; rm:Pm) RESULT T1, ...,Tn;
BEGIN

...
RESULT v1, ..., vn;

END PROCEDURE proc;
...

(x1, ..., xn) := proc (y1, ..., ym);

:<=>

PROCEDURE proc (r1:P1; ...; rm:Pm; NAME t1:T1; ...; tn:Tn);
BEGIN

...
t1:=v1; ...; tn:=vn;

END PROCEDURE proc;
...

proc (y1, ..., ym, x1, ..., xn);

where P1,…,Pm and T1,…,Tn are symbols for type names.

Calls of single result procedures cause an execution of the procedure, the resulting
value is used for further evaluation.

3. Programming Kernel of HI-SLANG - 51 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Procedures with results can be called (directly or indirectly) recursively. Each recursive
procedure call causes the instantiation of all local objects. It is important to terminate the
recursive procedures in time to prevent memory overflow and run time errors.

Examples:

VARIABLE a, b : INTEGER;
c : ARRAY [1..10] OF INTEGER;

PROCEDURE count_4 (x, y : INTEGER) RESULT INTEGER;
BEGIN

IF x > y THEN
RESULT count_4 (x+1, y+2);

ELSE
RESULT 2 * y;

END IF;
END PROCEDURE count_4;

{ Call of count_2 (example of Section 3.4.1.) }
{ and count_4 in a statement part with a=0,b=0 and c[4]=6 }

(a, b) := count_2 (a, b); {a = 1, b = 2}

IF b > a THEN
c [count_4 (b, a)] := c [count_4 (b, a) - 2] * count_4 (b, a); {count_4 (b, a) = 6, c [6] = 3}

END IF;

- 52 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.4.3. Parameters and Transmission Modes

In HI-SLANG, procedures as well as modelling objects like services, model types and
component types can communicate with the calling environment by the way of
parameters.

In the head of a procedure declaration or of one of the mentioned modelling objects, this
communication interface is defined by specifying a list of formal parameters. In calling
such a parameterized procedure or modelling object, a list of actual parameters can be
handed over which substitutes the list of formal parameters. These actual parameters
must comply with the conventions specified in the formal parameter definition (number
and type of the variables in the parameter list, transmission modes). Please note that
integer and real arrays are not compatible.

It must be secured that every formal parameter receives a value either by its default
value or by the value of its corresponding actual parameter. For the application of
records or pointers as parameters refer to Section 3.7.7.

3 .4 .3 .1 . Parameter Transmission Modes

Every parameter requires a description of its possible employment. This is achieved by
specifying one of the three available transmission modes.

formal_parameter ::=
({[mode] parameter_declaration} [; ...])

parameter_declaration ::=
[VARIABLE] parameter-name [, ...] :
[ARRAY OF] simple_type
[DEFAULT expression_or_aggregate]

| RECORD parameter-name [, ...] :
[ARRAY OF] recordtype-name

mode ::=
VALUE

| NAME
| REFERENCE

The different transmission modes depend upon the data types of the corresponding
parameters. Using a transmission mode for a parameter which does not comply with the
data type of the latter leads to a compiler error message. Specific transmission modes
are either preset (DEFAULT), optional (OPTIONAL) or not eligible (ILLEGAL) for
the different data types. The following table illustrates this:

3. Programming Kernel of HI-SLANG - 53 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

transmission mode

data type by by by
value name reference

INTEGER, REAL, BOOLEAN,
CHARACTER, TEXT D O I
ARRAY OF INTEGER, REAL,
BOOLEAN, CHARACTER, TEXT O O D
(ARRAY OF) INFILE, OUTFILE,
POINTER, RECORD I O D

If the default mode is employed for defining the transmission mode of a parameter, the
specification of the keyword NAME, VALUE or REFERENCE becomes obsolete.

3 .4 .3 .1 .1 . Call by Value

The formal parameter specified by the mode VALUE (call by value) receives a duplicate
value of the actual parameter, which may be an expression. The expression is evaluated
when the procedure is called resp. the modelling object is instantiated.

The actual value of a VALUE parameter is not altered by using the formal parameter in
the statement part within the body of the procedure (resp. the modelling object).
Consequently the value, being assigned to a parameter value, is accessible only within
the body of the procedure or the modelling object .

Parameters of the standard type INTEGER, REAL, BOOLEAN, CHARACTER and
TEXT have the transmission mode call by value as default. The keyword VALUE
needs not be specified within the parameter definition. The mode VALUE is also al-
lowed for array parameters. However, it should be applied for "small" arrays since, as
mentioned before, value parameters are copied entirely. Record and pointer parameters
do not allow the transmission mode VALUE.

Example:

PROCEDURE count_1a (VALUE x, y : INTEGER);
BEGIN

x := x + 1;
y := y + 2;

END PROCEDURE count_1a;

The procedure declaration count_1a is equivalent to count_1 (see the example in Section
3.4.1.). The value assignments to x and y within the body of the procedure do not have
any effect outside of the procedure.

3 .4 .3 .1 .2 . Call by Name

If the parameter variable is declared using the keyword NAME (call by name), the value
it receives within the statement part of the procedure is also valid outside of the pro-
cedure.

- 54 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Actual parameters passed to NAME-declared formal parameters substitute them tex-
tually. If the formal parameter variable is changed somewhere within the procedure, we
have to ensure that its corresponding actual parameter is not a constant or expression.
This is also true for DEFAULT value expressions declared for formal parameters. If the
actual parameter is an expression, it will always be evaluated when the corresponding
formal parameter is used within the procedure.

Example:

PROCEDURE count_1b (NAME x, y : INTEGER);
BEGIN

x := x + 1;
y := y + 2;

END PROCEDURE count_1b;

After having executed the procedure count_1b (a, b), a will be incremented by 1 and b
will be incremented by 2. A call just like count_1b (a+1, b) is erroneous and it effects a
SIMULA run time error because it causes the substitution a+1 := a+1+1, which is not
permitted.

The transmission mode call by name is allowed for parameters of any type available in
HI-SLANG. It may only be used for formal parameters of procedures.

3 .4 .3 .1 .3 . Call by Reference

The mechanism call by reference, indicated by the keyword REFERENCE, is allowed
only for arrays, records and pointers. In this case, when the procedure is called or the
modelling object is instantiated, the formal parameter variable receives a reference or a
pointer to the actual parameter. Not the reference to the object but its contents are altered
within the body of the procedure (resp. modelling object).

3 .4 .3 .2 . Arrays as Formal Parameters

Formal array parameters of procedures (or modelling objects) are declared without
bounds and dimension. The first access (textual appearance (!)) of this array parameter
(assignment via actual parameter or default) determines bounds and dimension.
Therefore, one has to avoid an inconsistent access for multiple procedure calls resp.
modelling object instantiations.

And also an access with incorrect dimension or indices to such an array within the body
of the procedure (resp. modelling object) should be avoided (leading to a run time
error). Checking the array bounds and dimension is possible via the predefined array
attributes (see Section D.3.1.).

3 .4 .3 .3 . Default Values for Parameters

The declaration of formal parameters is comparable to the declaration of variables, since
they, too, can be used within the body of the procedure or the parameterized modelling
object they belong to. Just like variables, they can receive default values.

3. Programming Kernel of HI-SLANG - 55 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The expressions used to define the default (expression_or_aggregate) may not contain
variables declared in the same block or formal parameters of the procedure (or
modelling object). A DEFAULT value is computed when the procedure is called (or
modelling object is instantiated) and no actual parameter is given for the formal
parameter. All elements of a list of formal parameters with one default expression
receive the same default value, the default expression is evaluated once. The evaluation
of the actual parameters resp. the corresponding default expression is performed in the
order of the formal parameters. DEFAULT values for records are not allowed. Formal
parameter arrays may not be used as DEFAULT for a formal parameter, because the
dimension of the DEFAULT must be fixed at compile time.

When a formal array parameter receives default values by an aggregate expression and
no actual parameter is given, the array attributes of dimension and maximal length of the
index range are specified by those defaults (If those defaults do not imply the
specification of dimension and bounds an error occurs.). The index range is defined
from 1 to number of array elements in this case. A list of formal array parameters is
handled equally.

Example:

VARIABLE a : ARRAY [1..2] OF INTEGER;

PROCEDURE f (b : ARRAY OF INTEGER DEFAULT [1, 2, 3]);
...
END PROCEDURE f;

The call of f(a) effects the substitution: b [1] ":=" a [1] and b [2] ":=" a [2]. In the
statement part of the procedure, b [3] is not accessible.

3 .4 .3 .4 . Specification of Actual Parameters

The actual parameter list may consist of positional parameters, in correspondence to
other higher level programming languages, or keyword parameters, often to be found in
command languages. But multiple assignments of a formal parameter (via positional
and (one or more appearance of one) keyword parameter) is not allowed.

actual_parameters ::=
({ [[LET parameter-name :=] expression_or_aggregate] } [, ...])

If a formal parameter does not have a default value, it must be assigned an actual pa-
rameter. If it does, an actual parameter need not necessarily be assigned. An empty
positional parameter is only possible if a default value does exist.
Positional parameters may not appear following keyword parameters. Keyword
parameters have the advantage that the actual parameters are commented (by the formal
parameter name), and that they can be given in any order. The evaluation of the actual
parameters is performed in the order of the formal parameters, not the textual order of
the keyword parameter.

Examples:

PROCEDURE p1 (i, j, k, speed : INTEGER DEFAULT 5;
m, token, r: TEXT DEFAULT "HELLO");

- 56 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

{possible procedure calls:}
p1; {All defaults will be used}
p1 (6, 3+s, a*b, 0); {The defaults of the TEXT parameters will be used}

{The INTEGER parameters will be assigned actual values}
p1 (,,,8, "TEXT",, "END"); {Substitution of the defaults of speed, m and r }
p1 (LET speed := 6, LET token := "TEXT"); {speed and token get an actual value; equivalent to:}
p1 (,,,LET speed := 6, LET token := "TEXT");
p1 (8, a*b, LET token := "END"); {i, j and token get an actual value}

3.5. RESULT Statement

In a RESULT statement, the result variables of procedures or services receive values
that are assigned to them by simple expressions. These values are handed over to the
environment that has activated the procedure (resp. service).

simple_statement ::= ...
| result_statement

result_statement ::=
RESULT expression [, ...];

RESULT statements may only appear in the body of a procedure or service. If more
than one RESULT statements are actually executed, only the last one determines the
result values.

If no RESULT statement appears in the procedure (resp. service) body or no RESULT
statement is executed, the value which will be handed over to the environment is the
default value belonging to the type of the result. The expressions determining the results
must comply with the number, type and type sequence of the results specified in the
head of the procedure (or service). All simple data types are allowed for results.

If the procedure (or service) call is not on the right hand side of an assignment or within
an expression, the result values are lost.

Example:

VARIABLE a, b : INTEGER;
flag : BOOLEAN;

PROCEDURE f (x, y : INTEGER) RESULT INTEGER, BOOLEAN;
BEGIN

IF x <> y THEN
RESULT 2*y, TRUE;

ELSE
RESULT 2-y, FALSE;

END IF;

END PROCEDURE f;
...

f (a, b); {results are lost}
(a, flag) := f (a, b); {results assigned to a and flag}

3. Programming Kernel of HI-SLANG - 57 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.6. Text Processing and I/O

Internal texts are objects of data type TEXT. They are admitted as operands in TEXT
expressions which already have been introduced.

Files are objects of the type INFILE or OUTFILE. They serve as sequential, line
structured external data stores accessible in HI-SLANG programs. They may be
connected to external files or to objects within a modelling base (see Section 8.).

simple_type ::= ...
| INFILE
| OUTFILE

Like other HI-SLANG objects, files must be defined as variables. It is possible to
declare several file variables at a time. Furthermore, array variables can be declared of
type INFILE or OUTFILE. Just like variables of other types, files can be used as pa-
rameters.

Files can either be of read-only mode or of the write-only mode. Read-only files have to
be of type INFILE. These are input files. Write-only files are required to be of type
OUTFILE. These are output files. Files have to be opened before access to them is
possible. They must be closed after the last access.

simple_statement ::= ...
| io_statement

io_statement ::=
read_statement

| write_statement
| open_or_close_statement

3.6.1. Structure of Files

HI-SLANG files are structured in lines. They can be accessed sequentially. The
maximum length of a line is declared at the point of opening the file. A line supposed to
be processed in the buffer may not be longer than this line length, otherwise a FAN
error could occur. After having opened a file, an internal buffer of the size of the line
length is prepared. The maximally possible value for this length depends on the instal-
lation.

Every file has an internal position pointer for the internal buffer. Regarding INFILE
files, the position pointer is always directed at the next character not yet been read
within the line currently in the buffer. Regarding OUTFILE files, the position pointer
refers behind the last written character in the buffer. The position pointer is set by
READ and WRITE statements following this convention. When the position pointer
reaches the end of the buffer, the next INFILE line is read or the OUTFILE line is
written, setting the position pointer to 1.

- 58 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.6.2. File State Queries

Working on files of type INFILE, the boolean standard procedures eof(f), lastitem (f)
or eoln(f) can be applied. eof(f) tests whether the end of the file f has already been read.
eoln(f) tests whether the end of the current buffer line has already been reached. If the
file variable f is missing, these procedures will refer to the standard file sysin .

- eof: The standard procedure eof(f) results in TRUE if the last character of f has been
read from the stream, or if the file f has not yet been opened or already been closed.
Please note that eof is FALSE immediately after opening the file, even if the file is
empty.

- lastitem: The procedure lastitem(f) causes all blanks, TABs and end-of-line signs
between the position of the pointer and the next non-blank or end-of-file sign to be
overread. The position pointer stops at the next non-blank character or at the end of
the file. If the position pointer stops at a non-blank character, lastitem(f) delivers
FALSE, otherwise TRUE. The result is also TRUE if the file f has not been opened
yet or has already been closed again. For controlling the reading of numerical items
please use lastitem instead of eof.

- eoln: The procedure eoln(f) results in TRUE if no more characters of the current
line of f can be read from the buffer. Procedure eoln(f) also delivers TRUE if the file
f has not been opened yet or has already been closed again.

3.6.3. Opening and Closing Files

A file has to be opened before the first and closed after the last access taken.

open_or_close_statement ::=
OPEN file-identifier, simple_text_expression

LENGTH simple_real_expression;
| CLOSE file-identifier;

An OPEN statement must contain a file identifier and a link name, both separated by a
comma. The file identifier must be a variable of type INFILE or OUTFILE. The link
name, specified by a simple text expression, forms the connection between a logical HI-
SLANG file and a physical file or an object within a modelling base (see Section
8.2.2.).

The expression to determine the line length must be of type INTEGER or REAL (which
is converted to INTEGER).

If more than one INFILE objects are opened that all refer to one physical file or object
by using the %BIND statement (see the CONTROL part in Chapter 8.), all INFILE
variables can be used for access to that file simultaneously and independently. Every
single INFILE stream, though, can only be read sequentially.

The same mechanism applies for OUTFILE variables. All OUTFILE objects write their
lines into the one physical file or object they are bound to. This may cause merging, the
FAN system will warn the user in that case.

If no OUTFILE or INFILE object relating to such a file of joint access is open any
longer, the latter can be opened and manipulated again using the same link name, even
changing from INFILE to OUTFILE or vice versa.

3. Programming Kernel of HI-SLANG - 59 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Executing an OPEN statement causes the creation of an internal buffer with the
specified size. Regarding INFILEs, the position pointer points to the end of the buffer
(eoln(f) results in TRUE). Regarding OUTFILEs, the position pointer points to the
beginning of the buffer. Opening an OUTFILE object will delete an already existing
physical file first, unless the EXTEND mode (see the control part of HIT in Chapter 8.)
is used. Linking a file by using the EXTEND mode causes the new output to be
appended.

If a line of a physical file is longer than the buffer of the linked logical one, the run time
system detects an error, since it then tries to read a not fitting physical line into the
buffer. Consider, for example, a file that has formerly been opened and written with
lines of 132 characters and is now opened as an INFILE object with line length 80.
Reading a line from this file will lead to an error.
If the OUTFILE object is bound to a mobase object the size of length should not be
greater than 133.

The standard files sysin (standard input; e.g., the keyboard), sysout (standard output;
e.g., the screen) and tracefile (trace output) are opened and closed automatically by the
system.

Examples:

CONSTANT link_name : TEXT DEFAULT "LINKNAME";

VARIABLE f1 : OUTFILE;
f2 : INFILE;
f3 : INFILE;

OPEN f1, "LINKNAME1" LENGTH 80;
OPEN f2, "LINKNAME2" LENGTH 132;
OPEN f3, link_name & "3" LENGTH 80;

... { Working on files f1, f2, f3 }

CLOSE f1;
CLOSE f2;
CLOSE f3;

3.6.4. Reading from Texts and Files

Texts and files of type INFILE can be read using the READ or READLN statement.
READLN is allowed for files only. A file must be opened before it can be accessed.

read statement ::=
READ [TEXT text-identifier ,] input_list;

| READ [FILE file-identifier ,] input_list;
| READLN FILE file-identifier [, input_list];
| READLN [input_list];

input_list ::=
{identifier [:: simple_real_expression] } [, ...]

- 60 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

READLN statements initiate a line feed. The next line is read into the buffer and the po-
sition pointer points at the first character of this line. Next, the input_list is worked off.
If there is no next line and the attempt is made to read one, a FAN error will occur.
Several successive READ statements may also cause a line feed if the end-of-line sign
of the current buffer line has meanwhile been read. This is known as implicite
READLN.

Note:

Although it is allowed, READLN should not be followed by an input_list, especially
in the following loop or similar cases:

WHILE NOT eof
LOOP

READLN n;
END LOOP;

since in between executing READLN n (which is equivalent to READLN, READ n;)
the end-of-file can be reached. Prefer one of the following:

WHILE NOT lastitem WHILE NOT eof
LOOP LOOP

READ n; READ n;
END LOOP; IF NOT eof THEN

 READLN;
END IF;

END LOOP;

READ and READLN can be used to read character (strings) from a file or a text. Read-
ing from a file requires the keyword FILE to appear behind one of the keywords READ
or READLN. The file-identifier has to follow the keyword FILE. If the reading oper-
ation inflicts the standard input file sysin , this specification is not essential.

Reading from a text requires the keyword TEXT behind the keyword READ. The text-
identifier has to follow the keyword TEXT.

Character strings read from a file can only be assigned to variables of simple data type .
In the process of reading character strings into variables of one of the types INTEGER,
REAL or BOOLEAN, leading blanks will be overread. If it is not possible to assign a
character string to a variable of an appropriate type, a run time error is yielded.

When character strings are read from a stream and assigned to a variable of type TEXT,
the number of characters to be read can be specified by an INTEGER or REAL
expression. REAL expressions will be converted to INTEGER. If no number is
specified, only a single character is read from the stream.

Reading into boolean variables gives them the value TRUE if the position pointer points
to '1' (after having ignored leading blanks). Otherwise, the boolean variable receives
the value FALSE.

The input_list is worked off sequentially until all specified variables have received a
value from the stream. If this is not possible, a FAN error occurs (for example when
the end of the file has been reached without the input list having been worked off). The
position pointer is moved forward after every read access. Each READ TEXT statement
causes the position pointer to point to the first character of the text.

3. Programming Kernel of HI-SLANG - 61 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

{Reading of texts}

VARIABLE i : INTEGER;
c1, c2 : CHARACTER;

t1 : TEXT DEFAULT "TEXT 1.";
t2 : TEXT;

READ TEXT t1, t2::4, i, c1; {t2 = "TEXT", i = 1, c1 = '.'}
READ TEXT t1, c1, c2; {c1 = 'T' and c2 = 'E'}

{Reading of files}

VARIABLE f1 : INFILE;
t3 : ARRAY [1..8] OF TEXT;

j, k : INTEGER;

OPEN f1, "LINKNAME1" LENGTH 80;

{Contents of f1: "This is a file with 1 line and 2 numbers."}

READ FILE f1, t3 [1]::5, t3 [2]::3, t3 [3]::2,
t3 [4]::5, t3 [5]::5, j,
t3 [6]::6, t3 [7]::4, k,
t3 [8]::9;

{t3 [1] = "This ", t3 [2] = "is ", t3 [3] = "a ", }
{t3 [4] = "file ", t3 [5] = "with ", t3 [6] = " line ", }
{t3 [7] = "and ", t3 [8] = " numbers.", j=1, k=2}

{The same result is reached with:}

READ FILE f1, t3 [1]::5, t3 [2]::3,
t3 [3]::2, t3 [4]::5,
t3 [5]::5;

READ FILE f1, j;
READ FILE f1, t3 [6]::6, t3 [7]::4;
READ FILE f1, k;
READ FILE f1, t3 [8]::9;

{Reading of files using READLN:}

VARIABLE f2 : INFILE;
a : ARRAY [1..8] OF REAL;

OPEN f2, "LINKNAME2" LENGTH 80;

{Contents of f2: }
{line1 : 1 2.1 3 4.7 }
{line2 : 5.0 6 7 8 }
{line3 : 9.4 10.0 11 12 }

READ FILE f2, a [1], a [2], a [3]; READLN FILE f2;
READ FILE f2, a [5], a [6], a [7]; READLN FILE f2;

{a [1] = 1.0, a [2] = 2.1, a [3] = 3.0, a [4] = 0.0}
{a [5] = 5.0, a [6] = 6.0, a [7] = 7.0, a [8] = 0.0}

CLOSE f2;

- 62 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

{Contrasting the above, the following statements yield}

OPEN f2, "LINKNAME2" LENGTH 80;

READLN FILE f2;
READLN FILE f2, a [1], a [2], a [3]; a [4];
READLN FILE f2, a [5], a [6], a [7]; a [8];

{a [1] = 5.0, a [2] = 6.0, a [3] = 7.0, a [4] = 8.0}
{a [5] = 9.4, a [6] = 10.0, a [7] = 11.0, a [8] = 12.0}

3.6.5. Writing to Texts and Files

OUTFILE files can be written by using WRITE or WRITELN statements. WRITELN
statements are permitted for files only. A file must be opened before a WRITE or
WRITELN statement can be performed.

write statement ::=
WRITE [TEXT text-identifier ,] output_list;

| WRITE [FILE file-identifier ,] output_list;
| WRITELN FILE file-identifier [, output_list];
| WRITELN [output_list];

output_list ::=
{expression [:: simple_real_expression [:: simple_real_expression]] } [, ...]

WRITELN statements effect a line feed. The current buffer line is written into the file
after having worked off the output_list and a new buffer line of the line length defined
in the OPEN statement is opened. The position pointer is set to 1. The run time system
implicitely performs WRITELN statements if the WRITE operation exceeds the current
buffer line.

WRITE or WRITELN can be used to write character strings into a file. WRITE, but not
WRITELN, can also be used to write character strings into a text. Writing into a file re-
quires the keyword FILE to follow WRITE or WRITELN, and a file-identifier has to
succeed the keyword FILE. This also applies when writing into text variables, the
keyword FILE being replaced by TEXT. These specifications are dispensable if the
WRITE statements are used to write into the standard output file sysout .

The output_list is worked off sequentially. Each expression preceding the first '::'-
symbol defines those character strings that are to be written into the file or the text. The
expressions must result in values of simple data type. Expressions of type TEXT may
not contain the concatenation operator '&' since concatenation is done implicitely. Ex-
pressions of type INTEGER, REAL and TEXT may be followed by specifications of
their length (behind the first '::'-symbol). Length specifications are expressions of type
INTEGER (or REAL) and define the number of characters to be written into the file.

Only if REAL values are written into a file, a further length specification is allowed fol-
lowing a second '::'-symbol. The first specification defines the number of digits behind
the decimal point, the second describes the total length of the REAL number. The value
of the REAL expression is therefore represented within the character string by a fix-
point notation. If the second expression is not given, the REAL value is represented

3. Programming Kernel of HI-SLANG - 63 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

using the floating-point notation with as many significant positions as described in the
first specification.

In the absence of length specifications, the texts are written in full length. INTEGER
values in this case are represented with 11 characters, REAL values with 13 characters
plus 7 characters for the mantissa. If the length of an INTEGER value is less than 11
characters, it is preceded by blanks. The length of INTEGER and REAL values should
not exceed the respective length specifications, because otherwise the run time system
produces warnings ("edit overflows"). When writing texts, the length specification is
interpreted as a limiter. If the text is shorter than its specification length, it is printed
adjusted left and the vacant space is filled by following blanks. If it is longer, it is
shortened to the specified length.

A boolean expression with the result value TRUE is written into the file or text as "1".
If the value is FALSE, it is written as "0".

Examples:

VARIABLE t1, t2 : TEXT;
f1 : OUTFILE;
r : REAL;

CONSTANT tc : TEXT DEFAULT "Number";

OPEN f1, "LINKNAME" LENGTH 80;

t1 := "Such a" & " " & "statement writes the";
t2 := "Look! ";
r := 17.777;

WRITE FILE f1, t2, t1, tc, ": ", r::2::8;
{Contents of the 1. line of f1:}
{"Look! Such a statement writes the Number: 17.77"}

WRITE TEXT t1, "OK" ::5; {⇒ "OK " }
WRITE TEXT t1, " " ::6; {⇒ " " }
WRITE TEXT t1, "" ::2; {⇒ " " }
WRITE TEXT t1, "TOO LONG" ::3; {⇒ "TOO" }

WRITE TEXT t1, 13::4: {⇒ " 13" }
WRITE TEXT t1, 123::3; {⇒ "123" }
WRITE TEXT t1, 1234567890; {⇒ " 1234567890" }
WRITE TEXT t1, -1234567890; {⇒ "-1234567890" }

WRITE TEXT t1, r - 0.2105::5; {⇒ " 1.7566E+01" }
WRITE TEXT t1, 17.5665::3::10; {⇒ " 17.566" }
WRITE TEXT t1, 17.5665; {⇒ " 1.756650E+01" }

Example:

VARIABLE t : TEXT DEFAULT "abcd";
u : TEXT;

READ TEXT t, u::4;
WRITE TEXT u, t; {both statements have the effect u := t here}

- 64 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.7. Records and Pointers

Apart from arrays, HI-SLANG provides another structured data type, the record.

common_declaration ::= ...
| type_declaration
| record_declaration

type_declaration ::= ...
| recordtype_declaration

A record combines several objects of different types. Differing from array objects, these
objects need not be of simple data types, and don´t have to be of the same type.

Records may consist of constants, variables, arrays, pointers, records and procedures.
They therefore support the creation of linked structures (lists, trees, general graphs).
They can furthermore be used to define abstract data types.

Because of their complex structure, records are defined with the help of record types.

3.7.1. Record Types

Record types are patterns for the statical or dynamical generation (by NEW) of records.

recordtype_declaration ::=
TYPE recordtype-name RECORD [formal_parameters] ;

[common_declaration [...]]
[BEGIN sequence_of_statements]
END TYPE [recordtype-name] ;

A record type declaration consists of a headline with its name and, possibly, its formal
parameters. The headline is followed by a declaration part to define the local objects of
the record type. The declaration of a record within a record type must not result in a
(direct or indirect) recursion of record declarations. Upon the keyword BEGIN,
statements can follow that describe operations to be performed in each new incarnation
of a record object, as for example initializing record objects.

Record types declared within model types or component types cannot use or access
objects declared outside this record type.

The keywords END TYPE conclude the type declaration. The name of the type should
be repeated. If a different name than that of the just declared type is used here, a
warning occurs.

3. Programming Kernel of HI-SLANG - 65 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

TYPE complex RECORD (r, i : REAL DEFAULT 0.0);

...

PROCEDURE mult (re, im : REAL) RESULT POINTER FOR complex;
VARIABLE p : POINTER FOR complex;

BEGIN
NEW complex (r*re - i*im, r*im + i*re) POINTER p;
RESULT p;

END PROCEDURE mult;

PROCEDURE exp (n : INTEGER);
VARIABLE hr, hi : REAL;

BEGIN
hr, hi := 1;
WHILE n > 0
LOOPn := n-1;

(hr, hi) := mult (hr, hi);
END LOOP;
r := hr; i := hi;

END PROCEDURE exp;

BEGIN
WRITELN "complex just generated";

END TYPE complex;

3.7.2. Declaration of Record Objects and Pointers

Record objects can be generated statically or dynamically in a way that facilitates indi-
vidual access to them by using a pointer. In case of dynamical generation using the
NEW statement, the pointer must previously be declared. In simulative experiments,
records and pointers can be declared in any declaration part of the program. In analytical
experiments, records and pointers are not allowed within the model.

record_declaration ::=
RECORD
{record-name [, ...] :
[ARRAY [array_bounds [, ...]] OF]
recordtype-name [actual_parameters] ; } [...]

Beside record objects, arrays of record objects that have any desired dimension can be
defined following this pattern.

Declared record objects are statically generated when the program is executed. Subse-
quently, the initialization statements, providing their existence within the record type,
are run. The so-generated record object is of the type recordtype-name. If the record
type has formal parameters and if they do not have default values, actual parameters
must be provided when a record object is declared. The transmission technique equals
that of procedure parameters, though the mode "call by name" is not allowed.

If variables appear within the expressions to compute array_bounds or actual_
parameters, these must have been declared in surrounding blocks. Thus records defined

- 66 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

in the EXPERIMENT block do not allow variables as actual parameters, since the
EXPERIMENT block does not form a new scope.

Pointers serve for access to dynamically generated record objects. The association
between a pointer and its (dynamically generated) record object is achieved with the
NEW statement or by a pointer assignment (taken over the same association). Pointers
are declared similar to variables, for a pointer type is a simple data type. Please note that
dynamically and statically generated record objects even of the same type are not
convertible.

simple_type ::= ...
| POINTER FOR recordtype-name

Examples:

RECORD c1, c2 : complex (1, 0);
c_matrix : ARRAY [1..4, 1..4] OF complex (1);

VARIABLE p : POINTER FOR complex;
pa1, pa2 : ARRAY [0..4] OF POINTER FOR complex;

There is a predefined pointer. It is called NONE and it is a universal pointer constant
that refers to "nothing". NONE may be used for any self-defined pointer variable.
Please also note that NONE is the default value of a self-defined pointer variable.

simple_expression ::= ...
| NONE
| identifier

An expression yielding a pointer may be very complex, since procedure calls yielding a
pointer and pointer arrays may be contained.

Example:

pa1 [c1.r].mult (1, 2);

3.7.3. Dynamical Generation of Records

Apart from the statical declaration of record objects, there is the possibility of dynamical
generation by using the NEW statement. In this case, the record objects are reversibly
bound to a pointer. The initializing operations of the record type definition are executed
whenever an object is generated. In modelling, the NEW statement is only applicable
for simulation.

simple_statement ::= ...
| new_statement

new_statement ::= ...
NEW recordtype-name [actual_parameters] POINTER pointer-identifier [, ...]

;

3. Programming Kernel of HI-SLANG - 67 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

NEW complex (-1.5, 2.7) POINTER p, pa1 [0], pa2 [0];

{sets 3 different pointers on one dynamically generated record of type complex.}
{The pointer list is worked off from the left to the right.}

3.7.4. Operations on Records and Pointers

Pointers referencing dynamically generated record objects (via the NEW statement) can
be modified by pointer assignments. Each record object can be addressed by an arbit-
rary number of pointer variables.

Pointer assignment allows to set a pointer onto another record object. If the last pointer
on a record object is reassigned, the original record object cannot be addressed any
longer.

All pointer variables on the left hand side of the assignment are set onto the address to
which the pointer on the right hand side refers to throughout the operation. All pointers
must be declared as pointer variables of the same record type.

Example:

pa1 [0], pa2 [0] :=NONE;
p :=pa1 [1];

Pointer comparison allows the investigation of whether two pointers refer to the same
dynamically generated record object. Tests exist for referential equality ('=') and for
referential inequality ('<>', '#').

Example:

IF p # NONE AND pa1 [0] = pa2 [0] THEN ... END IF;

Record objects as a whole cannot be compared to one another. However, there is a
record assignment for statically generated records. In the course of this assignment, all
record elements of all records on the left side are replaced by the contents of the corre-
sponding elements of the record on the right hand side of the assignment. Of course, all
records involved in such an assignment have to be of the same type.

Example:

RECORD c, d : complex (1, 2);
...
c := d;

The most important operation on records and pointers is the access to elements of an in-
dicated record object. Two possibilities exist for carrying out this operation: the dot
notation and the WITH statement.

- 68 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.7.5. Access to Record Elements via Dot Notation

The elements of a record object can be addressed via dot notation, in a way that corre-
sponds to the indexing of arrays. No distinction is made between statically or dy-
namically generated record objects in this case. On the left of the dot, either the name of
a statical record object or the name of a pointer referring to a dynamic record object is
situated. The name of the element to which access shall be taken locates at the right of
the dot. If the name is a pointer variable or a statical record object, this access
mechanism can be applied iteratively .

Examples:

TYPE complex_tree RECORD (n : INTEGER DEFAULT 0);

VARIABLE node : POINTER FOR complex; {see Section 3.7.1.}
left, right : POINTER FOR complex_tree;

BEGIN

IF n > 0 THEN
NEW complex_tree (n-1) POINTER left;
NEW complex_tree (n-1) POINTER right;

END IF;

END TYPE complex_tree;

...

VARIABLE wood : ARRAY [0..5] OF POINTER FOR complex_tree;
root : POINTER FOR complex_tree;

RECORD leaf : complex_tree;

...

{After the dynamical creation of the structures, their elements can be addressed as follows: }

leaf.node leaf.node.i leaf.node.exp (3)
root.node root.node.r root.node.mult (leaf.node.i, 2)

wood [1].left.right.node.exp (3)

Note:

If you try to access an element of a dynamic record object which has not yet been
generated a run time error occurs and the analysis is stopped.

3. Programming Kernel of HI-SLANG - 69 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.7.6. Access to Record Elements using the WITH Statement

If access to several elements of one record object or repeated access to the same element
is intended, the dot notation proves to be rather inconvenient. In this case, the WITH
statement is more favorable. By employment of the WITH statement, the record object
can be selected and access to its elements can be taken directly, without dot notation.
Furthermore conforming to the block concept conventions, all names remain usable in
the statement part, unless there is a name equality with the name of the selected record
object.

compound_statement ::= ...
| with_statement

with_statement ::=
WITH record_or_pointer-identifier
DO

sequence_of_statements
END WITH ;

In this manner, not only statical record objects can be selected by their name, but addi-
tionally dynamical record objects can be selected by the pointer referring to them. If re-
ferring to a record using a NONE-valued pointer is attempted, the sequence of
statements is not executed.

Nesting of WITH statements does not improve the clarity of a program and should
therefore be avoided. With the exception of the EVALUATE and AGGREGATE
statement, all statements are permitted within a WITH statement.

Example:

NEW complex_tree POINTER root; {dot notation}
root.node.i, root.node.r := 1;

WITH root.node DO {identical WITH statement}
i, r := 1;

END WITH;

Moreover, the WITH statement can be used correspondingly to make the access to pro-
cess states easier (see Section 4.2.2.4.). A process state is represented by the set of
parameters of a service. These can also be addressed by using the dot notation.

Examples:

TYPE st SERVICE (my_state : INTEGER);
...
END TYPE st;

PROCESS p : st (1);

IF p.my_state = 1 THEN ...
END IF;

WITH p DO IF my_state = 2 THEN ... END IF;
END WITH;

- 70 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3.7.7. Records and Pointers as Parameters

Records and pointers can be defined as formal parameters of procedures and all types of
modelling objects (in case of simulation). The definition of a record as formal parameter
requires the keyword RECORD afore the name of the parameter. The keyword
VARIABLE may appear preceding all other parameter names, including array parame-
ters, in order to distinguish between record and other parameters. Neither array dimen-
sion and bounds nor actual parameters of a record type are specified.

Records as well as pointers cannot be handed over by VALUE. They are passed by
NAME or REFERENCE, the latter being the default mode. A DEFAULT part for rec-
ords is not allowed.

Example:

PROCEDURE calculate (RECORD c1, c2 : ARRAY OF complex;
NAME VARIABLE p_c : POINTER FOR complex;

VARIABLE : REAL DEFAULT 1.0);
...

END PROCEDURE calculate;

The employment of records and pointers as actual parameters corresponds to the use of
variables as actual parameters:

Example:

calculate (c_array_1, c_array_2, c_pointer);

Procedures and services can yield values of type POINTER, but not of type RECORD.
Therefore, the result specification of procedures and services consists of a simple_type
list:

Example:

PROCEDURE multi (link : TEXT) RESULT POINTER FOR complex,
BOOLEAN, INFILE;

VARIABLE f : INFILE;
p : POINTER FOR complex;

BEGIN
OPEN f, link LENGTH 80;

NEW complex POINTER p;
READ FILE f, p.r, p.i;
RESULT p, eof (f), f;

END PROCEDURE multi;

4. Model Description - 71 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4. Model Description
This section deals with HI-SLANG elements used for a structured model description.
The description of modelling objects relies on the programming language notations de-
veloped in Chapter 3. Those parts of the language which are used to describe model
generation and model analysis are the topic of Chapter 5.

From a global point of view, a model, as described by a model type (Section 4.4) is a
hierarchical arrangement of load-machine pairs. A load, given by a set of processes
(Section 4.1), is bound to a machine, given by a set of components (Section 4.2). In
this section, every modelling object (process, component, model) is an instance of
some object type. The type is referred to in the declaration part of a modelling object.

type_declaration :: = ...
| service_declaration
| componenttype_declaration
| modeltype_declaration

modelling_declaration :: = ...
| component-declaration
| process_declaration
| enclose_declaration

4.1. Services and Process Generation

The load imposed on a model is represented by processes acting as time and space con-
suming entities. They are always described by, and instances of, a so-called service,
which could therefore also be named a process type. Due to historical reasons, services
can also be formulated as service types in HI-SLANG.

In general, a service refers to (uses, calls) external services which are equated to
services provided by a lower layer component (machine). These provided services in
turn are descriptions of processes (services) running in the lower layer component.

Once a process is generated in a component or, at the topmost level, in a model, it is
termed a local process of that component (model). A service call in the behaviour pat-
tern followed by the process leads to the descent of this process to a lower layer. In this
case, the process has a hierarchical structure which mirrors the hierarchy of layers in the
model. Processes can be generated statically via declaration (Section 4.1.2) or dynami-
cally via CREATE or SUBMIT statements.

Process organization is handled by control procedures (Section 4.2.2) within the
component for which a process is local. If, by a service call, a process descends to a
subcomponent (Section 4.1.4), the subcomponent takes control of the process until the
service call has finished and control is transferred back to the higher layer component.

- 72 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.1.1. Services

Services describing the behaviour patterns followed by processes of that type are used
for process generation. Within analytical models services correspond to so-called
chains.

The enclosing component type can declare a service to be a provided service of the
component. Services may only be declared in the declaration part of component or
model types.

service_declaration :: =
TYPE service-name SERVICE [formal_parameters]

[RESULT simple_type [, ...]] ;
[use_declaration_part]
[declaration [...]]

[BEGIN sequence_of_statements]
END TYPE [service-name] ;

| SERVICE service-name [formal_parameters]
[RESULT simple_type [, ...]] ;
[use_declaration_part]
[declaration [...]]

[BEGIN sequence_of_statements]
END SERVICE [service-name] ;

declaration :: =
common_declaration

| modelling_declaration

A service declaration starts with a header comprising the service name, optional formal
parameters and an optional specification of results. The header is followed by a
declaration of the external services and procedures used (use_declaration_part), a local
declaration part and a statement part.

The service-name is any unique name for the behaviour pattern. It is subject to the rules
governing the scope and validity of identifiers. It is used to determine the service of a
process to be generated and to identify a service which is provided (PROVIDE) by a
component.
The optional service name repetition following the END TYPE resp. END SERVICE
must match the name given in the header. If not, the compiler will produce a warning.

Objects local to the service can be declared in the declaration part and subsequently
accessed in the statement part (sequence_of_statements). Constants, variables, records,
pointers, procedures, and possibly streams may be declared. Scope rules for identifiers
must be observed.

The statement part of the optional service body describes a process behaviour pattern.
Except for AGGREGATE and EVALUATE statements, any statement may occur here.
A RESULT statement is valid only if it is in accordance with the result specification
given in the service header (services returning results, Section 4.1.1.2). In addition to
its parameters and objects local to the service, external services and procedures may be
used if they are listed in the USE-declaration part. Global constants, variables, record

4. Model Description - 73 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

types, records, pointers, and procedures may also be accessed, as well as the streams
declared in the surrounding component type.

Recursive service calls are not allowed within services.

Note:

Be very careful when accessing global objects. Access to global variables including
records and pointers is highly dangerous, especially due to model maintainability as
well as due to the potential parallelism (of the processes writing to such variables),
and will cause a warning in a future version of HIT.

Example:

TYPE dialog SERVICE (thinktime, computetime : REAL);
USE

SERVICE think (thinktime : REAL);
transfer (transferdelay : REAL);
compute (cputime, iotime : REAL);

PROCEDURE short_delay RESULT BOOLEAN;
END USE;

BEGIN

LOOP
think (negexp (1.0/thinktime));

IF short_delay THEN transfer (0.5);
ELSE transfer (5.0);

END IF;

compute (computetime, computetime/2.0);
END LOOP;

END TYPE dialog;

- 74 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .1 .1 . Services with Parameters

Similar to a procedure, a service may have formal parameters. When a process is
generated or a service is called, its formal parameters are substituted by actual
parameters. Formal parameters can be accessed in the statement part of a service. The
rules for the specification of formal parameters and their substitution by actual pa-
rameters are the same as for procedures, with the restriction that a "call by name" is not
allowed for service parameters.

If local objects of a process which was generated statically or dynamically by a
SUBMIT statement are to be accessed via dot notation, these objects must be declared
as formal parameters. The formal parameters of a service define the explicite state of
corresponding processes. Accordingly, actual parameters supplied to a process define
the initial state. Only state variables (i.e., service parameters) of a process can be
accessed.

Example:

TYPE shopping SERVICE (shopping_list : ARRAY OF TEXT;
money: REAL DEFAULT 10000;
by_car: BOOLEAN DEFAULT TRUE);

...
END TYPE shopping;

CREATE 1 PROCESS
shopping (letter_to_santa_claus, 0.99, FALSE);

CREATE 1 PROCESS
shopping (list_of_things_desired, ,) AFTER 100.0;

4 .1 .1 .2 . Services Returning Results

Processes and services can, just as procedures, return one or several results to the cal-
ler. The data types of the results, separated by commas, are specified after the RESULT
keyword in the header of a service definition. There should be at least one reachable
RESULT statement in the statement part of the service.

The service returns its results if it is a provided service of a component which is used
(called) by a higher level service. In this case, the service call is syntactically identical to
a procedure call.

If a process of a service returning results is generated statically ("PROCESS p : service-
name") or dynamically (e.g., "CREATE 1 PROCESS service-name" or "SUBMIT
service-name NAME p"), the results will be lost as soon as the process terminates. The
results are also lost if the service call does not occur on the right hand side of an
assignment or in an expression.

Processes which return results are not allowed to be used in a model which is to be
analyzed by an analytical solver.

4. Model Description - 75 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

{use of a service returning results}

TYPE st SERVICE;
USE

SERVICE find_employee (name : TEXT)
RESULT TEXT, INTEGER, REAL, BOOLEAN;

END USE;
...

BEGIN
...
(address,age,salary,married) := find_employee ("miller");

END TYPE st;

4 .1 .1 .3 . Services with USE Declarations

The USE declaration part of a service lists procedures and/or services provided by some
component and used (called) by this service. Services/procedures provided by com-
ponent arrays may be used in total as service/procedure arrays.

use_declaration_part ::=
USE

use_declaration [...]
END USE ;

use_declaration ::=
procedure_or_service [ARRAY]
{procedure_or_service-name [formal_parameters]
 [RESULT simple_type [, ...]] ; } [...]

procedure_or_service ::=
PROCEDURE

| SERVICE

The binding between services and procedures used by a service to those provided by
components is done in the REFER part of the surrounding component type.

Names in a USE declaration may be chosen freely but must be different from names of
local variables and formal parameters of the service. The scope rules for identifiers are
valid, i.e., names in a USE declaration can hide global names.

If a used service or procedure has parameters, the number, order, and types of parame-
ters in the USE declaration must be identical to those of the service or procedure to
which it is bound (no type conversion is done). DEFAULT values can be defined in the
USE declaration, overriding any other DEFAULT values. Names of parameters and
names occurring in expressions for DEFAULT values can be chosen freely. The same
restrictions as for the initialization of variables with DEFAULT values apply to them.

If a used service or procedure has results, the number, order, and types of results in the
USE declaration must also be identical to those of the service or procedure to which it is
bound (no type conversion is done).

- 76 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A service or procedure array denotes a set of services and procedures, respectively. In a
REFER part of an enclosing component (model), service and procedure arrays must
always be bound to services and procedures provided by component arrays. A single
service or a single procedure of an array is called by an indexing mechanism similar to
that of an ordinary array access. Errors will occur if indices are outside the range of the
component array. Service and procedure arrays do not have standard array attributes.
The dimension is always one.

Example :

TYPE pt SERVICE;
USE

SERVICE compute;
SERVICE ARRAY disk_access (time : REAL);
PROCEDURE short_delay;

END USE;
...
disk_access [2] (11.5);
…

END TYPE pt;

Any service may call the predefined services spend and hold (cf. Section 4.1.5.2)
without explicitely using them.

4. Model Description - 77 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .1 .4 . Procedures with USE Declarations

Similar to services, a USE declaration part of a procedure lists procedures provided by
some component and used (called) in this procedure. The syntax is the same as in
Section 4.1.1.3 with the exception that access to ("external") services is not allowed
here.

The binding between procedures used by a procedure and procedures provided by
components is done in the REFER part of the surrounding component type. Names in a
USE declaration can be chosen freely but must not clash with names of local variables
or formal parameters.The scope rules for identifiers are valid, i.e., names in a USE dec-
laration can hide global names.

If a used procedure has parameters, the numbers, order, and types of parameters in the
USE declaration must be identical to those of the procedure to which it is bound (no
type conversion is done). Names of parameters and names occurring in expression for
DEFAULT values can be chosen freely. If a used procedure has results, the number,
order, and types of the results in the USE declaration must also be identical to those of
the procedure to which it is bound (no type conversion is done).

From a modelling point of view, the execution of a procedure is not consuming any
time. Therefore, procedures listed in a USE declaration are not subjected to a compo-
nent control mechanism of the (sub-)component to which the procedure is bound in the
REFER part of the surrounding component type.

Example:

PROCEDURE status_test;
USE

PROCEDURE printer_statusRESULT BOOLEAN;
net_status RESULT BOOLEAN;

END USE;
...
END PROCEDURE status_test;

Procedures are not allowed to be used in a model which is to be solved analytically.

- 78 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.1.2. Declaration of Processes and Process Names

Processes can be generated statically (process declaration) or dynamically in a way that
they can be accessed individually by name or an additional index, if a one-dimensional
process array is declared. If a process is generated dynamically by a SUBMIT statement
(see Section 4.1.3.2.), its name must be declared.

process_declaration ::=
PROCESS
{process-name [, ...]: [ARRAY [array_bounds] OF]
 process_name_or_object_declaration ; } [...]

Static generation of processes and declaration of process names is valid only in
declaration parts of component or model types.

Speaking in simulation terminology, process generation happens without model time
consumption and is implemented by simply inserting additional events into the eventlist.
Global variables, e.g., parameters supplied to "EVERY negexp (...)" in CREATE
statements, are accessed when this event becomes "current" and not at process genera-
tion time. Due to the serialization of events done by a simulation program, even pro-
cesses generated at the same model time (e.g., static process generation) may see dif-
ferent values of global variables.

4 .1 .2 .1 . Declaration of Processes

Process object declarations lead to a static generation of one or several processes, or
process arrays, which are started immediately as local processes.

process_name_or_object_declaration ::= ...
| service-name [actual_parameters]

The process is accessed via its process-name (Section 4.1.2.2). The name, like any
other name, can be chosen freely under the restrictions governing validity and scope of
identifiers. Process arrays must be one-dimensional. Furthermore, the array bounds
expressions are evaluated at compile time. As for other arrays, array bounds
expressions are built over simple (standard) types. Process arrays do not have array
attributes.

A generated process is of type service_name. This is the reason why services are
formulated as a type in HI-SLANG. This type must be declared within the same
component type. If a service has parameters, the same rules as for procedures apply to
parameter substitution. For a list of generated processes the actual parameter
expressions, if existing, are evaluated once.

Process parameters can be accessed via process name and dot notation. But the access
to process parameters does not make sense after the process has left the component.

If access to local service variables is necessary, they must be declared as formal
parameters. DEFAULT values can be supplied, so these extra parameters need not be
considered when the service is called.

4. Model Description - 79 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

PROCESS watch_me : pt (1, 2);
parallel_process : ARRAY [1..10] OF pt (5,10.0);

{declaration of pt:}

TYPE pt SERVICE (form1 : INTEGER; form2 : REAL);
...
END TYPE pt;

{access to formal parameters via dot notation: (r is of type REAL, i is of type INTEGER)}

r := watch_me.form2;
i := parallel_process [8].form1;

4 .1 .2 .2 . Declaration of Process Names

Process names are used to reference dynamically generated processes. They are
assigned to newly generated processes via a SUBMIT statement.

process_name_or_object_declaration ::= ...
| NAME FOR service-name

service-name is a name chosen freely under the restrictions governing validity and
scope of identifiers.

In a SUBMIT statement, process names declared in this way can only be assigned to
processes of type service-name. According to the scope rules, the service-name must be
known at the time of process name declaration. A process name variable can be
reassigned by an assignment statement or by another SUBMIT statement, i.e., at run
time a process name variable can sequentially reference different processes. A process
name variable cannot reference a process generated statically, however.

The state of a process (e.g., actual parameters) can be accessed via process names and
dot notation. But the access to the implicit state does not make sense after the process
has left the component. If a process name does not reference any process, an access
results in a run time error.

Process names are not allowed to be used in a model which is to be analyzed by an
analytical solver.

Example:

PROCESS watch_me_too : NAME FOR pt;
{pt: see above, no actual parameters given here}

SUBMIT pt (10, 5.0) NAME watch_me_too; {process generation}

r := watch_me_too.form2; {access via dot notation}

- 80 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.1.3. Dynamic Process Generation

Apart from being generated statically by declaration, processs can also be generated and
started dynamically by CREATE and SUBMIT statements. These statements are
described in detail in the following subsections. In both statements a so-called timing
condition determines either a process generation time or a duration between process
generations.

simple_statement ::= ...
| create_or_submit_statement

timing_condition ::=
time_specification simple_expression

time_specification ::=
AT

| AFTER
| EVERY

The simple_expression must have a REAL or INTEGER value and denotes either a
point in model time or a duration. Values less than zero are forced to zero. AT, AFTER
and EVERY keywords have the following meaning:

AT: simple_expression determines the point in (model) time at which a
process (or the given number of processes) is started. If this point of
time is before the current model time, it is interpreted as "now".

AFTER: simple_expression determines the duration (in model time units) be-
tween "now" and the point in time at which a process (or the given
number of processes) is started. This point in time can be computed
by adding simple expression to the current model time, i.e., the time
at which the statement is executed.

EVERY: simple_expression determines an interval in model time units which is
the time between successive process generations. The first process is
generated immediately when the statement is executed. The genera-
tion sequence stops at the end of the simulation run.

Service variables and parameters as well as BLOCK variables may
not be used in the EVERY-simple_expression in a CREATE statement
ocurring in a service statement part. Global variables and variables of
the enclosing component type may be used, however.

Only the simple_expression following EVERY is evaluated each time
a process is generated to determine the next process generation time.
See the note below.

4. Model Description - 81 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

In contrast to service calls, CREATE and SUBMIT statements yield a new local pro-
cess. The execution of these statements is not consuming any model time, even if a
timing condition is specified. The process generation is thus performed by a separate
dedicated process.

Note:

Every expression occuring in a CREATE/SUBMIT statement is evaluated exactly at
that time the statement is executed, and not at the time of process generation. The
only exception is the expression following EVERY. This exception has the conse-
quence that in

FOR i := 1 STEP 1 UNTIL 4 LOOP
CREATE 2 PROCESS service-name EVERY negexp (i);

END LOOP;

the variable i has the value 5 (the value of i after termination of the loop) each time
the expression negexp (i) is executed!

Note:

If no timing condition is given, the process surely exists after execution of the
CREATE statement and after a progress in modeltime. Since executing CREATE
does not consume model time, the process may not yet exist when the statement
following the CREATE statement is executed.

- 82 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .3 .1 . CREATE Statement

Processes without names (anonymous processes) are generated dynamically by a
CREATE statement:

create_or_submit_statement ::= ...
| CREATE simple_real_expression

PROCESS service-name [actual_parameters]
[[LIMIT simple_real_expression] timing_condition] ;

Both simple_real_expressions must yield an INTEGER or REAL value. REAL values
are converted to INTEGER values according to type conversion rules. service-name
must be a known service name according to the rules governing the scope of iden-
tifiers. Actual parameters must be supplied according to the service declaration and
parameter transmission rules.

The expression following CREATE specifies the number of processes generated
simultaneously. These processes follow the behaviour pattern given by service service-
name and the actual parameters. No process generation will be done if the expression
yields a value less than or equal to zero.

Processes are generated immediately, i.e., they exist at the next point of model time
(see Note above), if timing_condition is omitted. If not, they will be generated
according to the timing_condition. CREATE statements do not consume (model) time,
i.e., the next statement is executed at the same point of model time as a CREATE
statement, whatever the timing_condition may be.

If a model is analyzed by an analytical solver, the timing condition must either be an
EVERY clause (to model open chains; the EVERY clause denotes the arrival rate here)
or be omitted (to model closed chains). The corresponding processes must be either
temporary (no endless loop) or permanent (endless loop), respectively.

Furthermore, a LIMIT clause is not allowed to be used if a model is analyzed by an
analytic-algebraical solver. In queueing network terminology the LIMIT constitutes an
upper bound for the number of customers in an open chain (numbers of processes in
progress). LIMIT may only be specified in conjunction with EVERY. The expression
must yield an INTEGER or REAL value > 0, a REAL value being converted to an
INTEGER. A LIMIT is an upper bound for the number of processes in progress only
with respect to the particular CREATE statement and not on the (total) number of
processes of the service.

The actual parameter time in a CREATE statement

CREATE 1 PROCESS pt (time) EVERY 10;

is evaluated just once and at the time when the CREATE statement is executed, because
the actual parameters are evaluated only once even if EVERY is present (see Note
above). For example, at the start of a simulation time would be zero and a process of
type pt and actual parameter zero would be generated every ten model time units.

Examples:

CREATE 1 PROCESS pt (5, 10.0) AT 100;
CREATE 2 PROCESS pt (a, b);
CREATE n PROCESS pt (a, f) EVERY a + b;

4. Model Description - 83 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .3 .2 . SUBMIT Statement

Named processes are generated dynamically by a SUBMIT statement. Their name is
stored in variables of type "NAME FOR service-name":

create_or_submit_statement ::= ...
| SUBMIT service-name [actual_parameters]

NAME process_name-identifier [timing_condition] ;

The service-name must be a known service of a surrounding component or model type.
Actual parameters must be supplied according to the service declaration and parameter
transmission rules. process-identifier is a process name declared in a process name
declaration. The name must be a known identifier and be declared as a name for service
service-name.

Processes generated dynamically by a SUBMIT statement follow the behaviour pattern
given by service service-name and the actual parameters. Formal parameters of the
service (i.e., the process state in HI-SLANG convention) can be accessed via dot
notation. Access is possible as long as the name references the process, even after the
process has finished its activities. But the access to the implicit state does not make
sense after the process has left the component.

Processes are generated immediately, i.e., whenever the SUBMIT statement is
executed, if timing_condition is omitted (see Note above). If not, they will be generated
according to the timing_condition. SUBMIT statements are not (model) time
consuming, i.e., the next statement is executed at the same point of model time as the
SUBMIT statement, whatever the timing_condition may be. Run time errors will occur
if a process is accessed immediately after a SUBMIT statement with an AFTER timing
condition (see the example below).

SUBMIT statements may only be used in models analyzed by the simulative solver.

Examples:

PROCESS process1, process2 : NAME FOR pt;

SUBMIT pt (5, 10.0) NAME process1 AFTER 5;
SUBMIT pt (a, b) NAME process2;
SUBMIT pt (5, 10.0) NAME process1 AT 2000;

n := process1.form1;

Note:

The last statement above will produce a run time error if process1 has not yet been
activated: The process and its formal parameters (as form1) do not exist before
activation.

- 84 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.1.4. Service Calls

Service calls represent a way of describing a hierarchically structured load, the load
being a part of a hierarchical model made up of layers of load-machine pairs. Processes
and service calls are running under the control of the component which CREATEs
and/or PROVIDEs them. Processes and services can, in turn, USE services provided
by a subcomponent.

In contrast to a process generation via CREATE or SUBMIT statements, a service call
will not result in a new local process (with respect to a component). Rather, the calling
process descends to the next lower layer of the model. It starts executing the statements
of the called service under the control of the component which provides the called
service.

In queueing network terminology, service calls represent a way to describe class
changes within a customer chain in a hierarchical fashion.

Services used by other services have to be listed in the USE declaration part of the
calling service, with the exception of services spend and hold. The binding between
used services and services provided by some components is done in the REFER part of
the surrounding component type. Services provided by a component must be listed in
the PROVIDE part of the component type declaration.

Syntactically, service calls within the statement part of the calling service are identical to
procedure calls, i.e., services can be called

- in a statement comprising the service name given in the USE declaration and its
(optional) parameters;

- in an expression, if the service yields a single result of the type expected in the ex-
pression. Again, the service name and its (optional) parameter as described in the
USE declaration must be given;

- on the right hand side of an assignment or RESULT statement. Again, the service
name and its (optional) parameters as described in the USE declaration must be
given. In this case, the called service is allowed to have more than just one result.

If a service which is to return results is called in the first way mentioned above, the
results of the service call are lost.

In contrast to procedure calls, the progress of service calls is controlled by component
control procedures of the component providing the service. A user can choose from a
set of predefined standard procedures or write his own control procedures in HI-
SLANG.

4. Model Description - 85 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.1.5. Special Statements within Services

These are statements only to be used in the statement part of a service declaration. They
are important for modelling purposes.

4 .1 .5 .1 . CONCURRENT Statement

CONCURRENT statements are used for simulations to describe the fact that certain
actions of a service can be executed concurrently. This refers to model time.
Concerning cpu time, the statements are executed in an interleaved fashion respecting
the order based on the model time.

compound_statement ::= ...
| concurrent_statement

concurrent_statement ::=
CONCURRENT

sequence_of_statements
{TO

sequence_of_statements } [...]
END CONCURRENT ;

With the exception of AGGREGATE, EVALUATE, CHAIN and RESULT, any kind
of statement may occur in a CONCURRENT statement. Sequences of statements
separated by TO are executed concurrently. In order to be useful, time or space
consumption should occur in the concurrent statements. This can be expressed by
spend or hold or service calls which ultimately require a service of, say, servers or
counters.

With regard to component control, a CONCURRENT statement is treated as any other
statement of a service, but it may cause the execution of multiple used services in
parallel. The implication is that if the service issuing the CONCURRENT statement in a
component is preempted (returns from service area to entry area, see Section 4.2.2) by
a scheduling in the component, all of its concurrent activities are suspended in the same
way as a non-parallel activity.

Service calls in different TO parts of a CONCURRENT statement are executed concur-
rently and, in case they share some component, they are competing with each other.
The next statement following a CONCURRENT statement is executed after each con-
current subactivity has finished. CONCURRENT statements may be nested.

Access to objects and types local to an enclosing block is somewhat restricted in TO
parts of a CONCURRENT statement. Parameters of the enclosing service and objects
and types declared in a block enclosing the service (e.g., variables of an surrounding
component type) can be accessed. Variables declared in the declaration part of the
enclosing service or in a block "between" the service and the CONCURRENT
statement cannot be accessed. Of course, variables declared in a block statement within
the CONCURRENT statement can be accessed.

- 86 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

LOOP
CONCURRENT

proc1_computing (amount1);
TO

proc2_computing (amount2);
TO

proc1_computing (amount3);
proc2_computing (amount4);

END CONCURRENT;

proc3_computing (amount3);
END LOOP;

TYPE ct COMPONENT (c_para : REAL);
PROVIDE

SERVICE s (s_para : REAL);
END PROVIDE;

VARIABLE c_var : REAL;

TYPE s SERVICE (s_para : REAL);
USE

SERVICE s1 (m : REAL);
s2 (m : REAL);

END USE;

VARIABLE s_var : REAL;
BEGIN

BLOCK
VARIABLE block_var1 : REAL;

BEGIN

CONCURRENT

s1 (c_para); {1}
s2 (c_var); {2}

TO
s1 (s_para) ; {3}
s2 (s_var); {4}

TO

BLOCK
VARIABLE block_var2 : REAL;

BEGIN
s1 (block_var1); {5}
s2 (block_var2); {6}

END BLOCK;

END CONCURRENT;
END BLOCK;

END TYPE s;
END TYPE ct;

Applying the rules above, you can see that {4} and {5} are not valid, whereas {1}, {2}, {3} and {6} are.

4. Model Description - 87 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

It has already been mentioned that TO parts of a CONCURRENT statement are
executed concurrently in model time. Internally, a new subprocess is generated for each
TO part, similar to process generation by CREATE statements. Its type is generated by
the HIT system and it executes the statements of the TO part. A process issuing a
CONCURRENT statement continues its activities after all subprocesses (one for each
TO part) have finished. While waiting for its subprocesses, the process and its
subprocesses are still being controlled by the component which provides the service
declaration for the statements currently being executed by the process.

Two situations are conceivable:

- With regard to the service declaration, no services have been called prior to the
CONCURRENT statement, i.e., the very first service is called in the
CONCURRENT statement:

While its subprocesses are executed, the process stays in the service area (entry
area, if it is preempted by a rescheduling) of the component. If the process
encounters another service call after all subprocesses have finished, it descends into
a corresponding lower layer component.

- Another service has already been called prior to the execution of a sequence of
CONCURRENT statements without any call of a service between them:

In this case, the process also remains under the control of the lower layer component
providing the previously called service. More precisely: the process stays in the
lower layer component's exit area until all concurrent subprocesses of the sequence
of CONCURRENT statements have terminated. If the process encounters a service
call after the CONCURRENT statements, the accept-offer-mechanism is performed
between the lower layer components of the service calls prior to and after the
execution of the CONCURRENT statements.

Subprocesses of TO parts are regarded as separate processes in this context, so there
is no service called prior to them. Therefore, also the operational semantics of nested
CONCURRENT statements is defined by this rules.

An example was given above: Since CONCURRENT is called in a LOOP, all but
the first execution of the CONCURRENT statement is preceded by the execution of
proc3_computing.

CONCURRENT statements are not allowed in models to be analyzed analytically.

- 88 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .5 .2 . Spend and Hold

The predefined services spend and hold can be used in the statement part of a service to
model time consumption without having to declare a component of type server and
using its provided service request. The obligatory actual parameter of hold and spend
specifies the model time to be spent. The difference between spend and hold is that
spend does respect the dispatch control procedure of the component type enclosing the
service, whereas hold does not. Hold only expresses a delay, while spend requests
service. The actual time a process spends in a spend statement is a function of the actual
parameter supplied to spend and the service speeds (as determined by the dispatch
procedure) of the component.

Note that spend calls can only be preempted by another spend call, if a schedule proce-
dure allows the preemption of processes.

The spend call can effectively be used to replace request calls on servers of the "Infinite
Server" or "Processor Sharing" type. The main advantage is that time consumption in a
service does not have to be realized by a declaration of a server and a call on the service
of that server. All spend calls in a service declared at the topmost layer of a model are
controlled by the default dispatch procedure as it is not possible to specify control
procedures at the topmost layer of a model.

A process calling hold is disabled for exactly the period (in model time) given as the
actual parameters to hold, not influenced by a preemption or a change of service speeds
by component control procedures. It resumes its activities after this period is
exhausted.

Parameters of spend and hold must be of type INTEGER or REAL. Actual parameters
less than zero are forced to zero.

Examples:

TYPE polling SERVICE (poll_time : REAL);
USE

SERVICE initiate_work;
END USE;

BEGIN
LOOP

initiate_work;
hold (poll_time);

END LOOP;
END TYPE polling;

{within a lower level component}

TYPE initiate_work SERVICE;
BEGIN

spend (2.5); {expressed, e.g., in milliseconds}
END TYPE initiate_work;

4. Model Description - 89 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .1 .5 .3 . CHAIN Statements

Besides the algorithmic description of load patterns in services HI-SLANG offers two
CHAIN statements to describe "graphically" specified load patterns. The nodes in the
graph represent the service calls and the arcs describe the selection of the next service
call or the termination of the process. The arcs are weighted by selection probabilities.
The station-class pairs of a chain in a queueing network correspond to service calls in a
CHAIN statement. This allows an easy transformation of queueing network models to
HI-SLANG models. For example, for the graphical queueing network analyzer
SIQUEUE-PET also developed in Dortmund (see /Deik89/) this transformation has
been implemented. An integration of graphically specified services to HITGRAPHIC is
in preparation.

There are two CHAIN statements, which can be used independently from the analysis
method: one for open chains and the other for closed chains:

compound_statement ::= ...
open_chain_statement

| closed_chain_statement

open_chain_statement ::=
OPEN_CHAIN [arrival-prob_part]

qnode [...]
END OPEN_CHAIN ;

closed_chain_statement ::=
CLOSED_CHAIN

qnode [...]
END CLOSED_CHAIN ;

qnode ::=
QNODE qnode-identifier [prob_part]

prob_part ::=
{ PROB simple_real_expression : qnode-identifier ; } [...]
[ELSE : qnode-identifier ;]

One of these two statements may only occur within the body of a service and then the
body may only consist of this statement. Several nodes (QNODE) describe the service
calls, and the PROB part of each node describes the selection probabilities for the
successor nodes and their names.

The names of the nodes are those names which are specified in the USE part of the
service and the actual parameters of the service calls have to be given once for all calls
as default value in the USE declaration.

Every name of a node may only occur once in the QNODE parts of one CHAIN
statement and every node which is used as a destination has to be defined as QNODE.
Even service arrays can be used. In this case one array index has to be supplied for
each node name (confirm syntax for identifier). In this case all nodes of an array have
the same actual parameters specified as default.

- 90 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

But all array indices for the qnode-identifier as well as in the expressions of PROB
(simple_real_expression) must be constant values.

In the optional ELSE part the destination node is specified which is reached with the
probability computed as the difference of 1.0 and the sum of the specified probabilities
in the CHAIN statement.

Specifying closed chains the sum of the denoted probabilities has to be equal to 1.0,
otherwise the analyzer will report an error message.

Describing open chains the sum of the probabilities in a PROB part has to be smaller
than or equal to 1.0, otherwise the analyzer will report an error message. If the sum of
the probabilities in a PROB part of a QNODE is smaller than 1.0, the complementary
probability is taken as exit probability for the OPEN_CHAIN statement. If the PROB
part of a QNODE is missing, the execution of the OPEN_CHAIN statement finishes
deterministically with this node.

The arrival PROB part of the OPEN_CHAIN statement defines a probability
distribution for the selection of the first node to be executed. If the sum of probabitlities
is smaller than 1.0, with the complementary probability no node of this OPEN_CHAIN
is executed at all. In contrast to the QNODE description a missing arrival PROB part
means that the syntactically first QNODE is selected deterministically as the first node
of execution.

Please note that the evaluation of all probabilities of one QNODE is performed before
any decision about the destination node is done; i.e., after executing the qnode
statement all expressions (simple_real_expression) of corresponding prob_parts are
evaluated and the sum is checked (equal to 1.0; greater/smaller than 1.0). After this
check the prob part (node) is chosen for which the sum of the expressions
(simple_real_expression) is greater than the drawn random number for the first time.

Example:

0.1

1

1

0.7

0.4

0.3
0.5

nodes[1]

nodes[3]

node

4. Model Description - 91 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The open chain as described above can be described by the following service:

TYPE net SERVICE;
USE SERVICE node (duration: REAL DEFAULT negexp(3));

SERVICE
ARRAY nodes (duration: REAL DEFAULT negexp(6));

END USE;

BEGIN
OPEN_CHAIN

QNODE node {entry node, since there is no arrival-
prob_part}

PROB 0.1 : node;
PROB 0.4 : nodes [1];
ELSE : nodes [3];

QNODE nodes [1] {exit node}
QNODE nodes [3]

PROB 0.3 : node; {else exit}
END OPEN_CHAIN;
END TYPE net;

- 92 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.2. Components and Component Types

A HI-SLANG component is an autonomous dynamic system. Components are the
most important building blocks of a model, since they are self-contained and have a
well-defined interface. Moreover components control all processes which have been
created within them. As a rule components are generated statically either by component
declarations of component types or by declaring component objects directly.

The usage of component types is meaningful if many components of the same kind
exist in the model. They can, of course, differ concerning their parameter values. On
the other hand the usage of a direct component declaration is meaningful if a component
of this kind is used only once within the model.

This chapter describes the declaration and structure of component types (see Section
4.2.1.), the operation of components (Section 4.2.2.), the declaration of component
control procedures (Section 4.2.3.) and the declaration of component objects (Section
4.2.4.). The next section (4.3.) presents all standard component types of HI-SLANG.

4.2.1. Component Types

Components can be generated as instances of component types. Component type
declarations can be given in declaration parts of model or component types, of an
EXPERIMENT block, and on the same level as model types, textually preceding the
EXPERIMENT block.

componenttype_declaration ::=
TYPE componenttype-name COMPONENT [formal_parameters] ;

[provide_declaration_part]
[collect_block]
[control_declaration_part]
[declaration [...]]
[refer_part]

[BEGIN
sequence_of_statements]

END TYPE [componenttype-name] ;

A component type declaration starts with a header comprising a type name and
(optional) formal parameters. The header is normally followed by the declaration of
those services and procedures provided for external use by the component type
(provide_declaration_part). Next a collect_block may follow for upward compatibility
reasons, but is no longer necessary, since all user-defined streams declared within
declarations are collected automatically. An optional control_declaration_part describes
how the execution of provided services is controlled by component control procedures.

Local declarations, a REFER part and a statement part may follow. Component type
declarations are bracketed by TYPE - END TYPE pairs with an optional type name
repetition. The componenttype-name is a unique identifier to be used in component
declarations. It can be chosen freely under the rules governing scope and validity of
identifiers.

4. Model Description - 93 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Objects local to the component type and accessible in the sequence_of_statements part
can be declared in the declaration part. Constants, variables, records, pointers, and pro-
cedures can be declared as well as services, component types, and corresponding
objects. Virtual (enclosed) components can also be declared here.

The optional statement part starting with BEGIN is executed at declaration time of a
corresponding object and is used for initialization purposes, e.g., local process genera-
tion. With the exception of RESULT, EVALUATE, AGGREGATE and UPDATE,
any statement which does not consume model time may occur here. Any referenced
object must be known according to the scope rules.

Component types are basic building blocks from which models are constructed. They
have a properly defined interface to an environment which is given by

- the services and procedures provided to the environment (PROVIDE declaration),
- the streams used for performance evaluation purposes (former COLLECT block,

now a set of stream declarations),
- its parameters,
- its ENCLOSED components (virtual declarations),
- the access to global objects, depending on scope rules.

Principles of structured modelling promote the opinion that only very restricted use
should be made of the last facility.

Example:

TYPE cs COMPONENT;
PROVIDE

SERVICE
cmd1_processing;
cmd2_processing;

END PROVIDE;

TYPE cmd1_processing SERVICE;
USE

SERVICE
compute (m : REAL);

END USE;
BEGIN

AVERAGE 10 TIMES LOOP
compute (negexp (1/0.045));

END LOOP;
END TYPE cmd1_processing;

TYPE cmd2_processing SERVICE;
USE

SERVICE
compute (m : REAL);

END USE;
BEGIN

AVERAGE 20 TIMES LOOP
compute (negexp (1/0.135));

END LOOP;
END TYPE cmd2_processing;

- 94 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

COMPONENT cpu : server (LET schedule := immediate, LET dispatch := shared);

REFER cmd1_processing, cmd2_processing TO cpu EQUATING
cmd1_processing.compute WITH cpu.request;
cmd2_processing.compute WITH cpu.request;

END REFER;
END TYPE cs;

4 .2 .1 .1 . Component Types with Parameters

Component types can be parameterized to facilitate the generation of similar, yet indi-
vidually different component objects. Its parameters can be accessed within the compo-
nent type. Formal parameters are substituted by actual parameters in a component
object declaration.

The rules for parameter transmission modes and parameter types are the same as for
services with parameters, i.e., a "call by name" is not allowed here. The rules for
formal parameter specification and parameter substitution by actual values are the same
as for procedures. The scope rules for identifiers have to be observed, e.g., parameter
names must be different from names of objects or data declared locally in the compo-
nent type.

Example:

{declaration of a component type with formal parameters}

TYPE os_type COMPONENT (virtual_storage : INTEGER DEFAULT 2;
 mean_disk_access_time : REAL;
 number_of_cpus : INTEGER DEFAULT 1);

...
END TYPE os_type;

{declaration of corresponding component objects}

COMPONENT operatingsystem : os_type (, 0.005, 2);
os3 : os_type (4, 0.001, 3);

4 .2 .1 .2 . PROVIDE Declaration

A PROVIDE declaration lists those services and procedures local to a component type
which are intended to be used (called) by the environment. Used (called) services or
procedures have to be bound to services or procedures respectively provided by a
component in the REFER part of the surrounding component type.

provide_declaration_part ::=
PROVIDE

provide_declaration [...]
END PROVIDE ;

provide_declaration ::=
procedure_or_service {procedure_or_service-name [formal_parameters]

[RESULT simple_type [, ...] ; } [...]

4. Model Description - 95 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Of course, a service or procedure listed in a PROVIDE declaration must be declared in
the declaration part of the component type. Furthermore, the specifications given in a
PROVIDE declaration must correspond to those in the declaration part of the compo-
nent type. procedure_or_service-name must be identical to the name given in the
declaration part. Syntactically, a PROVIDE declaration equals a "regular" declaration
and its constituent parts have the same meaning.

The predefined procedures popul, popul_announce, popul_entry, popul_service and
popul_exit of each component type are automatically provided and may not be listed in
a PROVIDE declaration.

Example:

PROVIDE
SERVICE compute (ctime : REAL);

disk_access (disk_no : INTEGER) RESULT INTEGER;
END PROVIDE;

- 96 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .1 .3 . COLLECT Block

The set of collected streams (cf. Section 5.1) forms the connection between the
model and its evaluation.

The COLLECT block currently is only present in HI-SLANG for reasons of upward
compatibility. Since streams declared in component or model types are collected
implicitely, the COLLECT block is no longer needed for that purpose.

Only streams declared in services still have to be collected in the surrounding
component type, but such stream declarations should be avoided, i.e., the stream
declaration should be moved to that component type. This has the additional advantage,
that such streams can be updated from different services.

If a user-defined stream declared in a service is required, then the stream must be made
visible to the environment. A corresponding specification is given in the COLLECT
block of the surrounding component type.

User-defined streams and correspondingly COLLECT blocks may only occur in
models to be analyzed by the simulative solver.

collect_block :=
COLLECT

{ [service-name .] stream-name [AS external_stream-name] ; } [...]
END COLLECT ;

The stream stream-name must be declared in a service named service-name, or in the
component type. The stream can be accessed in a model evaluation by its
external_stream-name. The external_stream-name may be any unique identifier within
the component type. If the optional AS part is omitted, the stream can only be accessed
by service-name. stream-name in the experiment description.

In general, streams declared in services and not listed in a COLLECT block cannot be
accessed during model evaluation. However, streams declared in component and
model types are all implicitely collected. This especially holds for the standard streams,
which can always be accessed (if they make sense for that component).

Example:

COLLECT
read.access AS readdisk;
write.access AS writedisk;
write.fault;

END COLLECT;

4. Model Description - 97 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .1 .4 . REFER Part

A load is referred to a machine in the REFER part of a component type declaration.
Services and procedures used by services declared in the component type (the load) are
referred to services and procedures provided by subcomponents (the machine).

refer_part ::=
REFER procedure_or_service-name [, ...] TO component-name [, ...]
EQUATING

{use-identifier WITH provide-identifier [OF service-name] ; } [...]
END REFER ;

The procedure_or_service-name is the name of a procedure or service (declared locally
in the component type) with a USE declaration, i.e., the procedure or service uses
some other services or procedures. component-name is the name of a subcomponent or
of a subcomponent array declared in the component type and providing services or
procedures via a PROVIDE declaration.

The use-identifier denotes an external reference made by a service or procedure. It con-
sists of a service or procedure name, a separating dot (.) and the name of a service,
service array, procedure or procedure array used by the service or procedure preceding
the dot. This service or procedure name must be a member of the list of names
following the REFER keyword. The name following the dot must be listed in the USE
declaration part of the service or procedure preceding the dot. The use-identifiers are
made up of service names, service array names, procedure names and procedure array
names, i.e., index ranges, parameter and result specifications are omitted.

The provide-identifier denotes a service or procedure provided by a subcomponent. It
consists of a subcomponent name or a subcomponent array name, a separating dot (.)
and the name of a provided service or procedure. The subcomponent (array) name must
be a member of the list of names following the TO keyword. The provided service or
procedure name must either be listed in the PROVIDE declaration part of the subcom-
ponent or be one of the predefined procedures popul, popul_announce, popul_entry,
popul_service or popul_exit. Component arrays are specified by their name, i.e.,
parameters, array dimensions or index ranges are omitted.

Used procedures can be bound to the predefined procedures popul, popul_announce,
popul_entry, popul_service or popul_exit. In this case an optional OF service-name
clause indicates a service of which a procedure call returns population numbers. The
service-name must be a name of a service declared in the subcomponent specified by
the provide-identifier. It restricts the function value to the population of that service.

Every service or procedure listed in a USE declaration part of a service has to be bound
to some service or procedure PROVIDEd by a subcomponent in the REFER part of the
surrounding component type. Services must be bound to services and procedures must
be bound to procedures, of course.

Corresponding USE and PROVIDE declarations must have corresponding formal
parameters and result specifications. The types INTEGER and REAL are not
compatible here. Even if a parameter of a provided service has a default value, it must
be given (with no default or a possibly different default value) in the corresponding
USE declaration. Service (procedure) arrays can only be referred to component arrays.

The load, represented by services, is REFERred to the machine, represented by
components, at the service level. This implies that every process of a given type USEs
the same procedures and services. The binding of USEd to PROVIDEd services, for

- 98 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

example, determines the service and component to which a process descends when a
used service is called. Similarly, the call of a USEd procedure results in the call of the
corresponding PROVIDEd procedure.

Different services can effectively use the same service or procedure provided by a
component. This is the case whenever a provide-identifier occurs more than once in a
REFER part. On the other hand, the same use-identifier may occur only once in a
REFER part. Similarly, different procedures can effectively call the same procedure
provided by a component, but a procedure may not call a service.

Example:

REFER read, write, supervisor TO disk_controller
EQUATING

read.diskaccess WITH^ disk_controller.access;
write.diskaccess WITH disk_controller.access;
supervisor.diskdemands WITH disk_controller.popul OF access;

END REFER;

4. Model Description - 99 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.2.2. Component Control

Every component is a highly autonomous dynamic system, its task being the organi-
zation of the progress of interacting processes. We can distinguish between two kinds
of processes running in a component: A local process is generated inside the
component by a process declaration or by CREATE/SUBMIT statements. It is an
instance of a service declared in the component type. On the other hand, processes local
to some higher layer component descend into a component when they call a service
provided by that component.

With respect to its progress in a component, a process can be in one out of three pos-
sible states: progress can be denied; progress can be granted, or, thirdly, a process can
have finished its activities in the component.

4 .2 .2 .1 Component Areas

The component reflects the process status by being subdivided into three component
areas (entry area, service area and exit area), each area containing processes of the cor-
responding state. Yet another queue (announce queue) maintains processes waiting to
enter the entry area of a component:

- The entry area of a component contains processes whose request of a service pro-
vided by the component has been accepted, but whose activities have not yet com-
menced or have been suspended.

- The service area contains processes currently in progress.

- The exit area contains processes whose request of a service provided by a compo-
nent has been fulfilled, but they have not yet been offered by the component or they
have not yet been accepted by the component of their next service call (e.g., because
of capacity restraints).

- Every component maintains an announce queue containing references to
processes requesting a service provided by the component but their request has not
yet been accepted by the component or they are currently not offered by the
component of the previous service call.

A diagram might be helpful:

announce queue

service area exit areaentry area

offeraccept schedule automatic
transfer

dispatch

progress denied progress granted activities finished

- 100 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .2 .2 . Component Control Procedures

Four control procedures are responsible for the assignment of processes to areas, i.e.,
they control the acceptance and offering behaviour of the areas: accept, schedule, dis-
patch and offer. A user can write his own HI-SLANG control procedures, choose from
predefined standard procedures, or fall back to the defaults. All predefined standard
procedures are members of the HIT standard mobase, and are written directly in
Standard Simula to increase efficiency.

In more detail:

- accept: An accept procedure controls the transfer of processes from the announce
queue to the entry area of a component.

- schedule: A schedule procedure controls the transfer of processes between entry
and service area. Processes in the entry area can be transferred to the service area
(progress is granted) and vice versa (further progress is denied).

In case of a preemption (progress denied), a process remembers its remaining ser-
vice demand so that upon a rescheduling into the service area the process resumes its
activities where they were interrupted. Processes running in components not of type
server can be preempted only between spend calls or service calls listed in the USE
declaration and provided by some lower layer component. As an exception to the
rule, spend calls can be interrupted by another spend call, and then the process is
preempted immediately.

- offer: A process is automatically transferred from the service area to the exit area of
a component when the service execution in the component is finished. Furthermore,
the process may progress in the higher layer up to the next call of a service.
Meanwhile, the process remains in the exit area waiting to be accepted by the next
component (providing the next requested service), but only those processes selected
by an offer procedure are actually allowed to leave the component. Processes offered
but not accepted are blocked. If the service call is the last in the higher layer, the
process leaves the exit area with the transfer from service to exit area in the higher
layer.

- dispatch: Processes in the service area are further controlled by a dispatch proce-
dure. The procedure assigns service speeds to processes.

Service speeds determine the progress of calls to the predefined service spend, by
which also the service request of servers is implemented. Their influence is limited
to the current model layer, i.e., spend calls of a process in some lower layer
subcomponent are not influenced. An example: A service speed of 2.0 implies that
from now on a service request of 6.0 in a spend call has an effective duration of just
3.0 model time units.

Examples:

spend call service speed during the
spend call

effective model time spent
by the spend call

spend (2.5) 0.25 10.000
spend (2.5) 0.50 5.000
spend (2.5) 1.00 2.500
spend (2.5) 2.00 1.250
spend (2.5) 4.00 0.625

4. Model Description - 101 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

It has already been mentioned that service speeds as determined by the dispatch proce-
dure are only relevant for processes in the service area calling a spend. A component's
service speeds are immaterial for processes in the component's service area calling a
service of a lower layer component, since they are under control of that component at
that time.

Every component type has formal parameters accept, schedule, dispatch and offer
which can have corresponding control procedures as actual parameters. Control proce-
dures are always the textually last formal parameters in a component type declaration
(but they are not explicitly listed). Actual parameters can be given as positional
parameters (in the order accept, schedule, dispatch, offer) or as keyword parameters.
Default values are:

accept ALWAYS
schedule IMMEDIATE
dispatch EQUAL (1.0)
offer ALL

Some of the predefined component types (see Appendix F.1.) have a different schedule
default if IMMEDIATE is not meaningful for that type.

4 .2 .2 .3 . The State of a Component

The implicit state of a component (versus its explicit state which is given by the values
of its parameters) is given by the vector of current component area population numbers,
i.e., number of processes in a component area. Population numbers can be retrieved by
predefined parameterless INTEGER procedures, which every component automatically
provides.

- popul_announce retrieves the number of process references in the
announce queue

- popul_entry retrieves the number of processes in the entry area

- popul_service retrieves the number of processes in the service area

- popul_exit retrieves the number of processes in the exit area

- popul retrieves the total number of processes
(=popul_entry + popul_service + popul_exit)

A population change only occurs after the execution of a control procedure because a
process is transferred automatically to another area only after having been selected by a
control procedure. Thus, during the execution of a control procedure population num-
bers will remain constant.

If a state retrieval procedures is called and subcomponent populations are to be
retrieved (populations of components of the next-lower level), a USE declaration in the
service and a binding to the subcomponent in the REFER part of an surrounding
component type is required (see next example).

The OF operator provides a mean to retrieve population numbers of a specific service
only. It takes a popul procedure and a service-name as arguments and yields a new
restricted popul procedure:

- 102 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

popul_announce
popul_entry

OF: popul_service x service-name |→ INTEGER procedure
popul_exit
popul

The OF operator can be used directly in statement parts of services to retrieve
population numbers of a specific service of the surrounding component type. The OF
operator has the highest priority of all operators. It is not allowed to be used in models
which are to be analyzed by an analytical solver. It is also not allowed to be used inside
a dispatch procedure. The OF operator can also occur in REFER parts in order to
retrieve subcomponent population numbers of a specific provided service only.

Example:

TYPE ct COMPONENT (...) ;

TYPE s SERVICE (...) ;
USE

SERVICE compute (...);
PROCEDURE filling RESULT INTEGER;

END USE;

BEGIN
...
IF filling < 5 AND POPUL OF s < 10 THEN compute (...);
END IF;
...

END TYPE s;

COMPONENT cpu : cpu_type; {provides add, mult, ...}

...
REFER s, ... TO cpu, ... EQUATING

s.compute WITH cpu.add;
s.filling WITH cpu.popul OF add;
...

END REFER;
...

END TYPE ct;

4. Model Description - 103 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .2 .4 . The State of a Process

The implicit state of a process (versus its explicit state which is given by the
values of its parameters) can be retrieved by the following parameterless procedures:

- arrival_announce returns the arrival time at the announce queue

- arrival_entry returns the arrival time at the entry area (this value is also
updated when a process is preempted, i.e., transferred
from service area to entry area)

- arrival_service returns the arrival time at the service area (this value is
also updated when a process resumes its activities after a
preemption)

- arrival_exit returns the arrival time at the exit area

- arrival returns the arrival time at the component, i.e., the time of
the first arrival at the entry area.

These REAL procedures return "-1" if a process has not yet been in the area implicitly
given by the procedure name or has left the component completely. There are two
further parameterless procedures predefined for all services:

- preempted returns a BOOLEAN and is TRUE if the process has been
preempted (transferred from service area to entry area by
a rescheduling) at least once. If the process has left the
component this procedure returns FALSE.

- speed returns a REAL value which is the service speed most re-
cently assigned to the process by a SETSPEED statement
in a dispatch procedure. Returns "-1" if this has not yet
happened or the process has left the component
completely.

If these procedures are applied to named processes, they are related to the component
the process is local in. Otherwise, they are related to the component they are called in.

The (explicit or implicit) state of a process can be accessed in the body of a correspond-
ing service and in WHEN parts of an INSPECT statement. Of course, the WHEN part
must specify the service of the process whenever service parameter values are accessed.
The implicit state retrieval procedures listed above may also be called in INSPECT
statements without WHEN parts and in ELSE parts of INSPECT statements because
every process has the same implicit state retrieval procedures. The state of a process can
also be accessed via dot notation or WITH statements and process names.

- 104 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.2.3. HI-SLANG Control Procedures

The user can choose component control procedures from a set of predefined standard
control procedures or, in a simulation model, write his own component control proce-
dures in SIMULA (which is no longer supported, but still possible to be upward
compatible) or, more conveniently, in HI-SLANG. In the latter case, one or more
control procedure declarations are given in a CONTROL block of a component type
declaration.

control_declaration_part ::=
CONTROL

control_procedure_declaration [...]
END CONTROL ;

control_procedure_declaration ::=
PROCEDURE control_procedure-name ;

[common_declaration [...]]
[BEGIN sequence_of_statements]
END PROCEDURE [control_procedure-name] ;

The control_procedure-name must be offer, accept, schedule or dispatch. As indicated
by the syntactical description, control procedures may not have formal parameters.

HI-SLANG component control procedures may contain any declaration or statement of
the programming kernel of HI-SLANG. Additionally, several special purpose state-
ments are available, e.g., the INSPECT statement (see the next section). Control proce-
dures may contain local procedure declarations. Local or global procedures can be cal-
led in the sequence_of_statements. Global procedures are declared outside a
CONTROL block and must not contain INSPECT statements. The OF operator can be
used to retrieve the state of the component.

Example:

CONTROL
PROCEDURE schedule; ... END PROCEDURE schedule;
PROCEDURE offer; ... END PROCEDURE offer;

END CONTROL;

Control procedures cannot be called within HI-SLANG source code, as indicated by the
CONTROL block. Rather, they are called by the HIT simulation system itself. They are
called whenever certain events occur in a component. The following events could
activate the following control procedures:

4. Model Description - 105 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

 Control Procedure activated by the following events

Accept • Announcement of a process
or
• the procedure Offer is called in the preceding component (of

an announced process)
or
• a service is finished
or
• a process in a higher layer component is resumed

Schedule • Transition of accepted service into entry area
or
• Transition into the exit area

Offer • Transitions into or from the exit area

Dispatch • Transitions between entry area and service area
or
• transitions into exit area

The (simple) order of calls is:

offer → accept → schedule → dispatch

Note that only the activated control procedures are called. One control procedure may
cause the activation of another. This leads to a repetition of the sequence until no control
procedure is activated again.

A control procedures is also called when a time slice, as determined by its TIMESLICE
statements, is exhausted.

HI-SLANG control procedures override the respective default control procedures
(ALWAYS, IMMEDIATE, EQUAL (1.0), ALL). They in turn can be overridden by
predefined standard control procedures whenever standard control procedures are given
as actual parameters in a corresponding component declaration.

- 106 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .3 .1 . The Spend Server

Note that dispatch procedures affect only those processes in a service area of a compo-
nent which are currently performing a spend call (see Section 4.1.5.2). Such spend
calls in services are bound to the service request provided by a so-called Spend Server.
There is a Spend Server in every component containing services with spend calls.

The dispatch procedure of a component is used only by the Spend Server in order to
determine service speeds for processes calling spend in the component. Thus, it is not
used by the component itself. Consequently, INSPECT statements, component state
retrieval procedures such as popul, etc. in a HI-SLANG dispatch procedure refer to the
Spend Server and not to the component itself.

Please note that the OF operator is not allowed to be used inside a dispatch procedure.

Nevertheless, the component state can be retrieved in a dispatch procedure by calling
another procedure which is declared locally in the component.

Example:

TYPE ct COMPONENT;
...
CONTROL

PROCEDURE dispatch;
BEGIN

IF filling <10 THEN
INSPECT SERVICE_AREA
LOOP

SETSPEED 1/filling;
END LOOP;

END IF;
END PROCEDURE dispatch;

END CONTROL;
...

PROCEDURE filling RESULT INTEGER;
BEGIN

RESULT popul;
END PROCEDURE filling;
...

END TYPE ct;

The Spend Server uses a schedule procedure which allows the preemption of spend
calls. The call is put into the entry area if the calling process is in the entry area, it is put
into the service area if the calling process is in the service area. Note that this schedule
procedure is only executed if there is a new spend call at the component or a spend at
the component has finished. Preempted spend calls have no progress concerning their
service request.

4. Model Description - 107 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .3 .2 . INSPECT Statement

Component areas can be investigated in INSPECT statements. Processes in corre-
sponding component areas can be manipulated in the statement part of the INSPECT
statement. INSPECT statements may only occur in component control procedures or in
services.

compound_statement ::= ...
| inspect_statement

inspect_statement ::=
INSPECT area [WHILE boolean_expression]
LOOP [REVERSE]

when_or_sequence
END LOOP;

when_or_sequence ::=
sequence_of_statements

| {WHEN service-identifier : sequence_of_statements } [...]
[ELSE : sequence_of_statements]

area ::=
ANNOUNCE_QUEUE

| ENTRY_AREA
| SERVICE_AREA
| EXIT_AREA

In an INSPECT statement without WHEN/ELSE, the sequence_of_statements is exe-
cuted once for every process in the specified area. If the area is empty, the
sequence_of_statements is skipped. If not, the sequence_of_statements is executed for
every process in the area in the order given by the time of arrival at the area. LOOP
REVERSE reverses the order, i.e., the latest arrivals are treated first.

The optional WHILE part can be used to abort the execution of the process inspection
loop. The controlling expression must be of type BOOLEAN.

The boolean_expression is reevaluated each time before the execution of the statements
in when_or_sequence. If it returns TRUE, the when_or_sequence is executed for the
current process. If it returns FALSE, the INSPECT loop is aborted. The loop is
skipped if the boolean_expression returns FALSE at its first evaluation.

No distinction is made between processes of different types in an INSPECT statement
without WHEN/ELSE. Therefore, only the implicit process state, e.g., time of arrival at
the area, can be accessed in the statement part.

In order to access other process state variables, e.g., process parameters, the INSPECT
statement has to be used in conjunction with WHEN. The identifier following WHEN
must be the name of a service declared in the enclosing component type. In the
corresponding statement part the state variables of a process of this type currently under
investigation in the INSPECT loop can be accessed without having to use the dot
notation. Different WHEN parts can be used to distinguish between different services.
The optional ELSE part is executed for processes of a type not mentioned in the WHEN

- 108 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

part. Therefore, only the implicit process state, e.g., time of arrival at the area, can be
accessed in the ELSE part.

Under the usual rules governing the scope of identifiers, all kinds of objects and types
can be referenced in statement parts of INSPECT statements. One exception is that in a
WHEN part parameter names of the service service-identifier can hide global identifiers.
Of course, objects declared locally in the INSPECT statement can also be accessed.
Scope rules must be observed. The call of services inside the statement part of the
INSPECT statement is not allowed because time consumption can possibly disturb the
order of the traversed area.

Only those processes in an announce queue which are actually allowed to be accepted
by a component are inspected in an INSPECT statement in an accept procedure. A
process is allowed to be accepted by a component if it is offered (as determined by the
offer procedure) by the component whose exit area the process is in (if any) and if it is
in the service area of the next higher layer component.

Examples:

INSPECT ANNOUNCE_QUEUE WHILE nr < 10 LOOP REVERSE
SELECT;
nr := nr + 1;

END LOOP;

{nr is a local variable of this accept procedure }
{SELECT statements are explained below }

INSPECT ENTRY_AREA LOOP
WHEN allocate : IF sched + number <= tokens THEN

SELECT;
sched := sched + number;
END IF;

WHEN release : SELECT;
ELSE : WRITELN "unknown service";

END LOOP;

{ sched is a local variable of this schedule procedure}
{ tokens is a variable of the enclosing component}
{ number is a parameter of service allocate}

4. Model Description - 109 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4 .2 .3 .3 . SELECT, SETSPEED and TIMESLICE

SELECT, SETSPEED and TIMESLICE statements may only be used in component
control procedures.

simple statement ::= ...
| control_procedure_statement

control_procedure_statement ::=
SELECT ;

| SETSPEED simple_real_expression ;
| TIMESLICE simple_real_expression ;

SELECT statements may only occur at very specific locations within a control pro-
cedure. They

- may occur within an INSPECT statement of an accept procedure. The inspected
area must be the announce queue.

- may occur within an INSPECT statement of a schedule procedure. The inspected
area must be the entry area or the service area.

- may occur within an INSPECT statement of an offer procedure. The inspected area
must be the exit area.

- may not be used in dispatch procedures.

A currently INSPECTed process is marked for further treatment if it is SELECTed in a
control procedure. The type of control procedure determines what is to be done with the
selected process:

- accept: After the accept procedure has exited, the announce queue is searched
for selected processes. Every selected and offered process is transferred
from the announce queue to the entry area, i.e., the selected processes
are accepted by the component.

- schedule: After the schedule procedure has exited, the entry area is searched for
selected processes. Every selected process is transferred from the entry
area to the service area, i.e., the process is granted progress in its
service request. Likewise, the service area is searched for selected
processes. Every selected process is transferred from the service area to
the entry area, i.e., the process is preempted. Processes resume their
activities at the point of preemption when they are rescheduled to the
service area ("preemptive-resume")

- offer: After the offer procedure has exited, the exit area is searched for selected
processes. Every selected process is offered by the component, i.e.,
may be accepted by some other component.

- 110 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Process transfers, changes of component states (e.g., changes in population counts in
component areas), process states, and other necessary actions are executed
automatically after a control procedure has exited.

SETSPEED statements may only occur in INSPECT statements within a dispatch pro-
cedure. The inspected area must be the service area. SETSPEED determines the service
speeds of spend calls of the process currently under investigation. The expression
denotes the new service speed assigned to the process and must result in an INTEGER
or REAL greater than or equal to zero.

Time slicing disciplines can be modelled by TIMESLICE statements. The expression
denotes a time slice (duration) and is a positive REAL or INTEGER. The control
procedure containing the TIMESLICE statement is reinvoked automatically each time
after the specified time slice is exhausted. If a TIMESLICE statement is executed more
than once for the same control procedure the time sequence to reinvoke this procedure is
redefined, i.e., the old sequence is removed and the sequence defined by the last
executed TIMESLICE statement is valid from now on.

TIMESLICE statements should not be used within INSPECT statements.

Example:

{HI-SLANG declaration of default component control procedures, see also Section 4.2.2.2.}

CONTROL

PROCEDURE accept; {ACCEPT ALWAYS}
BEGIN

INSPECT ANNOUNCE_QUEUE LOOP
SELECT;

END LOOP;
END PROCEDURE accept;

PROCEDURE schedule; {SCHEDULE IMMEDIATE}
BEGIN

INSPECT ENTRY_AREA LOOP
SELECT;

END LOOP;
END PROCEDURE schedule;

PROCEDURE dispatch; {DISPATCH EQUAL (1.0)}
BEGIN

INSPECT SERVICE_AREA LOOP
SETSPEED 1.0;

END LOOP;
END PROCEDURE dispatch;

PROCEDURE offer; {OFFER ALL}
BEGIN

INSPECT EXIT_AREA LOOP
SELECT;

END LOOP;
END PROCEDURE offer;

END CONTROL;

4. Model Description - 111 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

{Implementation of a last-come-first-scheduled preemptive resume discipline in a schedule
procedure}

PROCEDURE schedule;
VARIABLE found : BOOLEAN DEFAULT FALSE;

BEGIN
INSPECT ENTRY_AREA WHILE NOT found LOOP REVERSE

SELECT;
found := TRUE;

END LOOP;

IF found THEN
INSPECT SERVICE_AREA LOOP

SELECT;
END LOOP;

END IF;
END PROCEDURE schedule;

- 112 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.2.4. Component Declarations

Component objects are either

- instances of component types (useful if more than one component of the same
kind exist)

or
- directly declared components (useful if a component of this kind is unique).

Component object declarations may occur in declaration parts of model or component
types, in the declaration part of an EXPERIMENT block (which is not recommeded to
clearly separate model and experiment descriptions), and anywhere textually preceding
the EXPERIMENT block.

component_declaration ::=
COMPONENT
{ component-name [, ...] : [ARRAY [array_bounds] OF]

componenttype-name [actual_parameters] ; } [...]

| COMPONENT component-name [, ...] [actual_parameters] ;
[provide_declaration_part]
[collect_block]
[control_declaration_part]
[declaration [...]]
[refer_part]

[BEGIN sequence_of_statements]
END COMPONENT [component-name] ;

A direct component object declaration starts with the component name and (optional)
actual_parameters of predefined formal parameters, e.g. for some component control
procedures. Normally, this is followed by the declaration of those services and
procedures provided for external use by the component (provide_declaration_part).
Next a collect_block may follow for upward compatibility reasons, but is no more
necessary, since all user-defined streams declared within declarations are collected
automatically. An optional control_declaration_part describes how the execution of
provided services is controlled by component control procedures. Local declarations, a
REFER part and a statement part may follow. Component declarations are bracketed by
COMPONENT … BEGIN - END COMPONENT pairs with an optional name
repetition.

A lot of characteristics of directly declared component objects are analoguous to the
characteristics of the component types as described in Chapter 4.2.1 . For more
information a look on this and the following chapters is recommendable.

If a component type is instantiated one or more components or component arrays are
generated by a component declaration. In case of a direct component object declaration
no arrays are allowed. The component-name is a unique identifier which can be chosen
freely under the rules governing the validity and scope of identifiers.

4. Model Description - 113 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Component arrays must be one-dimensional and the bounds on the index range are
evaluated at compile time, i.e., expressions over constants and constant values can be
used as array bounds. The rules for array bound specifications are just the same as for
arrays of simple types. Component arrays do not have any array attributes.

The componenttype-name must be a known component type name according to the
scope rules. It may be an aggregated component type as well, but in this case no
schedule or dispatch control procedures can be specified. Some actual_parameters
corresponding to formal parameters of the component type and component control
procedures can be supplied here as well. The statement part of a component type body
is executed when a component of that type is generated.

Examples:

COMPONENT
terminals : server;
peripheral_processor : server (LET schedule := fcfs);
main_processor : mp_type (slicetime, scheduletime);

COMPONENT
multiprocessor : ARRAY [1..10] OF processorelement;

COMPONENT special_device (let schedule := fcfs);
…
BEGIN
…
END COMPONENT special_device;

- 114 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.3. Standard Component Types

The HIT standard mobase contains several component and service declarations which
are intended to be the basic building blocks from which more complex objects can be
constructed. This section gives a brief description of their functionality, interfaces and
parameters. A detailed description is given in Appendix F.

4.3.1. Server

The component type server provides a basic service request having a single REAL pa-
rameter amount. amount denotes the service amount requested by a caller from the
server. Thus, a server and its provided service request can be used to model time con-
sumption. HI-SLANG notation for the component type server is:

TYPE server COMPONENT;
PROVIDE

SERVICE request (amount : REAL);
END PROVIDE;
...

END TYPE server;

4.3.2. Counter

The component type counter is, in a way, a counterpart of the component type server,
in that the first is used to model space consumption whereas the latter is used to model
time consumption. Important application areas for counters are, for example, the
modelling of semaphores, tokenpools, and synchronization mechanisms. Note that for
some of these tasks more efficient (in terms of simulation run time) standard component
types have been developed (see below).

A component of type counter provides the alteration of its internal state vector as a
service called change. The service change has formal parameters prio, denoting a prior-
ity of service calls in progress, and amount. The amount is used to compute the new
state vector by state vector := state vector + amount upon service call completion. Zero
is the highest service call priority.

TYPE counter COMPONENT (min, max, init : ARRAY OF INTEGER);
PROVIDE
SERVICE change (amount : ARRAY OF INTEGER;

prio : INTEGER DEFAULT 32767);
END PROVIDE;
...

END TYPE counter;

min, max and init denote lower bound, upper bound and initialization vectors for the
internal state vector. Blocking can occur if a change operation would exceed some
lower or upper bound. Predefined control procedures are available to resolve arising
conflicts between, for example, competing change operations.

4. Model Description - 115 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.3.3. Semaphor

If semaphores are to be modelled, it is more efficient (in terms of simulation run time)
to use a component of type semaphor than to use a counter. A semaphor component
(note the missing `e` at the end) provides parameterless services p and v which operate
on the internal state variable initialized by the formal parameter sem_init. DEFAULT
value of sem_init is "1", thus a binary semaphore is the default.

TYPE semaphor COMPONENT (sem_init : INTEGER DEFAULT 1);
PROVIDE

SERVICE p; v;
END PROVIDE;
...

END TYPE semaphor;

4.3.4. Tokenpool

Another variant to model space consumption is the component type tokenpool. Com-
ponents of this type can only be declared in models to be analyzed by simulation.

Token pools (tokens plus operations) are a modelling paradigm which is also known
from RESQ (see /SaMN84/): A token pool consists of a certain number of objects
(tokens) and processes can access tokens via predefined functions (services). Tokens
can be allocated for exclusive usage by a process and released again. New tokens can
be produced and existing tokens can be destroyed. Tokens cannot be be accessed indi-
vidually, i.e., there are just numbers of tokens.

Accordingly, services provided by the component type tokenpool have an INTEGER
parameter number denoting the number of tokens to be allocated, released, produced, or
destroyed. The parameter no_of_tokens gives the number of tokens initially available.

TYPE tokenpool COMPONENT (no_of_tokens : INTEGER);
PROVIDE

SERVICE allocate (number : INTEGER);
release (number : INTEGER);
destroy (number : INTEGER);
produce (number : INTEGER);

END PROVIDE;
...

END TYPE tokenpool;

- 116 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.3.5. Synchsend

The parameterless component type synchsend is a facility to model communication
(message exchange) between processes. A single component of this type can be used to
implement unidirectional communication between two processes, i.e., one process acts
as a sender, another as a receiver. Bidirectional communication and communication
between more than two processes can be modelled by declaring several synchsend com-
ponents or component arrays.

The message exchange between sender and receiver requires a synchronization of the
two communication participants: If send is called before receive, the sending process
has to wait for a receive call of another process, and vice versa.

The component type synchsend provides the services send and receive. A sending proc-
ess calls send whenever it intends to send a message, the message text being the actual
parameter supplied to send (formal parameter what). A receiver calls receive which
returns the message text as a RESULT.

Text processing capabilities implemented in HI-SLANG (see Section 3.6) facilitate an
easy construction of rather complex messages.

TYPE synchsend COMPONENT;
PROVIDE

SERVICE send (what : TEXT);
receive RESULT TEXT;

END PROVIDE;
...

END TYPE synchsend;

4.3.6. Nowaitsend

Similar to synchsend components, components of type nowaitsend facilitate process
communication via message exchange.

The main difference between these component types is that nowaitsend components can
store messages in a ring buffer implemented by a TEXT array. The maximum number
of messages is a parameter of nowaitsend components (no_of_buffers DEFAULT 1).

The process acting as a sender calls the provided service send with a message text as
actual parameter. The process does not have to wait for a receiver if a buffer place is
available ("no-wait-send"). If the buffer is full, the sender has to wait until a buffer
place becomes free. The process acting as a receiver calls the provided service receive
which returns the oldest message of the ring buffer as a RESULT and frees its buffer
place. The receiver has to wait for a send if the buffer is empty.

TYPE nowaitsend COMPONENT (no_of_buffers : INTEGER DEFAULT 1);
PROVIDE

SERVICE send (what : TEXT);
receive RESULT TEXT;

END PROVIDE;
...

END TYPE nowaitsend;

4. Model Description - 117 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.3.7. Ftserver

Components of type ftserver implement fault tolerant servers with a fixed number of
processors ≥ 1, each processor being subject to failures described by a Poisson
process. The failure rate of a single processor is given by failure_rate in its active state
and by dormancy*failure_rate in its dormant state, 0 ≤ dormancy ≤ 1. dormancy is also
called dormancy factor. A defective processor is repaired with rate repair_rate if one of
the repair units is available.

The service call to be reactivated after a repair is selected randomly, each with the same
probability. A maximum degradation 0 ≤ degmax ≤ processors gives the maximum
number of processors simultaneously in the failed state.

An ftserver component provides a service request with service demand amount and a
priority prio as formal parameters. Zero is the highest priority. The default schedule
strategy is PRIONP, which equals RANDOM when parameter prio of request calls is
not set or all priorities are equal.

TYPE ftserver COMPONENT
(processors : INTEGER;
 degmax : INTEGER DEFAULT 1;
 repair_units : INTEGER DEFAULT 1;
 failure_rate : REAL;
 repair_rate : REAL;
 dormancy : REAL DEFAULT 1.0);

PROVIDE
SERVICE request (amount : REAL);

 prio : INTEGER DEFAULT 32767);
END PROVIDE;
...

END TYPE ftserver;

4.3.8. Prioserver

Components of type prioserver can be used to model servers with priority scheduling
disciplines. The default schedule strategy is PRIONP. A prioserver component pro-
vides a service request with formal parameters amount denoting the service amount re-
quested from the server and prio denoting the priority of service calls in progress. Zero
is the highest service call priority.

TYPE prioserver COMPONENT;
PROVIDE
SERVICE request (amount : REAL;

 prio : INTEGER DEFAULT 32767);
END PROVIDE;
...

END TYPE prioserver;

4.3.9. Observer

For the component type observer, which is useful to produce intermediate result
outputs, see Appendix F.1.9.

- 118 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.4. Model Types

Model type declarations should textually precede an EXPERIMENT block. They may
as well be given in the declaration part of an EXPERIMENT block.

modeltype_declaration ::=
TYPE modeltype-name MODEL [formal_parameters];

[collect_block]
[declaration [...]]
[refer_part]

[BEGIN sequence_of_statements]
END TYPE [modeltype-name] ;

The model type constitutes the highest layer in the description of a model which is to be
analyzed. Model types are syntactically and semantically similar to component types,
with the following exceptions:

- The COMPONENT key word is substituted by MODEL.

- Models are self-contained, i.e., they do not PROVIDE procedures or services. Thus,
PROVIDE blocks are not valid in model type declarations.

- Models, as instances of model types, are analyzed in an experiment. Thus, models
can only be declared in an EVALUATE statement.

- Every model type by standard has the parameter seed, the starting value of the gener-
ators of pseudo-random numbers. Seed is of type INTEGER and has a default value
of 13. If another starting value is desired, the parameter has to be specified when
creating a model within the EVALUATE statements (the theory recommends always
to use odd positive integers as starting values for random-number generators used
here).

In principle, seed is the last formal parameter of a model type.

Examples:

- In contrast to a component type the default values of the component control proce-
dures cannot be changed, neither by giving actual model parameters nor by a
CONTROL procedure block.

- For arrival procedures within services of a model (see Section 4.2.2.4.) the
following is valid: arrival_announce = arrival_entry and arrival_exit = -1.

EVALUATE
 MODEL m1 : mt (a, b, 17);

 user-defined se ed
 parameters

EVALUATE
 MODEL m2 : mt (a , b, LET seed := 17);

4. Model Description - 119 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

TYPE computing_center MODEL (number_of_terminals : INTEGER;
mean_think, mean_io, mean_compute : REAL);

STREAM cycletime : EVENT;

TYPE dialog SERVICE (thinktime, io_time, computetime : REAL);
USE

SERVICE compute (t : REAL);
think (t : REAL);
in_out (t : REAL);

END USE;

VARIABLE starttime : REAL;

BEGIN
LOOP

think (negexp (1.0/thinktime));
starttime := time;
in_out (negexp (1.0/io_time));
compute (negexp (1.0/computetime));
in_out (negexp (1.0/io_time));
UPDATE cycletime BY time - starttime;

END LOOP;
END TYPE dialog;

COMPONENT terminals : server;
channel : server (LET schedule := fcfs);
cpu : server (LET schedule := fcfs);

REFER dialog TO terminals, channel, cpu EQUATING
dialog.compute WITH cpu.request
dialog.think WITH terminals.request
dialog.in_out WITH channel.request

END REFER;

BEGIN
CREATE number_of_terminals PROCESS dialog (mean_think, mean_io, mean_compute);
END TYPE computing_center;

- 120 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

4.5. Model Structure and Virtual Declarations

A model consists of several hierarchically arranged layers, each layer referring a load (a
set of processes, services) to a machine (a set of components). At each layer, the
services and procedures used by the load are equated to services and procedures
provided by the machine in an explicit binding operation (the REFER part of a compo-
nent or model type declaration). Flat or single layer models are obtained, if the machine
of a model type consists of components of standard types only. If spend is used within
the model, there might even be no explicit component declaration at all.

Model types can be converted to component types by adding a PROVIDE declaration to
the model type declaration, i.e., providing some local services or procedures for
external usage. Components of this type can then be used as subcomponents in a higher
layer model or component type (bottom up design). On the other hand, a component
can be replaced by another possibly highly structured component providing the same
services and procedures (top-down design).

In this way multi-layered models can be constructed, the topmost layer being a
load/machine pair without provided services or procedures, the bottom layer made up of
standard components. Every machine in such a load/machine pair arrangement consists
of a set of components, thus we have a tree structure: A component containing a
machine is the root of a tree of lower layer components.

We do not have a pure tree structure if services (procedures) provided by a component
are used by services (procedures) of more than just one higher layer component. In this
case, there has to be a single "regular" declaration of the component and a virtual
ENCLOSE declaration of the component in every component using services
(procedures) provided by the component.

enclose_declaration ::=
ENCLOSE
{component-name [, ...] [: [ARRAY OF] componenttype-name] ; } [...]

The main point of virtual ENCLOSE declaration is that no component object is
generated. Rather, a reference is made to the (global) declaration of the component to be
enclosed.

Therefore, array bounds or actual parameters must not be specified in a virtual declara-
tion. There has to be exactly one "regular" component declaration for an enclosed com-
ponent. The component declaration must be given in a declaration block which encloses
every block with a virtual declaration of that component. Any number of virtual decla-
rations can be given. The component-name and, if used, the componenttype-name have
to be identical to that of the "regular" component declaration. Please note that a usage of
componenttype-name is recommended if component-name conflicts could exist.

Thus, a hierarchical model containing virtual component declarations normally has the
structure of a cycle free graph with a common root, the root being a model type, the
leaves being standard component objects. Arbitrary graph structures can be specified,
but only cycle-free graphs can be analyzed with HIT.

4. Model Description - 121 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

TYPE multiprocessor MODEL;

TYPE storage COMPONENT;
...

END TYPE storage;

TYPE processing_element COMPONENT;
...
ENCLOSE communication_store : storage;

END TYPE processing_element;

COMPONENT communication_store : storage;
processor : processing_element:

END TYPE multiprocessor;

This model consists of two components, communication_store and processor, the latter using the
same communication_store component as the multiprocessor model. This means that all services
declared in processing_element as well as all services in multiprocessor may use services of the
same communication_store:

: multiprocessor

processor
: processing_element

communication_store
: storage

5. Model Analysis - 123 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5. Model Analysis
This section deals with the elements of HI-SLANG needed to analyze complete models
or to pre-analyze submodels. For evaluating a (sub)model one has to:

- describe the model as a model type (Chapter 4.)

- declare and update streams, if user-defined streams are needed within a simulation
(Section 5.1.)

- specify the preparation and representation of results (Section 5.2.)

- choose a solver (simulative or a special analytical solver) for the EXPERIMENT
block. This decision is valid for all the evaluations in the EXPERIMENT block
(Section 5.10.).

A very important part of the EXPERIMENT block is the evaluation statement (Section
5.9.). There may be multiple EVALUATE and/or AGGREGATE statements in one
EXPERIMENT block. The AGGREGATE statement causes a component type to be
pre-analyzed rendering a component type comparable to a state-dependent server as its
result (Section 5.9.2.). The EVALUATE statement generates a model (-object) of the
given model type and causes its analysis.

In the simulative case the analysis is based on the (steady state) estimation of the param-
eters of autoregressive models (see /LiSS89/ or /Litz85/). This is done with online
update technique. So it is not necessary to save the "history" of a simulation. In the
analytical case several exact or approximate algorithms are used. In both cases the
results can be shown in tabular or simple graphical form.

The EVALUATE statement consists of a declaration and a body part. So-called evalua-
tion objects (Section 5.5.), which are defined in the declaration part according to the
hierarchical structure of the model, are attached to exactly one component of the model
(or the model itself) or to just one area of a component. Results are computed only for
the evaluation objects, so the analysis can be restricted to the relevant parts of the model.
Here one can specify which estimators for which time interval (start and end of the
measurement) are to be computed and how the results are to be presented.

Whereas the declaration of evaluation objects reflects the static structure of a model, the
declaration of load filtering hierarchies (Section 5.6.) reflects the dynamic structure of
the service calls. Load filtering hierarchies describe the sequence of service calls down to
the relevant model part. Thus it is possible to evaluate a component with respect to
different parts of the load.

The MEASURE statement (Section 5.7.) specifies

- which streams of an evaluation object should be analyzed,
- which part of the load should be considered,
- which estimators should be computed, and
- which (time) interval should be evaluated.

In a simulative evaluation there is a CONTROL statement to specify the end of the
simulation and a possible trace of the service calls (Section 5.8.). The lexical elements
for defining this stop condition are the same as those for defining evaluation attributes
(for the whole evaluation object or for a single MEASURE statement - Section 5.4.).
This is especially true for the start and stop conditions of the interval to be evaluated
(Section 5.3.). For an analytic-numerical evaluation there is a CONTROL statement, too,
for controlling the accuracy and switching on a trace of the evaluation.

- 124 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.1.Streams
In HIT, so-called streams form the most important interface between a model and its
evaluation.

From the analytical point of view a stream represents a kind of stochastic process
described by the model. From the statistical point of view a stream is a multivariable time
series, from the simulative point of view it is a list of pairs, generated during the
simulation. Each pair (ti, xi) consists of a time stamp (or a counter) ti and a numerical
value xi. The interpretation of xi (and therefore its evaluation) depends on the type of the
stream. There are three stream types, COUNT, EVENT and STATE, which are
described below.

For any solver a standard set of streams for analyzing the model is available (see Section
5.1.2.). By the simulative solver additionally user-defined streams can be measured. In
contrast to standard streams, which can simply be evaluated by MEASURE statements,
for user-defined streams the user additionally has to

- declare a stream of the appropriate type (Section 5.1.1.), and to
- update the stream, i.e., generate a new pair (UPDATE statement; Section 5.1.3.)

in his model description.

5.1.1. Declaration of Streams

Streams may be declared in the declaration part of component and model types. Such
streams are called user-defined streams in contrast to predefined standard streams,
which may not be declared. The declaration of user-defined streams is only allowed
when using simulation.

modelling_declaration ::= …
| stream_declaration

stream_declaration ::=
STREAM
{stream-name [, …] : stream_type ; } […]

stream_type ::=
COUNT

| EVENT
| STATE

The stream-name is the name of the stream (any identifier allowed by the rules for con-
structing names and according to the scope of validity for identifiers), by which this
stream can be accessed in the body of all services.

5. Model Analysis - 125 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

STREAMcreek : STATE;
s1, s2 : COUNT;

STREAM cycletime : EVENT;

Note:

Due to historical reasons streams may as well be declared in services, but for such
streams a COLLECT block has additionally to be provided in the surrounding
component type. Declaring a stream in a service will produce a warning.

5.1.1.1. Type EVENT

The type EVENT covers event streams for serially collecting values. The generated pairs
(either explicitly by an UPDATE statement or implicitly for standard streams) consist of
a number, which is interpreted as an observed value and a consecutive counter starting at
1.

The numerical value must be a REAL. The counter value is generated by the system. The
estimator MEAN for streams of type EVENT is defined by

x = 1
N

 ⋅ xi∑
i=1

N

where N is the number of pairs and xi (i = 1, …, N) the numerical value. Thus the esti-
mator MEAN is the mean of the observed values, if no start condition is specified. An
estimator for the standard deviation is computed with respect to this mean value, an
estimator for the confidence interval is computed with respect to this mean estimator.

If %parm=minmax is used within the control file (see Chapter 8), the minimum and
maximum values shown in the table file are the smallest and largest ones of the observed
values.

Example:

STREAM MY_TURNAROUNDTIME : EVENT;

5.1.1.2. Type STATE

The type STATE covers streams of states which may take different values but are
constant while no update occurs. Continuously changing states cannot be described. The
pairs generated (either explicitly by UPDATE statements or implicitly for standard
streams) consist of a numerical value and a time stamp. For user-defined streams the
numerical value is computed by evaluating the expression given in the UPDATE
statement. The time stamp is generated by the system.

The numerical value is interpreted as the difference to the previously observed state
value, i.e., the new state is computed by adding the value just calculated to the previous

- 126 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

state. The range of values of the numerical value is REAL. Streams of type STATE are
initialized by 0.0 at model time 0.0.

The estimator MEAN for streams of type STATE is defined by

x = 1
T

 ⋅ ti- ti-1 ⋅ xi-1∑
i = 1

n

 + T- tn ⋅ xn

where T is the observation time starting at t0=0 with x0=0, n is the number of state
changes until T, ti the time of a state change and xi the new state value (not the difference
between new and old value, which is given in the UPDATE statement). Thus the
estimator for the mean is the mean of the observed values, weighted by the length of the
intervals the value has been observed, if no special start condition is specified. An
estimator for the standard deviation is computed with respect to this mean value, an
estimator for the confidence interval is computed with respect to this mean estimator.

If %parm=minmax is used within the control file (see Chapter 8), the minimum and
maximum values shown in the table file are the lowest and highest values of the state
trajectory.

Example:

STREAMMY_POPULATION,
MY_OCCUPATION,
MY_UTILIZATION : STATE;

{

5.1.1.3. Type COUNT

Streams of type COUNT count events for estimating rates. The pairs generated (either
explicitly by UPDATE statements or implicitly for standard streams) always consist of
the value 1 and a time stamp. If the expression given in the UPDATE statement does not
yield 1, it is set to 1 by the system. If the counter value shall be increased by more than
1, the appropriate number of UPDATE statements have to be executed. The time stamp
is generated by the system. Streams of type COUNT are initialized by 0 at model time
0.0.

The estimator MEAN for streams of type COUNT is defined by

x = N
T

where T is the observation time (start t = 0) and N the number of the pairs generated.
Thus, the estimator for the mean is the number of events observed, divided by the length
of the observation interval, if no special start condition is specified. An estimator for the
standard deviation is computed with respect to the inter-event time. Confidence intervals
are given for mean rates.

If %parm=minmax is used within the control file (see Chapter 8), the minimum and
maximum values shown in the table file are the smallest and largest interevent time
observed.

5. Model Analysis - 127 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

STREAM MY_THROUGHPUT : COUNT;

5.1.2. Standard Streams

The standard streams THROUGHPUT, TURNAROUNDTIME, POPULATION,
UTILIZATION, OCCUPATION, SCHEDULE_RATE and PREEMPT_RATE are pre-
defined for every component (area) and the model itself. They must neither be declared
nor updated.

THROUGHPUT, TURNAROUNDTIME, POPULATION and UTILIZATION may
be used in analytical and simulative evaluations, whereas OCCUPATION, SCHED-
ULE_RATE and PREEMPT_RATE are allowed for simulation only. UTILIZATION is
permissible for components of type server only. As models have no control procedures,
it does not make sense to measure SCHEDULE_RATE or PREEMPT_RATE for them.
Furthermore both streams are not allowed for component areas.

These streams can be obtained for every model and component as well as for special
component areas. The latter is only possible for simulations, and the word component
has to be replaced by the special component area (and the control procedure names have
to be omitted) in the following explanations of these standard streams:

- THROUGHPUT (type COUNT)

The stream is updated whenever a process is leaving the component

The MEAN estimator yields the number of processes leaving the component in one
time unit. The STANDARDDEVIATION estimator renders the standard deviation of
the interdeparture times, not of the throughput.

- TURNAROUNDTIME (type EVENT)

The stream is updated whenever a process is leaving the component. TURN-
AROUNDTIME measures the time this process has spent in the component, i.e., the
difference between departure time and arrival time.

The MEAN estimator yields the mean time a process is spending in the component.

- POPULATION (type STATE)

The stream is updated whenever a process is entering the component or leaving it by
+1 or -1 resp.

The MEAN estimator yields the mean number of processes resident in the compo-
nent.

- 128 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- UTILIZATION (type STATE)

This stream is allowed (and does only make sense) for components of type server
and prioserver only, component areas are not permitted. UTILIZATION measures
the service speed given to the processes. It is updated whenever the speed of a
process changes.

The parameter speed of the standard dispatch control procedures shared, sdshared
equal and sdequal (see also Appendix F.3.4.) defines the standard speed of a
component. For this component UTILIZATION is normalized to this standard speed
by dividing the actual speeds by the standard speed.

For shared and equal, the standard speed corresponds to the actual speed of the
component. For sdshared and sdequal, the standard speed is multiplied by the ap-
propriate entry of the speeds-array, yielding the actual speed.

The MEAN estimator gives the utilization of the component (type server or
prioserver). Values greater than 1 are posssible, due to actual speeds being greater
than standard speed and/or multiple processes in service.

In the case of simulation the evaluation of UTILIZATION is more CPU-time
consuming compared to the other standard measures. In some cases, there are
alternative streams resulting the same measures. For dispatch control procedure
shared UTILIZATION is identical to OCCUPATION of the service area. For the
dispatch procedure equal the alternative measure depends on the schedule procedure.
POPULATION of the server can be used with immediate, POPULATION of
SERVICE_AREA with fcfs and lcfs and OCCUPATION with lcfspr, fcfs(1) and
lcfs(1).

- OCCUPATION (type STATE)

This stream is allowed in case of simulation only. It is updated, if a component, which
was previously empty, takes a process into itself or if the last process in the
component is leaving. Arrivals (and departures) that do not find the component empty
(or do not leave it empty, resp.) are ignored. The stream only knows about the two
states "component is occupied" and "component is empty".

The MEAN estimator yields the probability of finding the component occupied.

- SCHEDULE_RATE (type COUNT)

This stream is only allowed when using simulation. It is updated whenever the
control procedure schedule puts a process from the entry area to the service area.

The MEAN estimator yields the transition rate from the entry area to the service
area, thus this stream must not be applied for evaluation objects referring to an area.

- PREEMPT_RATE (type COUNT)

This stream is only allowed when using simulation. It is updated whenever the
control procedure schedule preempts a process (from the service area to the entry
area).

5. Model Analysis - 129 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The MEAN estimator yields the transition rate from the service area to the entry
area, thus this stream must not be applied for evaluation objects referring to an area.

5.1.3. Update Statement

The UPDATE statement is applied to generate a new value for user-defined streams. It
is allowed only in the body of the service which declares the stream (old concept) or
which is contained in the component type declaring the stream.

simple_statement ::= …
| update_statement

update_statement ::=
UPDATE stream-name BY simple_real_expression ;

The stream-name is the name of the stream updated. The expression must be of type
INTEGER or REAL. The interpretation of this value (and as a consequence the evalua-
tion of the stream) depends on the type of the stream. For streams of type STATE, the
value is the difference between new and previous state. For streams of type EVENT, it
takes the value which was actually observed. For streams of type COUNT the value is
ignored and the internal counter is incremented (by 1). Nevertheless the expression may
not be omitted.

The corresponding time stamps or counters are supplied by the system automatically.
User-defined streams are updated at the time the UPDATE statement is executed, stand-
ard streams are updated implicitly. The number of updates which have occured for a
stream can be displayed (in a table) for all kinds of streams by using %parm=updates
in the control file.

Examples:

UPDATE my_stream BY time - started_at;
UPDATE s1 BY 5;

5.1.4. Undefined Results of Streams

The evaluation of streams may lead to undefined results. They are marked by the
keyword "Undefined" in the corresponding fields of the result table.

Normally not enough simulation time has been spent in such cases: The most common
reasons for undefined MEAN values are, in case of EVENT streams, that the evaluated
stream is not updated during simulation. In case of COUNT or STATE streams, an
undefined result value is produced if the evaluation time and start time of the
measurement are identical. For estimator STANDARDDEVIATION additionally a very
small (COUNT) or large (EVENT, STATE) mean value may be the reason. For
estimator CONFIDENCE several reasons are possible and will therefore be given on the
analyzer listing.

- 130 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Undefined results for self-defined streams can as well have the following reasons:

- The declared user-defined stream is not updated within the evaluated service. The
UPDATE statement is missing.

- The service does contain an UPDATE statement, but this is not executed during the
simulation. It may be nested, e.g., in IF clauses or in alternatives of a branch
statement being executed with a low probability.

- User-defined streams are often evaluated restricted to load filtering hierarchies.
Another possible reason for undefined result values is, that the service containing the
UPDATE statement is not catched by the load filtering hierarchy given in the
corresponding MEASURE statement, i.e., that a service other than that or those which
do update the stream has been specified by that hierarchy.

Missing or unexecuted UPDATE statements can be identified by counting the
corresponding events which occur during simulation (using the compiler directive
%PARM=UPDATES in the control file).

5. Model Analysis - 131 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.2.Representation of Results
HIT can present the results either as a table, as a machine-readable dump file, or as a
simple graph or histogram. The presentation of results can be specified for evaluation
objects (i.e., for all measurements at it) or for single measure statements. The default
output format is one table for all performance values.

Tables and dump files can be obtained quite simply. For syntax and semantics of the
table selection, see Section 5.4., for the format of the tables Appendix G.3.1. Further
information can be found in Section 8.

If the results shall be presented as graphs or histograms, they have to be saved in so-
called dump files (for syntax and semantics see sections 5.4. and 8., for the format of a
dump file see Appendix G.3.2.).

By a GRAPH or HISTOGRAM statement the saved results can be transformed to a
(semi-) graphical representation. The generated graph is a text file containing "ASCII-
graphic". These statements (plot_statements) may take their input (i.e., results of experi-
ments) from multiple dump files. The results may be from the current or from a pre-
vious experiment, but of course the files must exist at the time the plot statement is
executed. For every dump file used in the plot statements there must exist a binding in
the control part, if the standard link name "DUMP" is not used.

plot_statement ::=
graph_statement

| histogram_statement

PLOT statements must be the last statements of the body of an experiment. Further-
more, they must not be used within loops or blocks.

5.2.1. GRAPH Statement

A GRAPH sta tement specifies to plot the results as a curve in a cartesian coordinate
system in a format described in Appendix G.3.4.

graph_statement ::=
GRAPH [inscription]
{PLOT simple_text_expression plot_specification_graph

INPUT simple_text_expression [, …] } […] ;

plot_specification_graph ::=
MEASURE simple_text_expression
ESTIMATOR simple_text_expression
EVALUATIONOBJECT simple_text_expression
HIERARCHY simple_text_expression

- 132 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

inscription ::=
[simple_text_expression]
ABSCISSA simple_text_expression
ORDINATE simple_text_expression
[OUTPUT simple_text_expression]

A title for the diagram may be given (simple_text_expression before ABSCISSA in
inscription), as well as names for both axes (after ABSCISSA and ORDINATE). All
expressions must be of type TEXT. The inscription part may be omitted. In this case de-
faults are used. By OUTPUT "link name" a link name of a file to write the resulting
graph into may be specified. If multiple GRAPH or HISTOGRAM statements use the
same OUTPUT file, this file should be used in EXTEND mode to avoid overwriting
(see Section 8.2.2.). There is a default in case OUTPUT simple_text_expression is
omitted: The graph is then written via standard link name "GRAPH" having a default file
binding.

For each curve to be drawn in the coordinate system there must be one PLOT part in the
GRAPH statement. The expression (of type TEXT) after PLOT specifies the name of
the curve. Each curve is drawn with a unique symbol (character) as follows:

A curve is a number of points, each point representing a measured value (i.e., the result
of one measurement in one evaluation). The independent value (x-, abscissa-value) was
given in the MEASURE statement as the expression after ABSCISSA. This expression
must be of type REAL or INTEGER. The dependent value (y-, ordinate-value) is the
observed value. In the example below the ABSCISSA value represents the sequence
number of an evaluation in a series of evaluations.

After INPUT the link name (type TEXT) of the dump file that holds the data is
specified. Within this file, the plot_specification_graph (all expressions must be of type
TEXT and must be identical to some MEASURE statements of the experiment)
identifies the measurements to be drawn.

Note:

After ESTIMATOR the text "CONFIDENCE" has to be given for the confidence
interval, and "UPPERBOUND" and "LOWERBOUND" (separately) for
ESTIMATOR BOUNDS. Lower-case letters can be used.

For every link name used in the GRAPH statement, there must exist a binding in the
control part, except for the standard link name "DUMP".

For estimator FREQUENCY, the GRAPH statement is not allowed, a HISTOGRAM
statement is more appropriate.

5. Model Analysis - 133 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

EXPERIMENT testseries METHOD SIMULATIVE;

VARIABLE no_of_evaluation: INTEGER;
processor_speed : REAL DEFAULT 1.0;

BEGIN

FOR no_of_evaluation := 1 STEP 1 UNTIL 5
LOOP

EVALUATE MODEL computer_system : computer_type (processor_speed);

EVALUATIONOBJECT processor VIA … ;
BEGIN
…

MEASURE THROUGHPUT
AT processor ABSCISSA no_of_evaluation ESTIMATOR MEAN

OUTPUT DUMPFILE "DUMP";
...

END EVALUATE;

processor_speed := processor_speed + 1.0;

END LOOP;

GRAPH "CPU-throughput" ABSCISSA "Number of Evaluation"
ORDINATE "Throughput of CPU"

PLOT "overall throughput" MEASURE "THROUGHPUT"
ESTIMATOR "MEAN"
EVALUATIONOBJECT "PROCESSOR"
HIERARCHY "ALL"
INPUT "DUMP";

END EXPERIMENT testseries;

Please note the double quotes enclosing THROUGHPUT in the
plot_specification_graph: THROUGHPUT is not the HI-SLANG keyword, but the text
to look for in the dump file. Since the standard link name "DUMP" is used for the
intermediate dump file output there need not be any binding in the control file. The
dump file name is determined by the HIT file name generator in this case (see Section
8.2.6.).

- 134 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.2.2. HISTOGRAM Statement

The results of estimator FREQUENCY can be presented as histograms in a format de-
scribed in Appendix G.3.3. The HISTOGRAM statement takes its input from dump
files, so the dump files must exist at the time the HISTOGRAM statement is executed
and they must contain all the information necessary.

histogram_statement ::=
HISTOGRAM [inscription]
PLOT plot_specification_histo
INPUT simple_text_expression ;

plot_specification_histo ::=
MEASURE simple_text_expression
EVALUATIONOBJECT simple_text_expression
HIERARCHY simple_text_expression

Syntax and semantics of the HISTOGRAM statement are similar to those of the
GRAPH statement (Section 5.2.1.), but:

- The ESTIMATOR cannot be specified, since estimator FREQUENCY is always
concerned.

- Please note that there is no simple_text_expression after PLOT (name of one curve).

- After INPUT exactly one link name must be supplied. There must exist a binding in
the control part for this link name, except for the standard link name "DUMP".

The scaling of the abscissa (x-axis) is derived from the intervals given in the
MEASURE statement, the scaling of the ordinate (y-axis) is generated by the system
(dependent on the observed frequencies).

Example:

HISTOGRAM "Processor Times"
ABSCISSA "Intervals of Turnaroundtimes"
ORDINATE "Frequencies"

PLOT MEASURE "TURNAROUNDTIME"
EVALUATIONOBJECT PROCESSOR"
HIERARCHY "HIER1"
INPUT "DUMP";

5. Model Analysis - 135 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.3. Specification of Start and Stop Conditions
Start and stop conditions are used to control the execution of evaluations and measure-
ments. They may be used in simulative experiments and (with restrictions) in analytical
ones. The conditions are specified by logical expressions, connected by the operators
AND and/or OR.

start_or_stop_condition ::=
basic_condition [and_or …]

and_or ::=
AND

| OR

The conditions are evaluated according to the usual rules. AND has higher precedence
than OR and parentheses are not allowed. The time of evaluation depends on the context
of the condition. Start and stop conditions are not evaluated each time their (potential)
value changes.

The basic conditions yield TRUE or FALSE, dependent on the actual state. This state
always refers to the actual evaluation and includes:

- the CPU time used,

- the model time reached,

- the number of events at one evaluation object,

- the length of confidence intervals,

- the number of updates on a stream (GLOBALSTOP), and

- the accuracy of the solution (for MARKOV solver and LIN2 solver (performance
bounds)).

The formal description and the semantics of the corresponding basic conditions are the
topics of the following subsections.

For simulative evaluations start conditions can be specified, so that collecting data starts
after the transient phase of the system under investigation. Here some caution is neces-
sary, for the end of the transient phase may be difficult to determine (if it is reached at
all!) and the loss of information may be significant, especially for rare events.

Start conditions may consist of basic conditions about the reached model time and the
number of events. They may be given for an evaluation object (i.e., for all measurements
at it) or for one single MEASURE statement.

In simulative experiments all kinds of basic conditions for stop conditions except accu-
racy of the solution may be used. Stop conditions can set the end of the evaluation of
one evaluation object or a single measurement as well as the end of the complete eval-
uation (CONTROL statement (Section 5.8.), GLOBALSTOP statement (Section 5.4.)).

When using the MARKOV solver or else the solver LIN2 together with estimator
BOUNDS, a stop condition in the CONTROL statement determines the end of the

- 136 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

evaluation. Here only basic conditions about the accuracy of the solution are allowed, in
MARKOVian experiments the used CPU time may be limited as well.

Examples:

START EVENTS 1000
STOP CPUTIME 5000 OR MODELTIME 50000 AND EVENTS 100000 OR

CONFIDENCE LEVEL 95 WIDTH 10 MEASURE THROUGHPUT

For user convenience a message is given during simulation on the analyzer listing
whenever any basic start or stop condition is reached, which is either specified within a
CONTROL statement, a MEASURE statement or an EVALUATIONOBJECT declar-
ation. This special kind of event trace helps the user in understanding unexpected sys-
tem behavior.

5.3.1. CPU Time

The specification of the used CPU time consists of the keyword CPUTIME and an
expression of type REAL or INTEGER, whose evaluation yields the limit of the CPU
time.

basic_condition ::= …
| CPUTIME simple_real_expression

This basic condition may only be used within CONTROL statements and results TRUE,
if the used CPU time for the current evaluation is greater than or equal to the value of
simple_real_expression, FALSE otherwise.

Please note that CPUTIME condition is only checked if model time is also consumed,
i.e., endless loops without modeltime consumption cannot reach the CPUTIME limit.

Examples:

CPUTIME 500
CPUTIME gettime (a)
CPUTIME a + b

5.3.2. Model Time

The specification of the reached model time consists of the keyword MODELTIME and
an expression of type REAL or INTEGER, whose evaluation yields the limit of the
model time.

basic_condition ::= …
| MODELTIME simple_real_expression

This basic condition results in TRUE, if the reached model time is greater than or equal
to the (INTEGER) value of simple_real_expression and at least one event has occurred,
FALSE otherwise. The model time is managed by the system. At the start of each
simulation its value is 0.0, and it is incremented by time consumption, i.e., calls of

5. Model Analysis - 137 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

service request of component type server or the statements spend and hold. The
definition of future events (process generations by CREATE or SUBMIT with
AFTER/EVERY/AT, TIMESLICE in control procedures) may also result in a progress
of time. All other statements do not affect the model time directly.

Examples:

MODELTIME a + b/c
MODELTIME mtime (5.0, b)
MODELTIME 100000

5.3.3. Number of Events

The specification of the number of observed events consists of the keyword EVENTS
and an expression of type REAL or INTEGER, whose evaluation (REAL converted to
INTEGER) yields the limit of the number of events. A load filtering hierarchy may be
given to specify the origin of the events to be counted.

basic_condition ::= …
| EVENTS simple_real_expression [DUE TO hierarchy-name]

An event occurs, when a process is leaving the component or a component area. Which
component (or component area) is to be observed is specified in the context of the con-
dition (estimator_part, control_statement). If a load filtering hierarchy is supplied (after
DUE TO), only the events of processes selected by that load filtering hierarchy are
counted. The load filtering hierarchy must be declared in the declaration part of the
EVALUATE statement and must end at the given component. It is not possible to give
multiple hierarchies; the default is all.

This basic condition results in TRUE, if the number of relevant events is greater than or
equal to the (INTEGER) value of simple_real_expression, FALSE otherwise. The
events are counted from the start of the simulation, so START EVENTS 100 STOP
EVENTS 200 stops after 200 events (not after 300, as might be supposed).

Examples:

EVENTS 5000
EVENTS 10000 DUE TO hier1 AND EVENTS 7000 DUE TO hier2
EVENTS a + b DUE TO hier1 OR EVENTS no_of_ev (c)

- 138 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.3.4. Confidence Interval

The specification of the length of confidence intervals consists of the probability of con-
fidence, the desired length of the interval (in percent) and the name of the stream.
Optionally a load filtering hierarchy and the maximum degree for the autoregressive
model may be specified.

basic_condition ::= …
| CONFIDENCE LEVEL simple_real_expression

WIDTH simple_real_expression
MEASURE stream
[DEGREE simple_real_expression]
[DUE TO hierarchy-name]

The expression after CONFIDENCE LEVEL must be of type REAL or INTEGER and
render a value between 90 and 99. Otherwise it is set to 95 and a warning is given. A
value of type REAL is converted to INTEGER. This value defines the probability that
the real mean lies within the given interval around the estimated mean (90 indicating
probability 0.9, 99 indicating 0.99).

The length of the interval is specified by the expression after WIDTH, which must be of
type REAL or INTEGER. It is interpreted as one half of the interval, given in percent of
the estimated mean. E.g., the value 10 for an estimated mean of 200 specifies the interval
(180, 220).

After MEASURE the stream the confidence interval is to be computed for must be
specified. This is either one of the standard streams THROUGHPUT,
TURNAROUNDTIME, POPULATION, OCCUPATION, UTILIZATION,
SCHEDULE_RATE and PREEMPT_RATE or a user-defined stream (stream-
identifier).

stream ::=
THROUGHPUT

| TURNAROUNDTIME
| POPULATION
| OCCUPATION
| UTILIZATION
| SCHEDULE_RATE
| PREEMPT_RATE
| stream-identifier

There are the following restrictions:

- The standard stream UTILIZATION is allowed for components of type server only.

- SCHEDULE_RATE and PREEMPT_RATE are only allowed for components, not
for component areas.

- stream_identifier must be a valid stream for a service of this component.

After DEGREE the maximum degree of the autoregressive model may be given. The
expression must render a value between 1 and 20. Otherwise a warning is given and it is
set to 10 (the default value). If the DEGREE part is omitted also the default value 10 is
used. See the analyzer listing for more information.

5. Model Analysis - 139 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

After DUE TO a load filtering hierarchy (default all) may be given. Only updates
passing this filter are considered. The load filtering hierarchy must be declared in the
enclosing EVALUATE statement and end in the observed component.

This basic condition yields TRUE, if the length of the computed confidence interval is
equal to or smaller than the specified interval length.

Examples:

CONFIDENCE LEVEL 95 WIDTH 10.0 MEASURE THROUGHPUT OR
CONFIDENCE LEVEL 95 WIDTH 10.0 MEASURE TURNAROUNDTIME

CONFIDENCE LEVEL 92 WIDTH 5.0 MEASURE UTILIZATION

CONFIDENCE LEVEL a+b WIDTH getwidth (5.0) MEASURE cs DEGREE 15 DUE TO hier1

5.3.5. Accuracy

The specification of an accuracy stop is allowed for MARKOV and LIN2, but with
different interpretations. The accuracy specification is only useful within CONTROL
statements.

The specification of the accuracy of an analytical solution consists of the keyword
ACCURACY and an expression of type REAL or INTEGER.

basic_condition ::= …
| ACCURACY simple_real_expression

The meaning of ACCURACY depends on the solver used.

5.3.5.1. Accuracy Stop for the MARKOV Solver

Here the simple_real_expression is interpreted as the relative error (in percent) of the
required solution. Please note that the accuracy of the solution is only an estimation and
that it is recommended to use accuracies (or better: relative errors) less than 1 %, al-
though greater values may be supplied. The example below specifies a relative error of
0.1 %, that is 0.001.

This basic condition yields TRUE, if the estimated relative error of the solution is equal
to or smaller than the value of simple_real_expression. Besides as well as in combina-
tion with ACCURACY the basic condition CPUTIME is allowed for MARKOV.

Example:

ACCURACY 0.1

- 140 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.3.5.2. Accuracy Stop for the LIN2 Solver

If the LIN2 solver together with estimator BOUNDS is used, the quality of the bounds
for the desired mean values may be influenced by the ACCURACY condition. The value
of simple_real_expression is rounded to give an INTEGER value. The result must be
less than 5. With increasing values, more accurate results are computed (for 0, i.e.,
accuracy < 0.5, no bounds are computed at all ("Undefined")), but more computation is
necessary, too. For very large models LIN2 reduces this value (to keep the computation
in limits) and gives a warning.

Example:

ACCURACY 2

5.3.6. Specification of GLOBALSTOP conditions

The facilities for the specification of GLOBALSTOP conditions differ from the other
kind of stop condition specification. Please see Section 5.4.4. for a detailed description.

This section presents the basic conditions which can be used especially for
GLOBALSTOP specification.

5.3.6.1 Width of Confidence Interval

The specification of the desired width of a confidence interval only consists of the
keyword WIDTH and an expression which must be of type REAL or INTEGER. It is
interpreted in the same way as the WIDTH specification for CONFIDENCE LEVEL
condition (see Section 5.3.4.) namely as one half of the interval, given in percent of the
estimated mean.

stop_expression ::= …
| WIDTH simple_real_expression

The specification of WIDTH is only allowed in combination with estimator
CONFIDENCE LEVEL.

5.3.6.2 Number of Updates

The specification of the desired updates only consists of the keyword UPDATES and
an expression which must be of type REAL or INTEGER. It is interpreted as the
number of updates of the corresponding stream (also taking into account load filtering
and start conditions). The condition becomes true as soon as at least one update has
occured and the number of updates on the stream is equal or greater than the specified
number.

stop_expression ::= …
| UPDATES simple_real_expression

Please note that the number of updates is not the same as the number of events as
described in Section 5.3.3. .

5. Model Analysis - 141 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.4.Specification of Evaluation Attributes
The required estimator as well as the form of result output (output_link) may be given
for the specification of evaluation attributes. These specifications can occur in
MEASURE statements and/or EVALUATIONOBJECT declarations. Moreover start
and stop conditions (start_or_stop_condition) valid for all measurements at the evalu-
ation object or only for a single measurement (depending on the context) can be stated
for the simulative case.

estimator_part ::=
[ESTIMATOR estimator [, …]]
[OUTPUT output_link [, …]]
[START start_or_stop_condition]
[STOP start_or_stop_condition

| GLOBALSTOPstop_expression]

estimator ::=
MEAN

| BOUNDS
| STANDARDDEVIATION
| CONFIDENCE LEVEL simple_real_expression
| FREQUENCY INTERVAL [array_bounds [, …]]

output_link ::=
TABLE simple_text_expression

| DUMPFILE simple_text_expression

stop_expression ::=
WIDTH simple_real_expression

| UPDATES simple_real_expression
| WIDTH simple_real_expression and_or

UPDATES simple_real_expression
| UPDATES simple_real_expression and_or

WIDTH simple_real_expression

5.4.1. Estimator Specification

Some notes about the estimators:

- MEAN
MEAN (the mean value) is permitted in analytic and simulative evaluations. See
Section 5.1.1. for how it is defined for different types of streams.

- BOUNDS
BOUNDS is only eligible for the solver LIN2. Exact upper and lower bounds for the
mean values will be computed (performance bounds). If the ACCURACY stop con-
dition in the CONTROL statement is omitted or if an ACCURACY value smaller
than 0.5 is given in the stop condition, an estimated mean but no bounds are
computed and a warning is submitted.

- 142 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- STANDARDDEVIATION
If STANDARDDEVIATION is specified, an estimator for MEAN is also computed.
The standard deviation of the stream THROUGHPUT is related to the mean of the
interdeparture times and not to the mean of the throughput.

- CONFIDENCE LEVEL
The simple_real_expression defines the confidence probability. It must be of type
REAL or INTEGER (REAL is implicitly converted to INTEGER) and its evaluation
must yield a value between 90 and 99, defining a probability of 0.90 and 0.99,
respectively. If these limits are exceeded, the value is set to 95 and a warning is given.
When the estimator CONFIDENCE LEVEL is specified, MEAN and
STANDARDDEVIATION are also computed.

- FREQUENCY INTERVAL
The observed stream must be of type EVENT or STATE. Intervals have to be
specified for this estimator. For an EVENT stream, the number of occurrences of
values in an interval is counted. For a STATE stream, the amount of time the state is
within the interval is accumulated.The intervals need not to be disjoint, but may be.
Intervals are specified by their lower and upper limits (similar to array bounds) and
separated by commas. The lower limit is included in the interval, the upper limit is
excluded. An interval is ignored if its upper limit is smaller or equal its lower limit.
The sequence of the intervals is arbitrary. By default, tables and dumpfiles contain the
absolute number of occurrences for an EVENT stream and the relative amount of time
(time in interval divided by total observation time) for a STATE stream. For tables,
this behaviour can be modified by the analyzer option FREQUENCYFORMAT (see
8.2.1.3). FREQUENCY INTERVAL is eligible for simulation only.

5.4.2. OUTPUT Specification

Every output_link within the OUTPUT specification denotes whether the results are to
be presented as a table or to be saved in a dump file (see GRAPH and HISTOGRAM
statement). The simple_expression (of type TEXT) after TABLE or DUMPFILE
resembles the link name of the file into which the data are to be written. If OUTPUT is
omitted, OUTPUT TABLE "TABLE" is used (the default file is written in the EXTEND
mode, allowing the results of series of evaluations to be saved). A binding in the control
part must exist for every user-defined link name.

Note:

If OUTPUT is given and a non-standard link name is specified, the given link name
should be supplied with an EXTEND binding in the control file, or else only the
results of the last evaluation (of a series) performed can be found in that file. The
same holds when a standard link name is used and rebound.

5. Model Analysis - 143 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.4.3. START and STOP Specifications

In the case of simulation a time interval for the measurements for this evaluation object
can be specified. If there is a start condition all updates occuring before the condition
has become true for the first time are ignored for measurement; in case of state streams
they are only used to actualize the state value. In case of a stop condition measurement is
stopped as soon as the stop condition has become true for the first time, ignoring all
updates after this point in time. If there are no start or stop conditions, all events
occurring in the evaluation object are taken into account.

Evaluation attributes may be specified for an entire evaluation object (see
evaluate_declaration) or only for a single MEASURE statement (see
measure_statement). In a set of evaluation attributes, some attributes may be omitted.
The value of an evaluation attribute for one measurement is determined as follows:

1.If the given attribute is specified in the MEASURE statement, the supplied value is
used. Else:

2.If the given attribute is specified for the evaluation object, the given value is used
(values for attributes already found by 1. are ignored). Else:

3.The following default is used:

ESTIMATOR MEAN
OUTPUT TABLE "TABLE"

Examples:

ESTIMATOR CONFIDENCE LEVEL 95
OUTPUT TABLE "out1", TABLE "out2"
START MODELTIME early
STOP MODELTIME late;

ESTIMATOR STANDARDDEVIATION,
FREQUENCY INTERVAL [0..2.5,2.5..5,5..15,15..30,30..50,50..1000]

OUTPUT TABLE "noncumulative", DUMPFILE "dump1";

ESTIMATOR MEAN,
FREQUENCY INTERVAL [0..5, 0..15, 0..30, 0..50]

OUTPUT TABLE "cumulative";

- 144 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.4.4. GLOBALSTOP Specification

The specification of GLOBALSTOP condition is a facility to define conditions for
stopping an evaluation also in the ESTIMATOR part of a MEASURE statement -
beside the specification within a CONTROL statement (see Section 5.8.).

The GLOBALSTOP conditions or normal STOP conditions (see Section 5.4.3.) can
only be used alternatively. Normal STOP conditions control the end of a measurement,
but GLOBALSTOP conditions influence the end of total evaluation. A measurement
with a GLOBALSTOP condition can only stop at the end of the evaluation.

An evaluation terminates if

- either all GLOBALSTOP conditions in all MEASURE statements are fulfilled
(implicit AND-operation)

- or one condition in the CONTROL statement becomes true (implicit OR-
operation).

Thus an implicit OR-operation exists between both possibilities (Specification via
GLOBALSTOP and CONTROL statement).

If a MEASURE statement contains a list of streams and a GLOBALSTOP condition it
is internally expanded in a way that a separate GLOBALSTOP condition of the same
kind is associated with each stream.

The evaluation of GLOBALSTOP conditions starts after fulfilling corresponding
START condition resp. after the beginning of corresponding measurement.

Four possibilities exist to specify a GLOBALSTOP condition:

- one single WIDTH condition (see Section 5.3.6.1.),
- one single UPDATES condition (see Section 5.3.6.2.),
- one WIDTH condition and one UPDATES condition connected by an AND-

operator, or
- one WIDTH condition and one UPDATES condition connected by an OR-

operator.

Example:

ESTIMATOR CONFIDENCE LEVEL 95
OUTPUT TABLE "out1"
GLOBALSTOP WIDTH 5 AND UPDATES 5000;

Because usually a user is interested in a certain accuracy of some results, the kind of
specification by GLOBALSTOP conditions is recommended; the usage of a
CONFIDENCE condition in the CONTROL part is only recommended if absolutely
necessary.

5. Model Analysis - 145 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.5.Declaration of Evaluation Objects
The relevant units in evaluating a model are components (including the model itself) and
component areas. For a clearer separation of model and evaluation description,
evaluation objects need to be declared and attached to a component (area). Results are
computed for these evaluation objects only. For an evaluation object, evaluation
attributes (estimator_part) may be specified as defaults for the corresponding
MEASURE statements.

evaluationobject_declaration ::=
EVALUATIONOBJECT
{ {evaluationobject-name VIA [area OF] component-identifier} [, …]

[DEFAULT estimator_part] ; } […]

Declarations of evaluation objects are permissible in the declaration part of EVALUATE
statements only. The evaluationobject-name is any identifier satisfying the rules
concerning the construction of names and the scope rules for identifiers. This name will
also be used in the MEASURE statement when referring to the component to be
evaluated.

A complete path from the model (object) down to the component according to the com-
ponent hierarchy (component-identifier) must be stated after VIA to specify the compo-
nent to be evaluated. The elements are seperated by dots and each element of the se-
quence must be a subcomponent of its predecessor, beginning with the model and
ending with the component considered. If component arrays arise in the path, the array
index of the component must be stated. If enclosed components are part of the model,
several paths might lead down to the component. In this case it does not matter which
path is specified.

Example:

EVALUATIONOBJECT e1 VIA M.C.E,
e2 VIA M.K.C.E;
e3 VIA SERVICE_AREA OF M.K.E;

There is no difference between the evaluation objects e1 and e2, except that there will be seperated
in result tables. All measurement of e3 is restricted to the service area of e.

M

C

E

K

- 146 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The hierarchical specification of the component is necessary since there may be several
components of the same name in a model.

When evaluating the model object itself, only the name of the model occurs for
component-identifier. Evaluation of model areas is not possible.

The names of the evaluation objects must be distinctive within one EVALUATE state-
ment (and must be distinctive from all load filtering hierarchy names declared). Several
evaluation objects may be attached to one component or component area, each one
producing a separate result table.

The (optional) DEFAULT part allows specification of defaults for the evaluation attrib-
utes of all measurements for this evaluation object (MEASURE ... AT evaluation-
_object_name ...). Of course the evaluation attributes may be set anew in the
MEASURE statements.

Note:

The DEFAULTs are ignored in CONTROL statements, they are only taken into
account for MEASURE statements.

Examples:

EVALUATIONOBJECT
ev_ob1 VIA mod.ct.cpu

DEFAULT
ESTIMATOR FREQUENCY INTERVAL [0..5, 0..50, 0..500];

ev_ob2 VIA SERVICE_AREA OF mod.ct.cpu
DEFAULT
ESTIMATOR MEAN, STANDARDDEVIATION
OUTPUT TABLE "out1", TABLE "out2";

EVALUATIONOBJECT
ev_ob VIA mod1;

EVALUATIONOBJECT
processor1 VIA central.system[1].cpu,
processor2 VIA central.system[1].iop

DEFAULT
ESTIMATOR MEAN;

5. Model Analysis - 147 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.6.Load Filtering Hierarchies
Whenever streams to be measured or events to be observed (e.g., MEASURE statements
or start / stop conditions) are specified, the events to be regarded may be restricted by
load filtering hierarchies. They enable the user to filter the effects of special events oc-
curring on higher model levels for a measurement at the evaluation object. The load to be
regarded is filtered with both respect to the component it has been originated in (that is
the component the calling process is local to, resp. has been created in) and to the
hierarchy of service calls, from the originating component down to the component the
evaluation object is attached to. Only those events are considered that are results of local
processes within the originating component and that are calling services along the load
filtering hierarchy down to (the component of) the evaluation object.

Load filtering hierarchies consist of a set of load paths, leading from originating
components down to the evaluation object. Each load path consists of REFER bindings,
each one connecting one used with one provided service of two components.

For using load filtering hierarchies the concept of streams (cf. Section 5.1.) is extended:
Streams can be seen as lists of triples (ti, xi, li), where ti is the time stamp, xi is a
numerical value, and li is a load path. At the time when the update of a stream occurs
(automatically or via UPDATE statement), the load path li can be uniquely determined.

If a measurement is restricted by a load filtering hierarchy h, then only load portions
initiated in the originating component and propagating down on a load path contained in
h are considered for measurement, simply by considering only those triplets of the
stream for which li is contained in h.

Please take care that (user-defined) streams are really updated to avoid undefined result
values. I.e., the service containing the UPDATE statement should be catched by the load
filtering hierarchy given in the corresponding MEASURE statement.

Hierarchies may be merged to define a new hierarchy, containing the union of the load
paths of all merged hierarchies. In that case all events are considered that are passing
any of the merged hierarchies.

Please note that for a simulation all hierarchies to be merged need not be disjoint, i.e., the
intersections of all load path sets need not be empty.

A load filtering hierarchy may be empty (i.e., there is no sequence of service calls com-
pliant to it) for different reasons:

- There is no appropriate CREATE / SUBMIT statement or local process within the
originating component or one of its services.

- One of the required REFER bindings does not exist (see Section 5.6.1.).

- There is no fitting used service call in the body of a relevant service down the
declared hierarchy.

In those cases the compiler issues a warning. Although a hierarchy is not empty due to
the first reason the results may be meaningless if no CREATE / SUBMIT statement is
actually executed.

- 148 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.6.1. Declaration of Load Filtering Hierarchies

The declaration of a load filtering hierarchy is allowed in the declaration part of an
EVALUATE statement only.

hierarchy_declaration ::=
HIERARCHY
{hierarchy-name [, …] default_or_merge ; } […]

default_or_merge ::=
DEFAULT hierarchy_part [. …]

| MERGE hierarchy-name [, …]

hierarchy_part ::=
hierarchy-name

| triplet

triplet ::=
(component-identifier [, service-name [, use-name]])

The name of the hierarchy follows the keyword HIERARCHY. It is arbitrary but must
follow the rules on the construction of names and for the scope of validity of identifiers.
All hierarchy names must be distinct from each other and all names of evaluation objects
declared.

There are three possibilities of declaring load filtering hierarchies (default_or_merge) :

1. by explicitely specifying the hierarchy of service calls from the originating compo-
nent down to the evaluation object (via DEFAULT)

2. by specifying exactly one hierarchy, referring, however, to other declared hierarchies
(again via DEFAULT)

3. by merging (joining) existing hierarchies (via MERGE).

These possibilities are explained in the next three subsections.

5. Model Analysis - 149 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.6.2. Load Filtering Hierarchies Defined by Triplets

Explicitely specified hierarchies are described by a sequence of triplets, separated by
dots, each of the form (c, s, u), with the following meaning:

- c : component-identifier (mandatory)
- s : service-name (optional)
- u : use-name (optional)

These elements of triplets are separated by commas. Don´t confuse these triplets to
describe a hierarchy with those used to explain the concept of streams.

Example: (m.c.c1, s1, u1) . (c2, s2) . (c3) . (c4, s4)

• The first triplet specifies the originating component (component-identifier) and, (as
an option) the originating service (service-name) and the originating used service
(use-name). Just like evaluation objects (see Section 5.5.), the originating component
must be unambiguously identified by a component path (in dot-notation) down from
the model. If several paths are possible, the choice between them is arbitrary. Only
those events that result from CREATE / SUBMIT statements in the body of the
originating component, or from process objects declared in this component are
considered. If a service-name is given, the events are furthermore restricted to local
processes of the stated type (not necessarily provided), and, submitting also a use-
name, to calls of the given USE name within that service.

• The triplets that follow define the sequence of service calls down through the static
structure of the model. Some (obvious) restrictions apply:

- component-identifier must be a single name (instead of a whole path), but it must
specify a subcomponent of the component of the previous triplet.

- If a service-name is supplied, it must belong to a provided service of the given
component, and

- if a use-name was (additionally) given in the previous triplet, a corresponding
REFER binding to the given service-name must appear.

- If a use-name is given, it must be that of a used service of the service regarded.

Both, service-name and use-name may be omitted. In that case, no further restrictions
to the load are implied (beyond the named component). Note that omitting of the
service-name means that all services of the component are selected. Thus more than
one load path is contained in such a hierarchy (implicit merge). The same holds when
omitting the use-name.

• The last triplet defines the end of the load filtering hierarchy, i.e., the component the
evaluation object of interest is attached to. For obvious reasons a use-name does not
make sense here and is ignored if given. A service-name may be supplied selecting
only such kind of processes, otherwise all kinds of processes within the component
are measured.

• If a load filtering hierarchy consists of only one triplet, the component-identifier is
interpreted as described for the first triplet, the service-name as described for the last
triplet. A use-name is ignored if given.

- 150 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

HIERARCHY

h0 DEFAULT (m.c1.c2, s2, u2) . (c3, s3) . (c4) . (ev_ob)
h1, h2DEFAULT (model.system, batch, cpuaccess) . (cpu, compute);

5.6.3. Load Filtering Hierarchies Defined by Hierarchies

Instead of a triplet as described above, the name of an appropriate hierarchy may be
given (not enclosed in parentheses). In this case, the named hierarchy is inserted. This is
very useful if only slightly different complex hierarchies have to be defined, using "the
same way for a long distance". The examples below only demonstrate the technical
aspect: The starting point of the inserted hierarchy must be a local component of the
component denoted in the previous triplet or hierachy.

Note:

Hierarchies declared by MERGE must not be given within such dot notations.

Examples:

HIERARCHY

h1 DEFAULT (model.system, batch, cpuaccess) . (cpu, compute);
h2 DEFAULT (model);
h3 DEFAULT (model.system.cpu.processor1);
h4 DEFAULT (model) . h1 . (processor1);
h5 DEFAULT h2.h1.h3;

Both h4 and h5 denote the same hierarchies.

5. Model Analysis - 151 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.6.4. Load Filtering Hierarchies Defined by MERGE

Load filtering hierarchies may be merged, i.e., the union of all load paths of the merged
hierarchies is built.

For every evaluation object one such merged hierarchy is predefined:

HIERARCHY all MERGE ...

The dots are standing for a MERGE of all load filtering hierarchies ending at that evalu-
ation object. Omitting the DUE TO-part in MEASURE statements means DUE TO all.

Please note the following restrictions when merging hierarchies:

- All merged hierarchies must end in the same component (last triplet), although they
may start in different components.

- The hierarchy all may not be used within MERGE, since it already represents a
maximal merge of hierarchies.

- There must be at least two hierarchies given on the right hand side of MERGE.

Examples:

HIERARCHY

h1 DEFAULT (model.system, dialog) . (cpu);
h2 DEFAULT (model.system, batch, cpuaccess) . (cpu, compute);
h3 DEFAULT (model). (system). (cpu);
h4 MERGE h1, h2, h3;

- 152 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The role of the originating component is illustrated by the following example.

Example:

May c be a model, CREATEing a local process of type s,
s uses the provided service s1 of the subcomponent c1,
c1 CREATEs a local process of type s1,
s1 uses service s2 of the subcomponent c2 of c1:

c "CREATE s"
"s uses s1"

 c1 "CREATE s1"
 "PROVIDE s1"
"s1 uses s2"

c2 "PROVIDE s2"

HIERARCHY
at_c DEFAULT (c) . (c1) . (c2);
at_c1 DEFAULT (c.c1) . (c2);
at_c_or_c1 MERGE at_c, at_c1;

The hierarchies at_c and at_c1 are disjoint:

at_c describes all events that are results of CREATE s (in c!) and end in c2 (at s2). The hierarchy
at_c1 describes all events that are results of CREATE s1 (in c1!) and end in c2 (at s2). If all events
ending at s2 are to be described then at_c and at_c1 must be merged (to at_c_or_c1)

Next, an artificial, but relatively short example illustrating disjoint and empty hierarchies:

Example:

TYPE ct3 COMPONENT;
PROVIDE

SERVICE s31; s32;
END PROVIDE;

TYPE s31 SERVICE;
BEGIN ...
END TYPE s31;

TYPE s32 SERVICE;
BEGIN ...
END TYPE s32;

END TYPE ct3;

5. Model Analysis - 153 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

TYPE ct2 COMPONENT;
PROVIDE

SERVICE s21; s22;
END PROVIDE;

TYPE s21 SERVICE;
USE SERVICE u1;
END USE;

BEGIN
u1;

END TYPE s21;

TYPE s22 SERVICE;
USE SERVICE u1; u2;
END USE;

BEGIN
u1; u2;

END TYPE s22;

COMPONENT c3 : ct3;

REFER s21, s22 TO c3 EQUATING
s21.u1 WITH c3.s31;
s22.u1 WITH c3.s31;
s22.u2 WITH c3.s32;

END REFER;
END TYPE ct2;

TYPE ct1 COMPONENT;
PROVIDE

SERVICE s11; s12;
END PROVIDE;

TYPE s11 SERVICE;
USE SERVICE u1;
END USE;

BEGIN
u1;

END TYPE s11;

TYPE s12 SERVICE;
USE SERVICE u1; u2;
END USE;

BEGIN
u1; u2;

END TYPE s12;

COMPONENT c2 : ct2;

REFER s11, s12 TO c2 EQUATING
s11.u1 WITH c2.s21;
s12.u1 WITH c2.s21;
s12.u2 WITH c2.s22;

END REFER;

BEGIN
CREATE 1 PROCESS s11;
CREATE 1 PROCESS s12;

END TYPE ct1;

- 154 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

TYPE mt MODEL;
COMPONENT c1 : ct1;

END TYPE mt;

EXPERIMENT exp METHOD SIMULATIVE;
BEGIN

EVALUATE MODEL m : mt;

EVALUATIONOBJECT eva VIA m.c1.c2.c3;

HIERARCHY h1a DEFAULT (m.c1) . (c2);
h1b DEFAULT (m.c1, s11) . (c2);

h2a DEFAULT (m.c1.c2) . (c3, s32);
h2b DEFAULT (m.c1.c2) . (c3);

h1 MERGE h1a, h1b;
{ not disjoint, note the common path s11 -> s21 }

h2 MERGE h2a, h2b;
{ not disjoint, note the common path s22 -> s32 }

ha DEFAULT h1a . (c3, s32);
hb DEFAULT h1b . (c3);

h MERGE ha, hb;
{ disjoint, this MERGE is allowed }

empty DEFAULT (m.c1, s11, u1) . (c2, s22)
{ empty, there is no REFER binding u1 <-> s22 }

BEGIN

MEASURE POPULATION AT eva DUE TO ha, hb, h;

CONTROL AT eva STOP CPUTIME 200;

END EVALUATE;
END EXPERIMENT exp;

The example can best be illustrated by the following (non-standard) graphics:

c1:ct1

u1 u1 u2

c2:ct2

u1 u1 u2

s12s11

c3:ct3

s21

s31 s32

s22

1 2 3

4 5 6

5. Model Analysis - 155 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The paths which are constituted by the REFER parts defined in ct1 and ct2 are numbered here (1..6).

The following set of paths is contained in the load filtering hierarchies defined above:

h1a : {1,2,3}
h1b : {1}

h2a : {6} empty hierarchy, for c2 has no local processes
h2b : {4,5,6} empty hierarchy, for c2 has no local processes

h1, h2 : invalid, since the hierarchies above are not disjoint.

ha : {3.6} concatenationh1a . h2a

hb : {1.4} concatenationh1b . h2b
h : {3.6,1.4}

empty : { }

- 156 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.7.MEASURE Statements
In HIT only those measurements are performed in which the user is really interested in.
MEASURE statements define the desired results of an analysis of a model and cause
the measurement. They are permissible in the body of an EVALUATE statement only.

measure_statement ::=
MEASURE {stream [DEGREE simple_real_expression] } [, …]
AT evaluationobject-name
[DUE TO hierarchy-name [, …]]
[ABSCISSA simple_real_expression]
[estimator_part];

The evaluationobject-name is the name of the evaluation object to be analyzed. It must
be declared in the enclosing EVALUATE statement, and the streams listed must be
standard streams or be declared in the component it is attached to.

The stream is either one of the standard streams (THROUGHPUT, TURNAROUND-
TIME, POPULATION, UTILIZATION, OCCUPATION, SCHEDULE_RATE or
PREEMPT_RATE) or a user-defined stream. User-defined streams must be declared in
the component of interest (or one of its services). Each stream listed here will be
measured according to the given specification.

After DEGREE the maximum degree of the autoregressive model may be given (for
simulation only). The expression must be of type REAL or INTEGER (REAL is con-
verted to INTEGER) and its evaluation must yield a value between 1 and 20. If these
bounds are exceeded or DEGREE is omitted at all, 10 is used (and a warning is given in
the first case).

The hierarchy-name after DUE TO restricts the measured updates to the given load
filtering hierarchy. The hierarchy must be declared in the enclosing EVALUATE state-
ment and end in the component of interest. If multiple hierarchies are supplied, one
measurement is performed for each.

If the DUE TO part is omitted or all is specified, a measurement concerning all possible
events is executed. The hierarchy all is predefined for all evaluation objects, and
comprises (MERGEs) all possible hierarchies that end in the component of interest.
Hierarchy all may not be redefined.

If it is planned to represent the results as a graph (GRAPH statement, see Section 5.2.1),
one should supply an ABSCISSA part, that is the keyword ABSCISSA and an
expression of type REAL or INTEGER, which values will be used for the scaling of the
abscissa (x-axis).

In the estimator_part, values for the evaluation attributes (ESTIMATOR, OUTPUT,
START / STOP condition, see Section 5.4.) may be specified. There is a default
mechanism. The value of one evaluation attribute for one measurement is determined as
follows:

1. If the given attribute is specified in the MEASURE statement, the supplied value is
used. Else:

2. If the given attribute is specified for the evaluation object, the given value is used
(values for attributes already found by 1. are ignored). Else:

5. Model Analysis - 157 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

3. The following default is used: ESTIMATOR MEAN OUTPUT TABLE "TABLE"
and the measuring interval is not restricted.

If multiple streams, hierarchy-names and estimators are given in the estimator_part,
one measurement is taken for each possible and meaningful combination.

Examples:

MEASURE THROUGHPUT, TURNAROUNDTIME, my_own_stream { 3 }
AT eva_object
DUE TO h1, h2, h3 { 3 }
ESTIMATOR MEAN, STANDARDDEVIATION { 2 };
{3 * 3 * 2 = 18 measurements!}

MEASURE UTILIZATION AT server_object;

MEASURE stream1,
stream2 DEGREE 5,
stream3 AT ev_ob;
{ Note: only stream2 is measured with DEGREE 5! }

Notes:

In the tabular output the results generated by different MEASURE statements for the
same evaluation object are presented in the same table. To prevent this use different
evaluation objects for the same component.

If multiple measurements with identical component, stream, load filtering hierarchy
and estimator are desired (e.g., for different start or stop conditions), different
evaluation objects should be attached to the same component.

A similar restriction applies if different FREQUENCY estimators are used together,
differing only in the intervals specified. Here only the last one is found in the table,
but all are written to the dump file if desired.

Examples:

EVALUATIONOBJECT
cpu_1 VIA sys.cpu,
cpu_2 VIA sys.cpu;

MEASURE POPULATION
AT cpu_1
DUE TO all
ESTIMATOR MEAN
START EVENTS 100
STOP EVENTS 500;

MEASURE POPULATION
AT cpu_2
DUE TO all
ESTIMATOR STANDARDDEVIATION
STOP CONFIDENCE LEVEL 95 WIDTH 10

MEASURE TURNAROUNDTIME;

- 158 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.8.CONTROL Statement
The CONTROL statement has two different purposes:

- A trace of the simulation can be demanded and
- the end of the solution can be specified by stop conditions. This is meaningful

only for the following solvers: simulative, analytic-numerical (MARKOV) and
LIN2. For a stationary analysis with the simulative solver it is more
recommendable to specify the end of evaluation via GLOBALSTOP in the
estimator part (see Section 5.4.) and to specify a simple stop condition here, e.g.,
CPUTIME.

The CONTROL statement is permissible in the body of an EVALUATE statement only.

control_statement ::=
CONTROL [TRACEALL]
{[AT evaluationobject-name]
 [STOP start_or_stop_condition]
 [TRACE] } […] ;

5.8.1. STOP Condition

To determine the end of the simulation (or evaluation for other solvers) stop conditions
(logical expressions about the state of the evaluation) may be specified for evaluation
objects. The actual evaluation terminates, when one stop condition given in the
CONTROL statement becomes TRUE (OR-operation). The condition has the same
syntax as that of MEASURE statements and evaluation object defaults (see Section
5.3.). It is only evaluated when activities take place at the selected evaluation object.
There must not be an empty load filtering hierarchy specified within start_or_-
stop_condition to avoid infinite simulations.

Expressions about EVENTS or CONFIDENCE LEVEL refer to the evaluation object
given (of course). The expression is evaluated whenever a process is entering or leaving
the component (area), in case of confidence interval width or CPU time conditions more
rarely to reduce the computational overhead.

Note:

The DEFAULT specifications of the evaluation object are only valid in MEASURE
statements; they are not used for CONTROL STOP conditions.

Examples:

EVALUATIONOBJECT e VIA m.c DEFAULT ESTIMATOR CONFIDENCE LEVEL 90
START MODELTIME 500;

...
MEASURE POPULATION AT e; {here the defaults are used}
...
CONTROL AT e STOP CONFIDENCE LEVEL 90 MEASURE POPULATION;
{caution: here the measurement is started at model time 0, i.e., the start default of e is ignored}

CONTROL AT system STOP CPUTIME 1000;

5. Model Analysis - 159 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

For the MARKOV solver, only expressions concerning accuracy and the used CPU
time are permissible. For the LIN2 solver, only expressions concerning accuracy are
permissible. The DOQ4 solver ignores STOP conditions.

5.8.2. Trace Specifications

There are to forms of trace specifications:

- TRACE
A trace of a simulation consists of all process transitions from one area of a compo-
nent to another area (not necessarily of the same component). The model time of the
transition, the name of the process, the actual service call and the names of the
source- and sink-component are saved. The exact format is described in Appendix
G.5. The trace is written via link name "TRACE" which has a default EXTEND
binding to a file.

- TRACEALLIf a complete trace of the simulation is desired, TRACEALL can be
specified after CONTROL. If the trace shall be restricted to a special evaluation
object only (or to some evaluation objects), the CONTROL AT evaluationobject-
name TRACE construct must be used. In this case, only the transitions concerning
the component (area) the evaluation object is attached to are saved, the format of the
output remains the same. Of course the evaluation object must be declared in the
enclosing EVALUATE statement.

TRACE and STOP may be specified for the same evaluation object, but TRACE should
not be specified when TRACEALL is given.

Examples:

CONTROL TRACEALL
AT disk1 STOP MODELTIME 20000
AT cpu STOP EVENTS 10000;

CONTROL
AT disk1 STOP MODELTIME 20000
AT cpu TRACE;

Note:

Traces produced via TRACEALL often are very voluminous. Via AT evaobj TRACE
the trace can be restricted to components of interest. Moreover it is possible to
temporarily switch the trace off and on again via the predefined procedures trace_off
and trace_on (see Apendix D.2.4), hereby restricting the trace to time intervals of
interest.

- 160 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.9.Evaluation Statements
HI-SLANG offers two different kinds of evaluation:

- The analysis of a model by the EVALUATE statements. It renders statistical per-
formance values, either as a table or in a dump file.

- The pre-analysis of a component type by the AGGREGATE statement. It generates a
state dependent server as an aggregate of the analyzed component. The result is
written into a file (see Section 8. and Appendix G.4.) and represents a (special kind
of) component type.

These statements are permissible in the body of an EXPERIMENT block only. One
EXPERIMENT block may contain multiple EVALUATE and/or AGGREGATE state-
ments.

statement ::= …
| evaluate_statement
| aggregate_statement

5.9.1. EVALUATE Statements

The EVALUATE statement causes a statistical analysis of a model. To accomplish that,
it must perform the following tasks:

- Create a model object of a model type to be analyzed including parameter passing.
This includes the incarnation of all component objects referenced (declared or
enclosed) directly or indirectly within the model. Components declared outside the
model type but not referenced within the model are not incarnated.

- Define precisely which performance indices are of interest and how to obtain them.

One EVALUATE statement can cause a series of evaluations by, e.g., placing it into the
body of a loop. The EVALUATE statement consists of a declaration part and a body.

evaluate_statement ::=
EVALUATE

MODEL model-name : modeltype-name [actual_parameters] ;
evaluate_declaration […]

BEGIN
measure_statement […]
[control_statement]

END EVALUATE ;

evaluate_declaration ::=
evaluationobject_declaration

| hierarchy_declaration

The statement causes the generation of a model with the name model-name. This name
is arbitrary, but must obey the rules for constructing names and the scope of validity for
identifiers. The model is of type modeltype-name, which must be declared in the

5. Model Analysis - 161 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

environment of the EVALUATE statement. Model types may have parameters, so actual
parameters may be necessary. The rules for parameter passing for procedures apply.

The desired results are specified by measure_statements in the body of the
EVALUATE statement. Load filtering hierarchies and evaluation objects used here must
be declared in the declaration part (evaluation_declarations, consisting of evaluationob-
ject_declaration and hierarchy_declaration).

For a simulation a control_statement must be given indicating when to stop the evalu-
ation. When using solver DOQ4 a control_statement is ignored. For MARKOV and
LIN2 there may be a control_statement.

The EVALUATE statement is only permissible in the body of an EXPERIMENT block.
For the simulative method it must not be used within a BLOCK, CASE or WITH
statement.

An EVALUATE statement may not contain calls of self-defined procedures or random
drawing procedures (see Apendix D.2).

Example:

EVALUATE MODEL computer_system : computer_type (processor_speed, 10.0);
EVALUATIONOBJECT …
HIERARCHY …

BEGIN
MEASURE …
CONTROL …

END EVALUATE;

5.9.2. AGGREGATE Statements

The AGGREGATE statement specifies to pre-analyze model parts by aggregating com-
plex component types to a state dependent server (a component type as well, a so-called
substitute component type). The AGGREGATE statement is permissible in the analytic-
algebraical case (DOQ4) only; furthermore, it is only permissible in the body of an
EXPERIMENT block.

Aggregation is on the one hand a convenient means for reducing the state space, par-
ticulary for numerical solvers, and on the other hand for reducing the simulative com-
plexity in nearly complete decomposable (NCD) networks.

Within the AGGREGATE statement the maximum population of each provided service
of the component type has to be defined by CREATE statements.

aggregate_statement ::=
AGGREGATE componenttype-name [OUTPUT simple_text_expression] ;

create_or_submit_statement [...]
END AGGREGATE ;

The component type to be aggregated (componenttype-name) must be declared in one of
the blocks enclosing the AGGREGATE statement. Neither the component type nor one
of its provided services may be parameterized. For further restrictions see Appendix E.

- 162 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The CREATE statements (create_or_submit_statements) specify the maximum
population for each provided service of the component type. The statements must be of
the form

CREATE max_population PROCESS service-name;

The generated aggregated component type is written via the link name which may be
specified after OUTPUT (default is "PREANA"). The expression must be either a
constant TEXT or a constant or variable of type TEXT. The compiler control statements
for using an aggregated component type are described in Section 8. For the format of an
aggregated component type see Appendix G.4. The aggregated component type has the
same name as the component type to be aggregated, so that there are no changes in the
environment necessary (e.g., when declaring components).

Example:

AGGREGATE ct;
CREATE 10 PROCESS pt1;
CREATE 5 PROCESS pt2;

END AGGREGATE;

All solvers are able to use aggregated component types, hereby enabling hierarchical and
heterogeneous analyses.

Note:

When you use the produced aggregated component type, don't forget to include a
%BIND statement on the produced file in the %COMMON part, since it must be
read by both, compiler and analyzer.

5. Model Analysis - 163 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

5.10. EXPERIMENT Block
The "evaluation program" (that is the sequence of evaluations or aggregations desired) is
defined by the EXPERIMENT block. The EXPERIMENT block consists of the
specification of a solver, the declaration part and the body.

experiment_block ::=
EXPERIMENT experiment-name METHOD method ;

[declaration […]]
BEGIN

[sequence_of_statements]
[plot_statement […]]

END EXPERIMENT [experiment-name] ;

method ::=
ANALYTICAL simple_text_expression

| SIMULATIVE

declaration ::=
common_declaration

| modelling_declaration

For user convenience each experiment has a name (which will be used as a title when
presenting results, etc.). This name is arbitrary (but must obey the rules for constructing
names and the scope of validity for identifiers). This name may be repeated at the end of
the EXPERIMENT block. A warning is submitted if it is repeated incorrectly.

After METHOD the solver (method) for this experiment is selected. This decision is
valid for the whole EXPERIMENT block. The simulative solver allows to use (nearly)
the complete set of HI-SLANG constructs, for the very few restrictions compared with
the analytical solvers see Appendix E.2.

If one of the analytical solvers is chosen, only a subset of HI-SLANG is permissible,
these restrictions are described in Appendix E.1.

The simple_text_expression after ANALYTICAL must always be of type TEXT. The
following values are permissible (case-insensitive):

- "DOQ4", "DOQ3", "SEPARABLE", "BCMP", "PRODUCTFORM", "NONSE-
PARABLE-APPROXIMATE"

These strings all select DOQ4. The decision about the concrete algorithm
(exact/approximate etc.) will be made internally.

- "LIN2", "LINEARIZER", "SEPARABLE-APPROXIMATE", "PERFORMANCE
BOUNDS"

These strings select LIN2.

- "MARKOV", "NUMERICAL", "MARKOVIAN", "MARK"

These strings select the numerical solver (MARKOV).

- 164 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

In the declaration part of the EXPERIMENT block all kinds of declarations are
permissible except:

- virtual declarations of components (ENCLOSE),
- declarations of streams (STREAM),
- declarations of services (TYPE name SERVICE), and
- declarations of process objects (PROCESS).

Especially the declaration of model types and component types is permissible, but
should preferably be done before the experiment block in order to clearly separate the
model description from the experiment description.

The body of the EXPERIMENT block consists of arbitrary statements, especially zero
or more EVALUATE or AGGREGATE statements (sequence_of_statements) and as
last statements zero or more GRAPH or HISTOGRAM statements (plot_statement).
The EVALUATE and/or AGGREGATE statements may be enclosed by control con-
structs such as LOOP to perform evaluation series.

Example:

{ declaration part for model and component types }

EXPERIMENT analysis METHOD ANALYTICAL "Separable";

{ declaration part, mainly variables for evaluation control }

BEGIN

{ body, containing EVALUATE and/or AGGREGATE statements }

END EXPERIMENT analysis;

6. Program Structure - 165 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

6. HI-SLANG Source Structure
A compilable HI-SLANG source (hit_unit) consists of an EXPERIMENT block
(experiment_block) combined with an optional declaration part (declaration).

hit_unit ::=
[declaration [...]] experiment_block

declaration ::=
modelling_declaration | common_declaration

modelling_declaration ::= common_declaration ::=
process_declaration record_declaration

| component_declaration | variable_or_constant_declaration
| enclose_declaration | procedure_declaration
| stream_declaration | type_declaration

Any type of (syntactically deductible) declaration, excepting streams, virtual components
using ENCLOSE, services and process objects, is allowed in the declaration part
preceding an EXPERIMENT block. Within the common_declaration part, procedures,
variables, constants and any type of modelling objects can be declared.

A complete HI-SLANG source roughly falls into the parts of "model description"
(Chapter 4) and "model analysis" (Chapter 5). The model description part contains the
declaration of one or more model types and/or one or more component types. Model
analysis is meant on the one hand for statistical evaluation of the model types via created
models, on the other for pre-analysis of component types to generate aggregated
submodels, or for both.

A more complex structuring is provided by definition of model type structures and
component type structures as well as by the block structure of the programming lan-
guage kernel of HI-SLANG.

Section 6.1. discusses the block concept of HI-SLANG. It treats the general program-
ming language concepts of HI-SLANG as well as the structuring mechanisms of
modelling and performance evaluation. The scopes of identifiers based on the block
concept are explained in Section 6.2. following some simple rules.

- 166 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

6.1.The Block Concept
The essential structuring technique in HI-SLANG is the block concept. A block consists
of a declaration part to define local objects and data types and of a statement part in
which those objects and types are used. Blocks serve two different purposes:

- The EXPERIMENT block, the EVALUATE statement, the BLOCK statement and
procedures are part of the structuring concept of HI-SLANG as a high level
language.

- Model types, component types and services are the basic utilities for structured
modelling. Their use and their arrangement depends on the system that is to be
modelled.

One of the main tasks of blocks is to limit the scope of objects and types to provide
means for efficient problem handling. The module-like blocks (component and model
types) enhance this concept by yielding exactly defined interfaces.

The method of hierarchical ordering of blocks by nesting one block into another is use-
ful in a structured problem handling following the idea of stepwise refinement. The em-
bracing outer blocks contain and furnish general utilities as well as global objects and
types.

Each complete HI-SLANG source consists of exactly one EXPERIMENT block that
can be preceded by a declaration part. The EXPERIMENT block and the preceding
declaration part are embedded in an outer block, the modelling environment, which
contains all predefined objects and types. Part of this environment is represented by the
HIT Standard Mobase, the rest is built into the HIT system itself such as standard
procedures.

6.2.Scopes of Identifiers
All local identifiers declared within one block must be unambiguous. Multiple
declarations of an identifier within one block leads to a HI-SLANG compile error
message. The name of the EXPERIMENT block, the model name within an
EVALUATE statement and the formal parameters of procedures, model types,
component types and services are local in that block. These identifiers may not be re-
declared within the declaration part of that block.

Regardless of the sequence of notation, every declared identifier is known in the whole
declaration part and the statement part of the block. It is also known in every inner block
unless the identifier has been newly declared there. If it has, only the latest declaration is
valid for this block as well as for all following inner blocks (in terms of the block
structure). Newly declaring an identifier is thus allowed and replaces (the validity of) all
previous declarations in outer blocks.

Identifiers declared in the declaration part preceding the EXPERIMENT block are
known in the EXPERIMENT block itself. Identifiers declared in the modelling en-
vironment (e.g., predefined procedures and constants) are global to the entire source.

Relevant in terms of the scope of identifiers in procedures, record types and any type of
modelling object is only the declaration environment, not the block in which a procedure
has been activated or an object has been generated.

6. Program Structure - 167 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Outside of a block its local declarations are not known. This is true for embracing
blocks as well as parallel blocks. Some exceptions to this rule are discussed later on.

Services and procedures which are local within a component type may be made available
to the next-higher component type by use of the PROVIDE declaration. The upper level
component type can take access to one of these provided objects using a special
mechanism, the REFER part. The procedures popul, popul_announce, popul_entry,
popul_service and popul_exit are known in any component type without explicitely
being provided. Services provided by a component type are also known and available
within the statement part of the AGGREGATE statement.

The identifiers of utilized services or procedures being used within a service or
procedure definition are specified in the USE declaration part, the interface of services
and procedures. Just as the provided objects, they can only be used in the REFER part
of the component type they belong to.

Access to block-local objects and types is limited within CONCURRENT statements in
services. See Section 4.1.5.1.

The identifiers of components, services and used services may be accessed in the
definition of evaluation objects and load filtering hierarchies. They must, however, be
completely specified and qualified by navigating from the model down to the evaluation
object.

References to files (by link names) are not influenced by the block concept. Therefore,
all used link names must be unambiguous and globally declared in the control file.
Regarding the control file, they may refer only to one file or mobase object.

7. Installation Dependent Properties - 169 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

7. Installation Dependent Properties
The HI-SLANG compiler is a pre-compiler generating SIMULA code (see Section
1.5.). A portation therefore depends upon a suitable SIMULA compiler on the target
machine.

Presently, the following HIT installations exist, determined by hardware, operating
system and SIMULA system. They are in use at different universities and companies.

1) Siemens mainframe , BS2000, (VM/CMS) , IBM-SIMULA
2) IBM mainframe , MVS , IBM-SIMULA
3) SUN/3, SUN/4 , SunOS4.1 , Lund-SIMULA, CIM
4) Apollo workstation , Domain/OS SR 9.7 and 10.2 , Lund-SIMULA
5) most PC'386 , interactiveUNIX, SCO/UNIX , S-PORT-SIMULA, CIM
6) DEC station , Ultrix , Lund-SIMULA, CIM

The following are or have been in the stage of planning or preparation:

8) Targon 31 , UNIX System V , TPH-SIMULA
9) VAX , UNIX , Lund-SIMULA

For the mentioned Simula Systems see /IBMSim86/, /LundSim87/, /PCSim89/,
/TPHSim87/ and /CIM91/.

Operating system command procedures, which facilitate the usage of the HIT system,
exist for all installations. An explanation of these procedures is provided in the HIT
User's Guide, e.g., /LeWe92/.

7.1.SIMULA System Dependencies
It is obvious that restrictions of the SIMULA system used also apply for HIT. Es-
pecially for installations based on the IBM SIMULA system there are certain limits for
the number of identifiers declarable and the depth of nesting blocks and control state-
ments. Since the HI-SLANG compiler inserts identifiers and blocks to the generated
SIMULA code these restrictions cannot be exactly quantified for HI-SLANG. More-
over, a considerable amount of CPU time may be spend with garbage collection when
compiling or analysing voluminous models.

If an optimizing SIMULA system is used the SIMULA compiler may find errors which
normally are not detected before run time, as, e.g., "division by zero" within constant ex-
pressions. This kind of errors are the only ones allowed to occur during the SIMULA
compilation phase of HIT.

Since HI-SLANG has no run time system of its own the SIMULA run time system is
used for the HIT analyzers. Thus the format of basic run time errors depends on the
SIMULA system used.

- 170 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

7.2.Operating System Dependencies
File names are specified only within the HIT control file (see Chapter 8.), not within the
HI-SLANG source code. The file names have to correspond to respective operating
system conventions. If the file names are too long, run time errors are possible, de-
pending upon the installation. This applies especially for generated file names created
from the name of the control file according to a fixed scheme (see Section 8.2.6.). For
installations under UNIX, the distinction of upper- and lower-case characters and, in
some versions, the limitation of the length of the name to 14 or even less characters has
to be paid particular attention.

Within HI-SLANG sources files are only addressed via link names. The binding of link
names to files or objects within a modelling base is only contained in the control file, so
HI-SLANG models are completely portable. The link names are texts which can be
chosen randomly.

Depending on the installation, HIT varies in the respect of

- the %CMD record within the HIT control file, since the argument is an operating
system command,

- the STARTUP control file in total, since it defines file names and file name
generation patterns.

For additional reference turn to Chapter 8.

7.3.Hardware Dependencies
In the following passage, only the installation-dependent properties of the standard types
are listed. They depend upon the hardware employed and are adapted for HIT from the
SIMULA system used.

type of data default value range of values

INTEGER 0 -maxint .. maxint
REAL 0.0 -maxlongreal .. maxlongreal
BOOLEAN FALSE TRUE, FALSE
CHARACTER char(0) all available characters
TEXT "" "" or sequence of characters

The IBM- as well as the Siemens-installations use EBCDIC code, while all UNIX
installations use ASCII code. The predefined procedures rank and char give access to
the code (see Appendix D.).

The typical value of maxint is 2**31 (approximately 2.14E9). On mainframes from
IBM and Siemens, maxlongreal has the value of 16**63 (approximately 7.23E75),
whereas on SUN workstations it has approximately the value 1.8E308. There, the output
of the exponent always occurs in three digits. REAL values mostly have a precision of
approx. 16 decimal digits. The exact values can be taken from the description of the
hardware or the SIMULA system, or try the HI-SLANG constants MAXINT and
MAXREAL.

8. Control of the HIT System - 171 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8. Control of the HIT System
HIT is called by an installation dependend operating system procedure, sequentially ac-
tivating the HI-SLANG compiler, the SIMULA compiler and linker and the generated,
compiled and linked analyzer.

Control of the HIT system means defining files or objects as input or output for all
these steps and setting of different parameters. Both is done in the so-called HIT control
file, which is interpreted by the HIT-FAN system of the compiler or analyzer.

FAN means File Access Network. With the help of this network every logical file HIT
deals with may be connected either to a physical file or to an object within a modelling
base (shortly called mobase). For output files even both may apply at the same time.

The modelling base is designed to store all objects occuring in the modelling and evalu-
ation process. It can be managed by the interactive program HIT-OMA (Object
MAnager) (see /Weis92b/), but the HIT system is able to read and write objects within
such a mobase directly.
The FAN system thus combines the operating system interface and the modelling base
interface to one standard interface for the HIT system, which may be "programmed" by
the "user interface", being the control file in the simplest case. However, there are
defaults for all control records (the contents of a control file), so one can use HIT even
without a control file. In this case a HI-SLANG source file may be given as control file.

8.1.File Objects and Link Names
A file object is an operating system file or an object within a modelling base. For his-
torical reasons file objects are often simply called files in HI-SLANG. As a rule file ob-
jects are denoted by their link names, being strings of arbitrary contents and length ≤
132 characters. This is the most flexible way of accessing files.

Some link names are predefined by HIT, especially those having a fixed meaning as,
e.g., "LISTING" or "TABLE". Special purpose link names may be invented by the user.
Most link names are declared in the control file and occur in HI-SLANG source files at
different places.

The following two tables give a complete overview about all standard link names and
user-defined link names, their meaning and usage in HI-SLANG sources. The column
titled # gives the maximal number of file objects of that kind (n : no restriction). An L in
place of the link name denotes an arbitrary user-defined link name.

physical FAN logical

file INFILE

mobase
object OUTFILE

- 172 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

File Objects of the Compiler

kind of file object link name occurance in the source
1 control file CONTROL -
1 HI-SLANG source SOURCE -
1 standard input SYSIN -

I 1 initial input SYSINIT -
N n HI-SLANG module L %COPY "L"

n aggregated component type L %COPY "L"
1 message library MESSAGE -

O 1 generated analyzer CODE -
U 1 compiler listing LISTING -
T 1 standard output SYSOUT -

File Objects of an Analyzer

kind of file object link name occurance in the source
1 control file CONTROL -
1 standard input SYSIN -
1 initial input SYSINIT -

I n aggregated component type L, Typename %COPY "L"
N n infile L OPEN f, "L" LENGTH n

n dump file L, DUMP GRAPH...INPUT "L"
HISTOGRAM...INPUT "L"

1 message library MESSAGE -
n tabular results L, TABLE ...OUTPUT TABLE "L"
n dump file results L, DUMP ...OUTPUT DUMPFILE "L"
n produced graph L, GRAPH GRAPH...OUTPUT "L"
n produced histogram L,HISTOGRAM HISTOGRAM...OUTPUT "L"

O n outfile L OPEN f, "L" LENGTH n
U 1 trace TRACE -
T n aggregated component type L, PREANA AGGREGATE ct OUTPUT "L"

1 numeric matrix scheme MATRIX -
1 numeric state table STATES -
1 analyzer listing LISTING -
1 standard output SYSOUT -

(internal data structures) PRINTDS -

Notes:

L, link name means that link name is predefined and bound to a default file, but link
name may be rebound and it can also be substituted by an arbitrary link name. The file
objects with link names "TABLE", "DUMP" and "TRACE" are written in EXTEND
mode to support evaluation series: The results of the next evaluation are appended to the
current results.

Rebinding "PRINTDS" the corresponding file should be bound in EXTEND mode (to
get the complete information).

For more information concerning these link names see Section 8.2.2. and Appendix G.

8. Control of the HIT System - 173 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.The Control File
If the name of the control file has not been passed to the operating system procedure
calling hit, the HI-SLANG compiler or analyzer will ask for that name, e.g., by

%BIND "CONTROL" TO ?

Now you can enter a file name or specify an object within a modelling base (see syntax
file_object, Section 8.2.2.). It is also possible to enter SYSIN here, whereafter the
contents of the control file can be entered via keyboard.

The control file has record length ≤ 132 and the following structure:

%COMMON
control records valid for both compiler and analyzer

%COMPILER
control records for the compiler

%ANALYZER
control records for the analyzer

%END
HI-SLANG source may follow, e.g., %COPY directives

The FAN system of the compiler only interprets the %COMMON- and %COMPILER-
part of the control file in the given order, while the analyzer's FAN scans the
%COMMON- and %ANALYZER-part. Only the interpreted records occur in the
listing. Every part may be missing (even the control file in total), and the sorting of these
parts is arbitrary. Lower-case letters are converted to upper-case letters (with the
exception of file names) and are listed in such style.

After the keyword %END the HI-SLANG source to be compiled may appear (record
length ≤ 132). The control file part may also be totally missing, e.g., in the case that a
source file is given as control file and thus all defaults are used and missing file
bindings are queried during run time.

All control records start with a '%'-character, which is the first character different from
blank or tab. The records may be completed in the following lines.

There are five different control records to be introduced in the next sections: %PARM
and %BIND, as well as the less important records %MOBASE, %CMD and
%DEFAULT.

- 174 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.1. Setting Parameters (%PARM)

For setting different parameters in the control file there exists the control record.

control_record ::= ...
| %PARM = parameter [, ...]

Different parameters may be separated by commas or distributed on different %PARM
records. There are three classes of parameters: Compile options affect the operation of
the compiler, while analyzer options take influence on analyzer outputs. These param-
eters do only make sense in the corresponding part of the control file, while printing
options affect both the listing of the compiler and that of the analyzer.

In general, a parameter has one of the following forms:

parameter ::=
name = value

| [NO]name

Either a value is assigned to name or name is a switch which may be reset by NOname.

In the following three lists of parameters the defaults are given in brackets after the name
of the parameter. A default YES means that no NO-prefix is given in the default.

8.2.1.1. Compiler Options

Compiler options modify the operation of the HI-SLANG compiler. There are the
switches CHECK, COM as well as XREF, DEBUG and CIM, with the following
meanings:

CHECK (NO)

The HI-SLANG source is only tested for syntactical and semantical correctness. No
code is generated. Because CHECK is always the invers to COM it can also be set
by NOCOM.

COM (YES)

COM is the normal compile mode. A complete compilation is performed and the
SIMULA code is generated via link name "CODE". If no errors are detected, the
SIMULA compiler and linker and the produced analyzer are started afterwards.
Because COM is always the invers to CHECK, NOCOM is the same as CHECK.

8. Control of the HIT System - 175 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

XREF (NO)

If XREF is demanded the compiler will additionally generate a cross-reference-table
of all the identifiers in the given source. The XREF-table is appended to the listing,
see Appendix G.1.

DEBUG (NO)

If DEBUG is set, the generated SIMULA code contains the corresponding absolute
HI-SLANG source line numbers (whenever possible) as prefixing comments in the
style

!nnnnn; <code.line>

This might help when there are problems as described in Appendix. H. It is planned
to construct a HI-SLANG debugger HIDe using this kind of information.

Example:

%PARM = CHECK, xref, debug

CIM

If the CIM switch is set, a slightly different code for the CIM SIMULA system is
generated. The default is installation dependent.

Example:

%PARM = CIM
%PARM = NOCIM

8.2.1.2. Printing Options

The compiler as well as all the analyzers produce a listing. Both start with a protocol of
all interpreted records of the control file, followed by a completion message of the FAN
system. The compiler listing is continued by a numbered display of the assembled
source. For further remarks see Appendix G.1.

For pretty printing there are the parameters MAXERROR, LINES and INDENT, which
can be assigned a value, and the switches SOURCE, RESWD, WARN,
WARNACCESS and RELATIVE.

They have the following meanings, with default values given in brackets:

SOURCE (YES)

Normally a listing of the control file and the source according to the following
parameters is generated. If NOSOURCE is given there will be no listing at all, even
if the source contains %SOURCE compiler directives. Especially for big models this
can save a lot of time, because PASS 1 only needs half the time as usual.

- 176 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

RESWD (YES)

If RESWD is set all reserved words of HI-SLANG will be printed in capital letters,
while all other identifiers are printed lower-case, independent of the style of writing
in the source. NORESWD suppresses this preparation.

WARN (YES)

Not only error messages but also warnings may be given on the listing as well as on
the standard output SYSOUT (e.g., terminal). NOWARN suppresses warnings.

WARNACCESS (YES)

Warnings about the usage of variables, constants, (self-defined) procedures, records
and record types, which are not defined locally and are not accessed via a (parameter)
interface, may be given on the listing as well as on the standard output SYSOUT
(e.g., terminal). NOWARNACCESS suppresses these warnings.

RELATIVE (YES)

Normally every error message or warning of the compiler is followed by another
message giving the relative line number (second row of numbers in the listing) and
the file object which contains the error or caused the warning. This second message
is only given if the relative line number is different from the absolute line number of
the assembled source. With NORELATIVE it can be suppressed.

MAXERROR = number (200)

The number gives the number of error messages after which the HI-SLANG com-
piler or analyzer is stopped due to maxerror overflow.

LINES = number (65)

The number denotes the number of lines per page of the listing. The first two lines
of the page, the title line and a blank line, are not included.
The value 0 means an unlimited number of lines per page.

INDENT = [character] number (blank 3)

The number gives the number of blanks per block for indenting the listing. Option-
ally, a character may appear immediately after the '='-character. This character is
used to connect start and end of a block. Only digits are not allowed here, meaning to
omit the character.

Example:

control file:

%PARM = INDENT = | 3

listing:

8. Control of the HIT System - 177 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

TYPE st SERVICE;
| USE
| | SERVICE s;
| END USE;
BEGIN
| ...
| ...
END TYPE st;

Examples:

%PARM = INDENT =: 5, noreswd, nowarn, maxerror = 10
%PARM = lines = 60, NORELATIVE

8.2.1.3. Analyzer Options

Currently there are these options to influence analyzer output: EXTERN, UPDATES,
MINMAX, SOLVERINFO, FREQUENCYFORMAT, TRACEFORMAT and
PRINTDS. They have the following meanings:

EXTERN (YES)

The matrix scheme and the states of the numerical solver are stored on external files,
so the virtual storage of the user can completely be used for the solving algorithm.
Normally this saves run time. If NOEXTERN is set the two data sets are managed
internally.

UPDATES (NO)

In table outputs of simulations the number of updates recorded for all streams will be
given after the mean value in the same field. An update is the execution of an
UPDATE statement, or an automatic update of a standard stream (cf. Section 5.1.3).

This option can also be activated by %parm=events, but has been aliased now, since
confusion with event streams as well as events occuring in STOP conditions (a
process leaving a component) should be avoided.

MINMAX (NO)

In table outputs of simulations the minimum and maximum value recorded for the
corresponding stream within the observation interval will be given below the mean
value in the same field.

For COUNT / STATE / EVENT streams these values are the minimum and
maximum interevent time / trajectory value / recorded value, respectively.

SOLVERINFO (YES)

The user will be informed why a special algorithm of the selected solver was applied.
See Appendix G.1.3. for more information.

- 178 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

FREQUENCYFORMAT = number (1)

This option controls the table output of the estimator FREQUENCY. The default
value of 1 corresponds to relative values for STATE streams and absolute values for
EVENT streams. A value of 2 means relative values, whereas a value of 3 means
absolute values of times for STATE streams and number of occurrences of EVENT
streams.

TRACEFORMAT = number (1)

This option affects the format of the event trace of a simulation. The numbers 1, 2
and 3 are currently supported, other numbers cause an unpredictable behaviour. See
Appendix G.5.1. for more information.

PRINTDS (NO)

Print out most data structures construced by the analytical solver applied. This option
is mainly for debugging purpose, thus the output generated via the standard link
name "PRINTDS" is not documented.

Example:

%PARM = noextern, updates, minmax

8.2.2. Binding Link Names (%BIND)

For the binding of a logical link name to a physical file or mobase object (or both) the
HIT system provides the control record

control_record ::= ...
| %BIND "link_name" TO [io_mode] file_object

By using link names instead of file names or specifications of mobase objects within the
HI-SLANG source the models become independent of the operating system and model-
ling base underlying HIT. As a rule, link names are always double-quoted, and using
lower-case letters or upper-case letters is the same.

The keyword TO may be followed by a mode specification:

io_mode ::=
EXTEND

| READONLY

Normally a file object may either be read or (over)written or sequentially both. Spec-
ifying READONLY protects the file object from being changed, while EXTEND means
that anything written to that object will be appended to its end.

The name of a file or specification of a mobase object follows:

8. Control of the HIT System - 179 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

file_object ::=
mobase_object

| file_name
| SYSIN
| SYSOUT
| "link_name"
| DEFAULT

SYSIN and SYSOUT are special file names standing for standard input (e.g., keyboard)
and standard output (e.g., terminal). Giving a link name as file object denotes that special
file or object already bound to that link name. The alternative DEFAULT activates the
HIT default file name generator to create a file name according to the pattern defined by
the %DEFAULT record.

Every link name may be bound at most to one file and/or one mobase object, only the
last such binding is valid. If a link name has a file binding and a mobase binding both
file objects are written in parallel, while only the mobase object can be read in such a
case. Different link names can be bound to the same file_object and vice versa, but this
facility should be used carefully.

For some predefined link names there are some restrictions:

- If there is no binding to "SOURCE" within the compiler control part the compiler
expects to find its HI-SLANG source following the %END of the control file.

- The predefined binding of "CODE" (generated SIMULA code) to a file (defined in
the STARTUP file of HIT) may not be overridden for most installations of HIT.
This is because the SIMULA compiler following HIT has to find its input.

- If "SYSINIT" is bound then "SYSIN" has initially the same binding. Not before the
end of the "SYSINIT" file object is reached the default or explicit binding of
"SYSIN" becomes active. For UNIX installations, "SYSINIT" is bound in the
STARTUP file to deliver the name of the control file (normally read from standard
input) to compiler and analyzer. Here it may not be rebound.

- The link name "MESSAGE" may only be bound to directfiles having the HIT mes-
sage format. This is of no interest to the normal user.

The syntax of file_name and mobase_name is defined by the underlying operating sys-
tem, but may not contain a '('-character or a blank (exception: in CMS it must contain
one blank). Please also note that the check of file_name is realized in SIMULA, i.e.,
only the existence of the name can be checked (for example a directory (UNIX) is
handled as a file but can lead to SIMULA Run Time Error at the first read attempt).

If the name is not followed by an opening bracket it denotes a file, otherwise a mobase,
and the access attributes of the desired object are given in brackets. The following
section defines these attributes for the standard modelling base of HIT.

If a file to be read cannot be found in the actual directory, an error message occurs. For
UNIX installations the file is then also searched in the directory where the control file
was found, if the file is not specified with absolute path.

- 180 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

%bind "source" to SYSIN
%bind "TRACE" to SYSOUT
%bind "TABLE" to extend SYSOUT
%bind "data" to DEFAULT
%bind "input" to readonly DEFAULT

8. Control of the HIT System - 181 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.3. Accessing Mobase Objects

Currently there is one standard modelling base for HIT simply called HIT-MOBASE.
There are two interfaces for this mobase: One is used directly by the HI-SLANG com-
piler and all analyzers, the other is the object manager HIT-OMA described in
/Weis92b/. Both use the same syntax to access objects. The objects are identified by a
mobase_name followed by at most 4 attributes in the following order:

mobase_object ::=
[mobase_name] ([module], [type], [object], [protection])

Mobase_name denotes the name of the mobase in which the object is (to be) stored. A
user can work with an arbitrary number of mobases at the same time, one of which is the
HIT standard mobase. If mobase_name is omitted the actual mobase is referred to. An
actual mobase is defined by the %MOBASE record (see below). If the control file is
itself stored in a mobase this mobase becomes the actual mobase if no %MOBASE
record is used.

Module defines the representation of the object. If it is omitted the most efficient ex-
isting representation is used (e.g., PREANAlyzed before HI-SLANG).

Type denotes the contents of the object (e.g., COMPONENT or SERVICE). It may be
omitted if the object is nevertheless identified uniquely (see below).

Object is the object's name composed of letters, digits, dots and underscore characters,
the first character being a letter. Only the first 12 characters are significant. If the object
name object is omitted the link name (see %BIND) is used as object name.

Protection. This attribute may have the values 'p' (protected) or 'u' (unprotected). Objects
are created unprotected if this attribute is omitted or not set to 'p'. Protected objects may
be read, but can only be overridden when protection is set to 'p'.

The attributes module and type may be abbreviated but must clearly identify the attribute
value. Moreover module and type have to be consistent. The following combinations are
allowed:

module type

CONTROL CONTROL, OTHERS

HISLANG MODEL, COMPONENT, SERVICE, PROCEDURE, EXPERIMENT,
OTHERS

PREANA COMPONENT, OTHERS

SIMULA ACCEPT, SCHEDULE, DISPATCH, OFFER, OTHERS

DATA FILE, DUMPFILE, TABLE, GRAPH, HISTOGRAM, TRACE
LISTING, MATRIX, STATES, OTHERS

- 182 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

To simplify the specification of a mobase object there is a four-level default mechanism:

1. If object has not been specified, its default value is defined as the link name.

2. When binding a standard link name, the values for module and type are already de-
termined distinctively by the link name itself, following the table below. The only
exception is marked by an asterisk in the table: Here the values following the asterisk
are the default:

link name → module & type
CONTROL CONTROL CONTROL
SOURCE HISLANG *EXPERIMENT
PREANA PREANA COMPONENT
LISTING DATA LISTING
DUMP DATA DUMPFILE
TABLE DATA TABLE
GRAPH DATA GRAPH
HISTOGRAM DATA HISTOGRAM
TRACE DATA TRACE
MATRIX DATA MATRIX
STATES DATA STATES

3. If a user-defined link name was bound and the object is to be read, the most efficient
object matching the attribute combination is searched for in the specified mobase.
The module precedence rules are CONTROL < DATA < HISLANG < PREANA <
SIMULA, the most efficient representation being SIMULA. If several objects of
different types match the specification, the object with the type lowest in alphabetical
order is addressed.

4. If no object can be found following the procedure described above, and if neither
type nor module is given, an error message is produced. In all other cases the mis-
sing attribute is set according to the following table, an asterisk distinguishing the de-
faults, all other combinations being determined by the consistency table.

type → module modul → type
CONTROL CONTROL CONTROL CONTROL
COMPONENT *PREANA DATA *TABLE
SERVICE *HISLANG HISLANG *EXPERIMENT
PROCEDURE *HISLANG PREANA COMPONENT
MODEL *HISLANG SIMULA *SCHEDULE
EXPERIMENT *HISLANG
FILE DATA
DUMPFILE DATA
TRACE DATA
TABLE DATA
LISTING DATA
MATRIX DATA
STATES DATA
ACCEPT SIMULA
SCHEDULE SIMULA
DISPATCH SIMULA
OFFER SIMULA
OTHERS *SIMULA

8. Control of the HIT System - 183 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples (for %BIND):

%BIND "SOURCE" TO mylib (HISLANG, , INSTALLATION)
%BIND "ST" TO mylib (, COMPONENT, CT)
%BIND "ct_agg" TO mylib (PREANA,,,P)

8.2.4. Declaring a Modelling Base (%MOBASE)

If several link names are to be bound to objects within a single mobase, the constant
repetition of the mobase name can be annoying. If no name is specified, the mobase
name declared by the last %MOBASE record is amended. If there was none and the
control file itself is contained in a mobase, this mobase becomes the actual mobase
automatically. The record has the following syntax:

control_record ::= ...
| %MOBASE [READONLY] mobase_name

The syntax of mobase_name depends on the underlying operating system. READ-
ONLY specifies that objects may only be read from that mobase. In this case more than
one user can read objects from that mobase at the same time. The HIT standard mobase
is automatically declared in this way. If READONLY is omitted, only the user can read
from and write into the mobase.

The READONLY modus can only be specified by using %MOBASE. Mobase names
introduced within a file_object are therefore exclusive to the user.

Examples:

%MOBASE READONLY project.x.lib
%BIND "input1" TO (DATA, FILE, in1)
%BIND "input2" TO (DATA, FILE, in2)

%MOBASE mylib
%BIND "TABLE" TO (, , mytab, P)
%BIND "DUMP" TO (, , mydump, P)

- 184 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.5. Specifying Operating System Commands (%CMD)

It may be useful to submit operating system commands before and/or after the run of
the compiler and/or analyzer. This can be specified by the control file record

control_record ::= ...
| %CMD [AFTER] "operating_system_command"

where operating_system_command must comply with the syntax of commands of the
underlying operating system. Specification of AFTER implies execution after the run of
that part of HIT initially interpreting the record. The four possible alternatives are illus-
trated here:

%COMPILER
c1 %CMD "c1"
run of HI-SLANG compiler % compiler control file
c2 %CMD AFTER "c2"
run of SIMULA compiler ...

%ANALYZER
c3 %CMD "c3"
run of analyzer % analyzer control file
c4 %CMD AFTER "c4"

%END

This record is not necessarily supported by all HIT installations and may have no effect.

Examples: (BS2000)

%CMD "TCHNG OFLOW=NO"
%CMD "FSTAT"
%BIND "link" TO ? "Please enter file name"
%CMD AFTER "PRINT #HIT.LISTING, SPACE=E, LOCK=YES"

8. Control of the HIT System - 185 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.6. Defining File Name Defaults (%DEFAULT)

The standard link names of the HIT system (see table in Section 8.1.) can be left un-
bound. They either have a default binding to a file, which is true when the control file is
a plain file, or they have a default binding to the mobase containing the control file. The
default file name is generated by the HIT file name generator, which is "programmed" in
the HIT STARTUP file by a %DEFAULT record and can be re-programmed by a
%DEFAULT record in a control file created by the user.

control_record ::=
| %DEFAULT "pattern"

This pattern is not only applied to standard link names, but can also be employed for
user-defined link names by writing

%BIND "link name" TO [EXTEND] DEFAULT

The file name generation pattern may be composed of the following elements:

<C> : For this element the name of the control file (which may also contain the
source) is substituted.

<S> : Same as <C>, but the suffixes .CONTROL, .CTL or .HIT are stripped
from the name of the control file, regardless whether they are written
lower-case or upper-case.

<L> : The link name of the file which is to be named is substituted for this
element. Special characters within the link name are replaced with 'Y'-char-
acters. For UNIX systems, the link name is converted to lower-case.

<-z> : Any suffix starting with the character z is deleted from the file name
generated so far. If no z is found the whole current construction is
deleted.

<+> : Adds the suffix which has been deleted by the last <-z> element.

<1> : Deletes the whole current construction (sets pointer to 1).

</s/t/> : Adds either text s to the file name or, if the file contains print control
characters (as e.g., tables, listings), adds text t.

<xd> : A digit d may be inserted preceding the closing bracket of any element x,
expressing the maximum number of characters to be generated by the
element. This element may not contain a blank.

others : Elements not included in such brackets are simply appended to the current
construction.

Different patterns are reasonable for different operating systems:

- 186 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

BS2000 : %DEFAULT "#<S>.<L>"
MVS : %DEFAULT "<C><-.><L>.</DATA/TEXT/>"
VM/CMS : %DEFAULT "HIT <L>"
UNIX : %DEFAULT "<S><-/><1>t.<+>.<L3>"

The patterns drawn above generate the following file names for "LISTING" and "TRACE" in
reaction to the respective control file names specified in the first line:

BS2000 : MODEL.CONTROL
#MODEL.LISTING
#MODEL.TRACE

MVS : MODEL.DATA
MODEL.LISTING.TEXT
MODEL.TRACE.DATA

VM/CMS : MODEL CONTROL
HIT LISTING
HIT TRACE

UNIX : hit/model/vers1.ctl
t.vers1.lis
t.vers1.tra

The UNIX pattern contains nearly all existing elements. It operates in the following way (e.g., for
hit/model/vers1.ctl) :

apply result is comment
<S> hit/model/vers1 .ctl stripped off
<-/> hit/model vers1 stored in <+>
<1>

t. t.
<+> t.vers1

. t.vers1.
<L3> t.vers1.lis first three letters of "LISTING" lower-case

The %OMA segment of the HIT STARTUP file contains further %DEFAULT records.
These have slightly different meanings, explained in /Weis92b/.

8. Control of the HIT System - 187 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.7. Dialogue Support

To increase the portability of HIT, a simple dialogue component is included in the FAN
system. HIT can therefore be comfortably used in any environment.

Dialogues may be specified within the control file by using

? ["query_text"]

as argument of a control file record.

When the FAN system interprets such an argument it prints the query_text on the ter-
minal and waits for input. If no query_text is given the control record itself is used as
query text. The input is registered on SYSOUT and substituted for the query text within
the control file listing. Therefore the input may not be longer than the query text if more
arguments follow in the same line.

Example:

%MOBASE ?
%BIND "SOURCE" TO ? "which SOURCE file ?"
%CMD ? "You may enter an OS command now"
%PARM = INDENT = ? "indent value ?", ? "please enter run option", XREF

There is an implicit activation of this dialogue component if I/O is to be made via an un-
bound user-defined link name. The FAN system automatically asks for the binding with

%BIND "link name" TO ?

The user's input must follow the file_object syntax (see Section 8.2.2.), optionally
prefixed by EXTEND or READONLY. There is no query for standard link names
(except "CONTROL") since they have a default binding to a file (see %DEFAULT and
table of link names in Section 8.2.3.). There is also no query for the link names of all
objects within the HIT standard mobase (e.g., "semaphor"), so they must not be bound.
The same mechanism applies for objects found in the actual user mobase (see
%MOBASE).

8.2.8. Comments

The control file may contain comments, starting with %blank. Moreover, empty lines can
be used to structure control files. An arbitrary amount of comment may also follow
directly upon the keywords %COMPILER, %ANALYZER, %COMMON and %END.

Examples:

% This is a comment
% CMD "Attention, this is a comment"

%COMPILER control

- 188 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.2.9. Defining Configurations

One of the purposes of the control file is to define all input files or mobase objects for
the HI-SLANG compiler. Thus the control file serves to define configurations of
models without modifying the source text of the model.

Depending on the version (e.g., via number suffix of object names) and representation
(e.g., HISLANG, PREANA) for instance of a component type which is to be added to
the model by %COPY "link name", i.e., depending on the "environment" defined in the
control file, a different efficiency and/or performance will be reached when the analyzer
is run.

It is advisable to use the control file as documentation for every experiment performed.
Apart from providing configuration information, such documents informally describe
the changes with respect to the previous experiment and the observations and conclu-
sions from performing the experiment.

Example:

%COMMON ----------------------------------For both COMPILER and ANALYZER ----------------------
%MOBASE office.lib
%BIND "evaluation" TO (PREANA, COMPONENT, evaluation2)

%COMPILER ---------------------------------- Configuration Segment --
%BIND "office" TO (HISLANG, MODEL, office1)
%BIND "handling" TO (HISLANG, COMPONENT, handling4)
%BIND "experiment" TO (HISLANG, EXPERIMENT, expsep2)

%ANALYZER --------------------------------- Result Directing ---
% Usage of DEFAULT-bindings to the mobase containing this control file.

%END --------------------------------- Model Structure ---
%TITLE Office Model
%COPY "office"
%COPY "handling"
%COPY "evaluation"
%COPY "experiment"
% The source consists of 4 modules with versions and representations as described above

%EOF ---------------------------------- Experiment Description ---

EXPERIMENT : exp5 AUTHOR: N. Weissenberg Date: 25.2.88

BASED ON : exp3, exp4

CHANGES : The DISPATCH strategy of server link was changed to equal (100) (exp3) and
evaluation was aggregated (exp4).

OBSERVATION : The results are the same, except for server link.

CONCLUSION : Both steps could be performed.

8. Control of the HIT System - 189 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.3. Compiler Directives
The compiler directives described here may appear anywhere within a HI-SLANG
source, whereas the control records defined above may only be contained in the control
file. All keywords for compiler directives start with a percent symbol which has to be the
first character different from a blank or a tab of the line.

The following compiler directives can be utilized: %[NO]SOURCE, %PAGE, %TITLE,
%COPY, %SPEEDS, %EOF, and additionally, for conditional compilation: %IF,
%ELSE, %FI, %[RE]SET. They may all be written either upper-case or lower-case.

Only %COPY and the directives for conditional compilation appear in the listing. The
directives have the following meaning:

%NOSOURCE

The succeeding lines are not listed until a %SOURCE is encountered.

%SOURCE

The succeeding lines will be listed until a %NOSOURCE is encountered.
%SOURCE has no effect if %PARM=NOSOURCE was specified in the control
file.

%PAGE

The listing is continued on a new page with the title defined by the last %TITLE
command. When the amount of lines defined by %PARM=LINES=n is reached,
this command is performed implicitely.

%TITLE title_text

The listing is continued on a new page titled by title_text (or its leading 43 characters,
see Appendix G.1.). The title appears on every succeeding page until it is overwritten
by a new %TITLE command. The default title_text is the name of the control file
used.

Example:

%TITLE This is a title, but only the first 43 characters will appear.

- 190 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

%COPY "link_name"

By %COPY a further module is included in the source. The module, identified by its
link_name, may have one of two representations, which the compiler can distinguish
by the first character of their contents:

- HI-SLANG source codes are completely copied and listed.
- In the case of an aggregated component type only the HI-SLANG interface is

copied and listed. The table of speeds following the %SPEEDS command is dis-
carded by the HI-SLANG compiler, but will be interpreted by the analyzer.

The link_name should be bound in the control file or else the dialogue component of
FAN will ask for the binding. The link names of all objects of the HIT standard
mobase (see Appendix F.) are bound automatically. Lower-case letters within link
names are converted to upper-case.

Example:

%COMPILER
%MOBASE mylib
%BIND "COPY" TO copyfile
%BIND "cpu1" TO ()
%BIND "cpu2" TO ()
%END

%COPY "COPY"
...
%COPY "Cpu1"
%COPY "CPU2"
...
%COPY "semaphor"

Nesting %COPY is permitted:

Example:

A short-cut avoiding link names and their bindings can be taken as follows:

%COPY"B"

%COPY"C"

A:

B:

C:

8. Control of the HIT System - 191 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

%COPY FILE file_object
%INCLUDE file_object

Both have the same meaning. Here a file name or a mobase object can be specified
directly, with the disadvantage of the source now being dependent on naming
conventions of the operating system or modelling base. This dependency is usually
restricted to the control file.

Examples:

%COPY FILE system.installation
%INCLUDE (HISLANG,, cpu)
%INCLUDE sysin

The second example relates to the last %MOBASE record in the control file.

%SPEEDS

This compiler directive is only used internally for aggregated component types to
separate the HI-SLANG interface from the speeds table. For the compiler it is ident-
ical to %EOF.

%EOF

This compiler directive terminates the actual source. It is useful when entering a HI-
SLANG source line by line while the compiler is running (e.g., by entering SYSIN
as name of the control file).

Another application is to append arbitrary comments following %EOF at the end of a
source (see Section 8.2.8.).

%IF [NOT] switch THEN
source1

[%ELSE
source2]

%FI

This combination of directives is used to specify conditionally compiled segments of
the source. Either source1 or source2 is compiled, depending upon the setting (via
%SET) of the switch. Both sources may consist of an arbitrary number of lines.
%ELSE may be omitted if source2 is empty. These commands cannot be nested
(within one file).

%SET switch
%RESET switch

These directives serve to set or reset the switch, which can be used within an %IF
directive. The switch may have an arbitrary name composed of letters, digits and
underscores, the first character being a letter. The default value of a switch is RESET.

- 192 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

%RESET quick_variant
...
%IF quick_variant THEN

spend (negexp (1/10));
%COPY "sequence"
%ELSE

spend (negexp (1/100));
%FI

% comment

All lines starting with percent-blank are treated as comments.

Examples:

% This is a comment
%no comment; result in the warning: %no unknown.

8. Control of the HIT System - 193 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

8.4.Control File Example
This example demonstrates most control records and the way file objects are referred in
HI-SLANG sources:

%COMMON ---
%MOBASE mylib
%BIND "CT2_AGG" TO (PREANA, COMPONENT, CT2, P)

%COMPILER ---
%PARM = INDENT=5, MAXERROR=10, XREF, COM
%BIND "LISTING" TO (, , example1_lst)
%BIND "LISTING" TO EXTEND #HIT.LISTING
% listing doubled!
%BIND "COPYEXP" TO READONLY example1.experiment.1
%BIND "my_sched" TO (SIMULA, SCHEDULE, my_sched)
%CMD "INF"
%CMD AFTER "PRINT #HIT.LISTING, form=std3, space=e"

%ANALYZER --
%BIND "LISTING" TO EXTEND #HIT.LISTING
%CMD "FSTAT *.INFILE"
%BIND "IN1" TO ? "Please enter name of data file"
%BIND "IN2" TO input.lib (FILE, , example1_dat, P)
%BIND "OUT" TO example1.out
%BIND "TABLE" TO (, , example1_tab)
%BIND "DUMP" TO example1.dump
%BIND "TRACE" TO (, , example1_trace)

%END --
% The source text follows, since no %BIND "SOURCE" is specified.

TYPE mt MODEL;

%COPY "CT2_AGG"
%COPY "nowaitsend"

COMPONENT c1 : ct1 (LET dispatch := equal (1);
LET schedule := my_sched);

c2 : ct2;
c3 : nowaitsend;

REFER st TO c1 EQUATING ...
END REFER;

END TYPE mt;

%COPY "COPYEXP"
{contents:}
...
VARIABLE fa : ARRAY [1...2] OF INFILE;

g : OUTFILE;
...
OPEN fa [1], "IN1" LENGTH 80;
OPEN fa [2], "IN2" LENGTH 80;
OPEN g, "OUT" LENGTH 132;
…

9. Literature - 195 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

9. Literature
/Beil85/ Beilner, H.:

Workload Characterization and Performance Modelling Tools,
in: Proc. of the International Workshop on Workload Characterization of
Computer Systems, Pavia, Italy, 1985, North-Holland

/Beil88/ Beilner, H.:
Zur Methodik der modellgestützten Bewertung von Produktionssyste-
men - Grundlagen der Simulation mit HIT,
in: Simulation in der Fertigungstechnik, B. Schmidt (ed.), Springer
Verlag, 1988

/Beil89/ Beilner, H.:
Structured Modelling - Heterogenous Modelling,
in: Proc. of the European Simulation Multiconference ESM '89, Rome,
Italy, 1989

/BeMW88/ Beilner, H. / Mäter, J. / Weißenberg, N.:
Towards a Performance Evaluation Environment: News on HIT,
in: Proc. "Modelling Techniques and Tools for Computer Performance
Evaluation", Palma de Mallorca, Spain, 1988

/BeSt87/ Beilner, H. / Stewing, F.-J.:
Concepts and Techniques of the Performance Modelling Tool, HIT,
in: Proc. of the European Simulation Multiconference ESM '87, Wien,
Austria, 1987

/BuPS88/ Büser, M. / Pape, D. / Stewing, F.-J.:
Simulation of Integrated Information and Material Flow in Logistics
Systems: An Application of the Modelling Tool, HIT,
in: Proc. of the 2nd European Simulation Multiconference, Nizza, France,
1988

/BuSt90/ Büttner, M./Strell, V.:
Implementationsbeschreibung des HIT-Simulators (SIMUL),
Universität Dortmund, Informatik IV, 1990

/CIM91/ Johansen, S.; Krogdahl, S.; Mjøs, T.:
User´s and Installation Guide - Portable Simula System based on C,
University of Oslo, Department of Informatics, 1991

/Deik89/ Deike-Glindemann, H. (ed.):
SIQUEUE-PET Benutzerhandbuch,
Universität Dortmund, Informatik IV, 1989

/Hoof92/ Hoof, A.:
HIT Installation Guide for VM/CMS,
Universität Dortmund, Informatik IV, 1992

/IBMSim86/ SIMULA Programmer´s Guide for Siemens System BS2000
Informatikrechner-Betriebsgruppe, Universität Dortmund, 1986
(revision of previous edition: "SIMULA Programmer´s Guide for IBM
System 360/370")

- 196 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

/KLMN88/ Knaup, W. / Litzba, D. / Müller-Clostermann, B. / Noack, F. / Sczittnick,
M. / Stahl,H.:
Approximative Lösungsverfahren für nicht-separable Warteschlangen-
netze, Universität Dortmund, Informatik IV, 1988

/Knau88/ Knaup, W.:
Approximative Verfahren zur Analyse von Warteschlangennetzen mit
Prioritätsstationen,
Universität Dortmund, Informatik IV, 1988

/KnND89/ Knaup, W. / Noack, F. / Deike-Glindemann, H.:
Performance-Bounds-Verfahren für separable Netze,
Universität Dortmund, Informatik IV, 1989

/LeWe92/ Lengewitz, P. / Weißenberg, N.:
HIT User's Guide for UNIX Systems,
Universität Dortmund, Informatik IV, 1992

/LiSS89/ Litzba, D. / Sczittnick, M. / Stewing, F.-J.:
Eine Online-Update-Auswertungskomponente auf Basis autoregressiver
Modelle,
Universität Dortmund, Informatik IV, 1989

/LiSS89b/ Litzba, D. / Sczittnick, M. / Stewing, F.-J.:
Yet another simulation output analysis algorithm: the autoregressive,
online-update evaluation technique of the modelling tool, HIT
Proc. of the 3rd European Simulation Congress, Edinburgh, Sept. 5-8,
1989

/Litz85/ Litzba, D.:
Auswertung von Simulationsdaten mittels autoregressiver Modelle,
Grüne Reihe, Bericht Nr. 203, Universität Dortmund, Informatik

/LundSim87/ Holm, P. / Taube, M.:
SIMULA User´s Guide for UNIX,
Lund Software House AB, Lund, 1987

/MiKe86/ Mitra, D. / McKenna, J :
Asymptotic Expansions for Closed Markovian Networks with State-
Dependent Service Rates,
Journal of the ACM, Vol.33, No.3, 1986, pp.568-592

/MuNS85/ Müller-Clostermann, B. / Noack, F. / Sczittnick, M.:
Analytische Lösungsverfahren für Rechensystemmodelle,
Universität Dortmund, Informatik IV, 1985

/MuRo87/ Müller-Clostermann, B. / Rosentreter, G.:
Synchronized Queueing Networks: Concepts, Examples and Evaluation
Techniques,
in: Proc. 4. GI/NTG-Fachtagung "Messung, Modellierung und Bewer-
tung von Rechensystem", Erlangen, 1987, Springer Verlag

/MuWe87/ Müller-Clostermann, B. / Weißenberg, N.:
Using SIMULA for the Implementation of the Hierarchical Modelling
and Performance Evaluation Tool, HIT,
in: Proc. 14th SIMULA User's Conference, Stockholm, Sweden, 1987

9. Literature - 197 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

/PaSt89/ Pape, D.F. / Stewing, F.-J.:
Strategic Planning of Logistic Systems with Simulation,
in: Proc. of the European Simulation Multiconference ESM '89, Rome,
Italy, 1989

/PCSim89/ SIMULA Programmers Reference Manual under the operating systems
MS-DOS, OS-2, XENIX386, UNIX386,
Simula a.s., Oslo, 1989

/Pool87/ Pooley, R.:
An Introduction to Programming in SIMULA,
Blackwell Scientific Publications, 1987

/SaMN84/ Sauer, C.H. / McNair, E.:
The Evolution of the Research Queueing Package RESQ,
in: Proc. "Modelling Techniques and Tools for Performance Analysis",
Paris, 1984, D.Potier (ed.), North Holland

/Sczi93/ Sczittnick, M. (ed.):
HITGRAPHIC User's Guide,
Universität Dortmund, Informatik IV, 1993

/SIMULA87/ Databehandling - Programspråk - SIMULA
(Dataprocessing - Programming language - SIMULA)
Swedish Standard SS 63 61 14
SIS Standardiseringskommissionen; Sverige, 1987
(ISBN 91-7162-234-9)

/Stew89/ Stewing, F.-J. (ed):
HI-SLANG Reference Manual (in German),
Universität Dortmund, Informatik IV, 1989
(predecessor of this document, no more available)

/TPHSim87/ Philippot, G.P.:
TPH Simula Reference Manual, Unix version,
TPH Data A.S., Oslo, 1987

/WaHo92/ Wadulla, G. / Hoof, A.:
HIT Installation Guide for BS2000,
Universität Dortmund, Informatik IV, 1992

/Weis92a/ Weißenberg, N. (ed):
HIT and HI-SLANG: An Introduction,
Universität Dortmund, Informatik IV, 1992

/Weis92b/ Weißenberg, N.:
HIT-OMA User's Guide,
Universität Dortmund, Informatik IV, 1992

/Weis92c/ Weißenberg, N.:
HIT Installation Guide for UNIX Systems,
Universität Dortmund, Informatik IV, 1992

/Weis92d/ Weißenberg, N. (ed):
Implementationsbeschreibungen des HIT Systems,
Internal Reports, Universität Dortmund, Informatik IV, 1992

- 198 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

/Wolf86/ Wolf, H.:
Outil de Modelisation et d'Evaluation HIT
in: Proc. of the Workshop on Computer Performance Evaluation, Sophia
Antipolis, France, 1986

A. HIT Syntax Rules - 199 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A. HIT Syntax Rules
Here the syntax of HI-SLANG is given in a BNF-like notation. The syntax rules are
ordered logically, while the syntax diagrams in Appendix B. are in alphabetic order. The
following conventions apply:

sem_comment-nonterminal Nonterminal nonterminal, prefixed by a semantical
comment sem_comment

TERMINAL HI-SLANG terminal (may be written lowcase)
[unit] Optional unit
unit [separator ...] Repetition of units, separated by separator
{ a b c } [separator ...] The meta-parenthesed group a b c may be repeated
[] and { } denote the corresponding HI-SLANG terminals, not the

meta characters as defined above.

Example:

The rule: identifier ::=
{name [[simple_real_expression [, ...]]] [actual_parameters] } [.

...]

can, e.g., be derived to: name1 [1, 2] (3) . name2 (4) . name3 . name4 [5]

A.1. HI-SLANG Syntax

HI-SLANG Programs

hit_unit ::=
[declaration [...]] experiment_block

experiment_block ::=
EXPERIMENT experiment-name METHOD method ;

[declaration [...]]
BEGIN

[sequence_of_statements]
[plot_statement [...]]

END EXPERIMENT [experiment-name] ;

method ::=
ANALYTICAL simple_text_expression

| SIMULATIVE

declaration ::=
common_declaration

| modelling_declaration

sequence_of_statements ::=
statement [...]

- 200 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Declarations

modelling_declaration ::=
process_declaration

| component_declaration
| enclose_declaration
| stream_declaration

process_declaration ::=
PROCESS
{ process-name [, ...] : [ARRAY [array_bounds] OF]

process_name_or_object_declaration ; } [...]

process_name_or_object_declaration ::=
service-name [actual_parameters]

| NAME FOR service-name

component_declaration ::=
COMPONENT
{ component-name [, ...] : [ARRAY [array_bounds] OF]

componenttype-name [actual_parameters] ; } [...]
| COMPONENT

component-name [, ...]
[actual_parameters] ;
[provide_declaration_part]
[collect_block]
[control_declaration_part]
[declaration [...]]
[refer_part]
[BEGIN sequence_of_statements]
END COMPONENT [component-name] ;

enclose_declaration ::=
ENCLOSE
{component-name [, ...] [: [ARRAY OF] componenttype-name] ; } [...]

stream_declaration ::=
STREAM
{stream-name [, ...] : stream_type ; } [...]

stream_type ::=
COUNT

| EVENT
| STATE

common_declaration ::=
record_declaration

| variable_or_constant_declaration
| procedure_declaration
| type_declaration

A. HIT Syntax Rules - 201 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

record_declaration ::=
RECORD
{record-name [, ...] :
[ARRAY [array_bounds [, ...]] OF]
recordtype-name [actual_parameters] ; } [...]

variable_or_constant_declaration ::=
variable_or_constant simple_object_declaration [...]

| variable_or_constant array_object_declaration [...]

simple_object_declaration ::=
object-name [, ...] : simple_type [DEFAULT expression] ;

array_object_declaration ::=
object-name [, ...] :
ARRAY [array_bounds [, ...]] OF simple_type [DEFAULT expression_or_aggregate] ;

variable_or_constant ::=
VARIABLE

| CONSTANT

array_bounds ::=
simple_real_expression . . simple_real_expression

procedure_declaration ::=
PROCEDURE procedure-name [formal_parameters] [RESULT simple_type [, ...]] ;

[use_declaration_part]
[common_declaration [...]]

[BEGIN sequence_of_statements]
END PROCEDURE [procedure-name] ;

type_declaration ::=
service_declaration

| componenttype_declaration
| modeltype_declaration
| recordtype_declaration

service_declaration ::=
TYPE service-name SERVICE [formal_parameters] [RESULT simple_type [, ...]] ;

[use_declaration_part]
[declaration [...]]

[BEGIN sequence_of_statements]
END TYPE [service-name] ;

| SERVICE service-name [formal_parameters] [RESULT simple_type [, ...]] ;
[use_declaration_part]
[declaration [...]]

[BEGIN sequence_of_statements]
END SERVICE [service-name] ;

- 202 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

componenttype_declaration ::=
TYPE componenttype-name COMPONENT [formal_parameters] ;

[provide_declaration_part]
[collect_block]
[control_declaration_part]
[declaration [...]]
[refer_part]

[BEGIN sequence_of_statements]
END TYPE [componenttype-name] ;

modeltype_declaration ::=
TYPE modeltype-name MODEL [formal_parameters] ;

[collect_block]
[declaration [...]]
[refer_part]

[BEGIN sequence_of_statements]
END TYPE [modeltype-name] ;

recordtype_declaration ::=
TYPE recordtype-name RECORD [formal_parameters] ;

[common_declaration [...]]
[BEGIN sequence_of_statements]
END TYPE [recordtype-name] ;

use_declaration_part ::=
USE

use_declaration [...]
END USE ;

use_declaration ::=
procedure_or_service [ARRAY]

{procedure_or_service-name [formal_parameters] [RESULT simple_type [, ...]] ; } [...]

procedure_or_service ::=
PROCEDURE

| SERVICE

provide_declaration_part ::=
PROVIDE

provide_declaration [...]
END PROVIDE ;

provide_declaration ::=
procedure_or_service

{procedure_or_service-name [formal_parameters] [RESULT simple_type [, ...]] ; } [...]

refer_part ::=
REFER procedure_or_service-name [, ...] TO component-name [, ...] EQUATING

{use-identifier WITH provide-identifier [OF service-name] ; } [...]
END REFER ;

A. HIT Syntax Rules - 203 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

control_declaration_part ::=
CONTROL

control_procedure_declaration [...]
END CONTROL ;

control_procedure_declaration ::=
PROCEDURE control_procedure-name ;

[common_declaration [...]]
[BEGIN sequence_of_statements]
END PROCEDURE [control_procedure-name] ;

collect_block ::=
COLLECT

{ [service-name .] stream-name [AS external_stream-name] ; } [...]
END COLLECT ;

- 204 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Expressions

expression_or_aggregate ::=
expression

| aggregate

aggregate ::=
[expression_or_aggregate [, ...]]

boolean_expression ::=
TRUE

| FALSE
| expression

expression ::=
disjunction [EQV disjunction]

disjunction ::=
conjunction [or_else ...]

or_else ::=
OR [ELSE]

conjunction ::=
{ [NOT] relation} [and_then ...]

and_then ::=
AND [THEN]

relation ::=
simple_expression [relational_operator simple_expression]

relational_operator ::=
= | < | > | <= | >= | < > | #

simple_expression ::=
NONE

| character
| simple_text_expression
| simple_real_expression
| identifier
| (expression)

A. HIT Syntax Rules - 205 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

simple_text_expression ::=
simple_text [& ...]

simple_text ::=
string

| identifier
| (simple_text_expression)

simple_real_expression ::=
[unary_operator] term [adding_operator ...]

adding_operator ::=
+ | -

term ::=
factor [multiplying_operator ...]

multiplying_operator ::=
* | / | / / | MOD

factor ::=
primary [** ...]

primary ::=
identifier [OF identifier]

| number
| (simple_real_expression)

identifier ::=
{name [[simple_real_expression [, ...]]] [actual_parameters] } [. ...]

simple_type ::=
INTEGER

| REAL
| BOOLEAN
| CHARACTER
| TEXT
| INFILE
| OUTFILE
| POINTER FOR recordtype-name

- 206 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Statements

statement ::=
simple_statement

| compound_statement
| aggregate_statement
| evaluate_statement

simple_statement ::=
empty_statement

| assignment_statement
| new_statement
| result_statement
| io_statement
| update_statement
| procedure_or_service_call
| create_or_submit_statement
| control_procedure_statement

compound_statement ::=
block_statement

| with_statement
| concurrent_statement
| conditional_statement
| chain_statement
| loop_statement
| inspect_statement

empty_statement ::= ;

assignment_statement ::=
common_assignment

| result_assignment

common_assignment ::=
identifier [, ...] := expression_or_aggregate ;

result_assignment ::=
identifier := procedure_or_service_call

| (identifier [, ...]) := procedure_or_service_call

result_statement ::=
RESULT expression [, ...] ;

update_statement ::=
UPDATE stream-name BY simple_real_expression ;

procedure_or_service_call ::=
procedure_or_service-identifier ;

A. HIT Syntax Rules - 207 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

block_statement ::=
BLOCK

common_declaration [...]
BEGIN

sequence_of_statements
END BLOCK ;

with_statement ::=
WITH record_or_pointer-identifier
DO

sequence_of_statements
END WITH ;

concurrent_statement ::=
CONCURRENT

sequence_of_statements
{TO

sequence_of_statements } [...]
END CONCURRENT ;

aggregate_statement ::=
AGGREGATE componenttype-name [OUTPUT simple_text_expression] ;

create_or_submit_statement [...]
END AGGREGATE ;

evaluate_statement ::=
EVALUATE MODEL model-name : modeltype-name [actual_parameters] ;

evaluate_declaration [...]
BEGIN

measure_statement [...]
[control_statement]

END EVALUATE ;

new_statement ::=
NEW recordtype-name [actual_parameters] POINTER pointer-identifier [, ...] ;

io_statement ::=
open_or_close_statement

| read_statement
| write_statement

open_or_close_statement ::=
OPEN file-identifier , simple_text_expression LENGTH simple_real_expression ;

| CLOSE file-identifier ;

read_statement ::=
READ [TEXT file-identifier,] input_list ;

| READ [FILE text-identifier,] input_list ;
| READLN [input_list];
| READLN FILE file-identifier [, input_list] ;

input_list ::=
{identifier [:: simple_real_expression] } [, ...]

- 208 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

write_statement ::=
WRITE [TEXT file-identifier,] output_list ;

| WRITE [FILE text-identifier,] output_list ;
| WRITELN [output_list] ;
| WRITELN FILE file-identifier [, output_list] ;

output_list ::=
{expression [:: simple_real_expression [:: simple_real_expression]] } [, ...]

create_or_submit_statement ::=
CREATE simple_real_expression PROCESS service-name [actual_parameters]

[[LIMIT simple_real_expression] timing_condition] ;
| SUBMIT service-name [actual_parameters]

NAME process-identifier [timing_condition] ;

timing_condition ::=
time_specification simple_real_expression

time_specification ::=
AT

| AFTER
| EVERY

conditional_statement ::=
if_statement

| case_statement
| branch_statement

if_statement ::=
IF boolean_expression
THEN sequence_of_statements
[ELSE sequence_of_statements]
END IF ;

case_statement ::=
CASE simple_expression
{ WHEN simple_expression [, ...] : sequence_of_statements } [...]
[ELSE : sequence_of_statements]
END CASE ;

branch_statement ::=
BRANCH
{ PROB simple_real_expression : sequence_of_statements } [...]
[ELSE : sequence_of_statements]
END BRANCH ;

prob_part ::=
{ PROB simple_real_expression : node-identifier ; } [...]
[ELSE : node-identifier ;]

A. HIT Syntax Rules - 209 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

chain_statement ::= ...
open_chain_statement

| closed_chain_statement

open_chain_statement ::=
OPEN_CHAIN [arrival-prob_part]

qnode [...]
END OPEN_CHAIN ;

closed_chain_statement ::=
CLOSED_CHAIN

qnode [...]
END CLOSED_CHAIN ;

qnode ::=
QNODE qnode-identifier [prob_part]

loop_statement ::=
infinite_loop

| while_loop
| until_loop
| for_loop
| times_loop

infinite_loop ::=
basic_loop ;

basic_loop ::=
LOOP

sequence_of_statements
END LOOP

while_loop ::=
WHILE boolean_expression basic_loop ;

until_loop ::=
basic_loop UNTIL boolean_expression ;

for_loop ::=
FOR variable-identifier := loop_value_list basic_loop ;

loop_value_list ::=
simple_real_expression STEP simple_real_expression UNTIL simple_real_expression

| expression [, ...]

times_loop ::=
AVERAGE simple_real_expression TIMES basic_loop ;

- 210 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

inspect_statement ::=
INSPECT area [WHILE boolean_expression]
LOOP [REVERSE]

when_or_sequence
END LOOP ;

control_procedure_statement ::=
SELECT ;

| SETSPEED simple_real_expression ;
| TIMESLICE simple_real_expression ;

when_or_sequence ::=
sequence_of_statements

| {WHEN service-identifier : sequence_of_statements } [...]
[ELSE : sequence_of_statements]

area ::=
ANNOUNCE_QUEUE

| ENTRY_AREA
| SERVICE_AREA
| EXIT_AREA

Evaluation Declarations

evaluate_declaration ::=
evaluationobject_declaration

| hierarchy_declaration

evaluationobject_declaration ::=
EVALUATIONOBJECT
{ {evaluationobject-name VIA [area OF] component-identifier } [, ...]

[DEFAULT estimator_part] ; } [...]

hierarchy_declaration ::=
HIERARCHY
{hierarchy-name [, ...] default_or_merge ; } [...]

default_or_merge ::=
DEFAULT hierarchy_part [. ...]

| MERGE hierarchy-name [, ...]

hierarchy_part ::=
hierarchy-name

| (component-identifier [, service-name [, use-name]])

A. HIT Syntax Rules - 211 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Evaluation Statements

measure_statement ::=
MEASURE {stream [DEGREE simple_real_expression] } [, ...]
AT evaluationobject-name
[DUE TO hierarchy-name [, ...]]
[ABSCISSA simple_real_expression]
[estimator_part] ;

stream ::=
THROUGHPUT

| TURNAROUNDTIME
| POPULATION
| OCCUPATION
| UTILIZATION
| SCHEDULE_RATE
| PREEMPT_RATE
| stream-identifier

estimator_part ::=
[ESTIMATOR estimator[, ...]]
[OUTPUT output_link [, ...]]
[START start_or_stop_condition]
[STOP start_or_stop_condition

| GLOBALSTOP stop_expression]

estimator ::=
MEAN

| BOUNDS
| STANDARDDEVIATION
| CONFIDENCE LEVEL simple_real_expression
| FREQUENCY INTERVAL [array_bounds [, ...]]

output_link ::=
TABLE simple_text_expression

| DUMPFILE simple_text_expression

control_statement ::=
CONTROL [TRACEALL]
{ [AT evaluationobject-name]

[STOP start_or_stop_condition]
[TRACE] } [...] ;

start_or_stop_condition ::=
basic_condition [and_or ...]

- 212 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

basic_condition ::=
CPUTIME simple_real_expression

| MODELTIME simple_real_expression
| ACCURACY simple_real_expression
| EVENTS simple_real_expression

[DUE TO hierarchy-name]
| CONFIDENCE LEVEL simple_real_expression

WIDTH simple_real_expression
MEASURE stream
[DEGREE simple_real_expression]
[DUE TO hierarchy-name]

stop_expression ::=
WIDTH simple_real_expression

| UPDATES simple_real_expression
| WIDTH simple_real_expression and_or

UPDATES simple_real_expression
| UPDATES simple_real_expression and_or

WIDTH simple_real_expression

and_or ::=
AND

| OR

Parameters

formal_parameters ::=
({[mode] parameter_declaration } [; ...])

parameter_declaration ::=
[VARIABLE] parameter-name [, ...] : [ARRAY OF] simple_type

[DEFAULT expression_or_aggregate]
| RECORD parameter-name [, ...] : [ARRAY OF] recordtype-name

mode ::=
VALUE

| NAME
| REFERENCE

actual_parameters ::=
({ [[LET parameter-name :=] expression_or_aggregate] } [, ...])

A. HIT Syntax Rules - 213 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Representation of Results

plot_statement ::=
graph_statement

| histogram_statement

graph_statement ::=
GRAPH [inscription]
{PLOT simple_text_expression

plot_specification_graph
INPUT simple_text_expression [, ...] } [...] ;

histogram_statement ::=
HISTOGRAM [inscription]
PLOT plot_specification_histo
INPUT simple_text_expression ;

plot_specification_graph ::=
MEASURE simple_text_expression
ESTIMATOR simple_text_expression
EVALUATIONOBJECT simple_text_expression
HIERARCHY simple_text_expression

plot_specification_histo ::=
MEASURE simple_text_expression
EVALUATIONOBJECT simple_text_expression
HIERARCHY simple_text_expression

inscription ::=
[simple_text_expression]
ABSCISSA simple_text_expression
ORDINATE simple_text_expression
[OUTPUT simple_text_expression]

- 214 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A.2. Token Syntax
name ::=

letter [letter_or_digit_or_underscore [...]]

letter_or_digit_or_underscore ::=
letter

| digit
| _

number ::=
digit [...] [. digit [...]] [E [unary_operator] digit [...]]

unary_operator ::=
+ | -

character ::=
'ascii_or_ebcdic_character'

ascii_or_ebcdic_character ::=
<one of the ASCII- or EBCDIC-Characters>

string ::=
"[ascii_or_ebcdic_character [...]]"

comment ::=
{ [ascii_or_ebcdic_character [...]] }

| % blank [ascii_or_ebcdic_character [...]]

letter ::=
A | B | ... | Z | a | b | ... | z

digit ::=
0 | 1 |2 | ... | 9 |

special_character ::=
" | # | ... | { | } | _ | blank

blank ::=

A. HIT Syntax Rules - 215 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A.3. Compiler Directives
The following directives may be used anywhere within HI-SLANG sources (but not in
control file). The %-character must appear in the first column, immediately followed by
the keyword.

compiler_directive ::=
%COPY link_name

| %COPY FILE file_object
| %INCLUDE file_object
| %[NO]SOURCE
| %PAGE
| %TITLE any_comment
| %IF [NOT] condition-name THEN

<parts of HI-SLANG source>
[%ELSE

<parts of HI-SLANG source>]
%FI

| %[RE]SET condition-name
| %EOF
| %SPEEDS
| % blank any_comment

A.4. Control File Syntax
This syntax is interpreted by the HIT-FAN system (File Access Network). All the
terminals starting with % must appear on a new line.

hi_slang_source ::=
[control_file] hit_unit

control_file ::=
{ control_section
 control_record

[...] } [...]
%END

control_section ::=
%COMMON

| %COMPILER
| %ANALYZER

control_record ::=
%PARM = parameter [, ...]

| %BIND link_name TO [io_mode] file_object
| %MOBASE mobase_name
| %CMD [AFTER] operating_system_command
| %DEFAULT string
| % blank any_comment

- 216 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

parameter ::=
INDENT = ascii_or_ebcdic_character number

| MAXERROR = number
| LINES = number
| FREQUENCYFORMAT = number
| TRACEFORMAT = number
| CHECK | COM | PRECOM
| [NO]SOURCE
| [NO]RESWD
| [NO]XREF
| [NO]DEBUG
| [NO]WARN
| [NO]WARNACCESS
| [NO]RELATIVE
| [NO]EXTERN
| [NO]UPDATES
| [NO]MINMAX
| [NO]PRINTDS
| [NO]SOLVERINFO
| [NO]CIM

io_mode ::=
EXTEND | READONLY

link_name ::=
string

file_name ::=
<operating system dependent syntax>

mobase_name ::=
file_name

operating_system_command ::=
<operating system dependent syntax>

any_comment ::=
ascii_or_ebcdic_character [...]

file_object ::=
file_name

| [mobase_name] ([module] [, [type] [, [member-name] [, [protection]]]])
| SYSIN
| SYSOUT
| DEFAULT
| link_name

module ::=
CONTROL | DATA | HISLANG | PRECOM | PREANA | SIMULA

type ::=
ACCEPT | CONTROL | COMPONENT | DISPATCH | DUMPFILE

| EXPERIMENT | FILE | LISTING | MATRIX | MODEL | OFFER
| OTHERS | PROCEDURE | SCHEDULE | SERVICE | STATES
| TABLE | TRACE

protection ::=
P | U

A. HIT Syntax Rules - 217 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A.5. Nonterminal-Index

actual_parameters 212
adding_operator 205
aggregate 204
aggregate_statement 207
and_or 212
and_then 204
any_comment 216
area 210
array_bounds 201
array_object_declaration 201
ascii_or_ebcdic_character 214
assignment_statement 206
basic_condition 212
basic_loop 209
blank 214
block_statement 207
boolean_expression 204
branch_statement 208
case_statement 208
chain_statement 209
character 214
closed_chain_statement 209
collect_block 203
comment 214
common_assignment 206
common_declaration 200
compiler_directive 215
componenttype_declaration 202
component_declaration 200
compound_statement 206
concurrent_statement 207
conditional_statement 208
conjunction 204
control_declaration_part 203
control_file 215
control_procedure_declaration 203
control_record 215
control_section 215
control_statement 211
create_or_submit_statement 208
declaration 199
default_or_merge 210
digit 214
disjunction 204
empty_statement 206
enclose_declaration 200
estimator 211
estimator_part 211
evaluate_declaration 210
evaluate_statement 207
evaluationobject_declaration 210
experiment_block 199
expression 204
expression_or_aggregate 204

factor 205
file_name 216
file_object 216
formal_parameters 212
for_loop 209
graph_statement 213
hierarchy_declaration 210
hierarchy_part 210
histogram_statement 213
hit_unit 199
hi_slang_source 215
identifier 205
if_statement 208
infinite_loop 209
input_list 207
inscription 213
inspect_statement 210
io_mode 216
io_statement 207
letter 214
letter_or_digit_or_underscore 214
link_name 216
loop_statement 209
loop_value_list 209
measure_statement 211
method 199
mobase_name 216
mode 212
modelling_declaration 200
modeltype_declaration 202
module 216
multiplying_operator 205
name 214
new_statement 207
number 214
open_chain_statement 209
open_or_close_statement 207
operating_system_command 216
or_else 204
output_link 211
output_list 208
parameter 216
parameter_declaration 212
plot_specification_graph 213
plot_specification_histo 213
plot_statement 213
primary 205
prob_part 208
procedure_declaration 201
procedure_or_service 202
procedure_or_service_call 206
process_declaration 200
process_name_or_object_dec 200
protection 216
provide_declaration 202
provide_declaration_part 202
qnode 209
read_statement 207

- 218 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

recordtype_declaration 202
record_declaration 201
refer_part 202
relation 204
relational_operator 204
result_assignment 206
result_statement 206
sequence_of_statements 199
service_declaration 201
simple_expression 204
simple_object_declaration 201
simple_real_expression 205
simple_statement 206
simple_text 205
simple_text_expression 205
simple_type 205
special_character 214
start_or_stop_condition 211
statement 206
stop_expression 212
stream 211
stream_declaration 200
stream_type 200
string 214
term 205
times_loop 209
time_specification 208
timing_condition 208
type 216
type_declaration 201
unary_operator 214
until_loop 209
update_statement 206
use_declaration 202
use_declaration_part 202
variable_or_constant 201
variable_or_constant_declaration 201
when_or_sequence 210
while_loop 209
with_statement 207
write_statement 208

B. HIT Syntax Diagrams - 219 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams

Due to lack of space most non-terminals are abbreviated compared to the rest of the manual.

They are ordered alphabetically, with the exception of hit_unit, the start symbol.

B.1. HI-SLANG Syntax

- 220 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 221 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 222 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 223 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 224 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 225 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 226 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 227 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 228 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 229 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 230 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 231 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- 232 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B. HIT Syntax Diagrams - 233 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

B.2. Token Syntax

C. Lexical Units - 235 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

1C. Lexical Units
This appendix list all HI-SLANG keywords and symbols and all available characters.

C.1. Reserved HI-SLANG Keywords
The following 144 words are reserved for use as keywords in HI-SLANG and must
not be used otherwise:

ABSCISSA EXPERIMENT QNODE
ACCURACY FALSE READ
AFTER FILE READLN
AGGREGATE FOR REAL
ANALYTICAL FREQUENCY RECORD
AND GLOBALSTOP REFER
ANNOUNCE_QUEUE GRAPH REFERENCE
ARRAY HEADER RESULT
AS HIERARCHY REVERSE
AT HISTOGRAM SCHEDULE_RATE
AVERAGE IF SELECT
BEGIN INFILE SERVICE
BLOCK INPUT SERVICE_AREA
BOOLEAN INSPECT SETSPEED
BOUNDS INTEGER SIMULATIVE
BRANCH INTERVAL STANDARDDEVIATION
BY LENGTH START
CASE LET STATE
CHARACTER LEVEL STEP
CLOSE LIMIT STOP
CLOSED_CHAIN LOOP STREAM
COLLECT MEAN SUBMIT
COMPONENT MEASURE TABLE
CONCURRENT MERGE TEXT
CONFIDENCE METHOD THEN
CONSTANT MOD THROUGHPUT
CONTROL MODEL TIMES
COUNT MODELTIME TO
CPUTIME NAME TIMESLICE
CREATE NEW TRACE
DEFAULT NONE TRACEALL
DEGREE NOT TRUE
DO OCCUPATION TURNAROUNDTIME
DUE OF TYPE
DUMPFILE OPEN UNTIL
ELSE OPEN_CHAIN UPDATE
ENCLOSE OR UPDATES
END ORDINATE USE
ENRTY_AREA OUTFILE UTILIZATION
EQUATING OUTPUT VALUE
EQV PLOT VARIABLE
ESTIMATOR POINTER VIA
EVALUATE POPULATION WHEN
EVALUATIONOBJECT PREEMPT_RATE WHILE
EVENT PROB WIDTH
EVENTS PROCEDURE WITH
EVERY PROCESS WRITE
EXIT_AREA PROVIDE WRITELN

- 236 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

C.2. Reserved HI-SLANG Symbols
The following list contains all the 36 symbols of HI-SLANG. Symbols are language
terminals consisting of one or two unseparated special characters. For some symbols
there exist substitutive symbols.

Symbol Meaning

. Access to local objects via dot notation, e.g., for RECORDS and OUTPUT
or
Separation of parenthesized HIERARCHY tripels or
Decimal point

. . Separation of lower bounds and upper bounds of ARRAYs or
Definition of FREQUENCY intervals

; Separator
, Separator
: Separator
Blank Separator
:: Separation of format values in READ and WRITE
:= Assignment
' CHARACTER delimiter
" TEXT delimiter

(Opening bracket
) Closing bracket
[, (. Start of indexing
], .) End of indexing
{, (* Start of comment
}, *) End of comment

= Comparator "equal"
#, <> Comparator "not equal"
< Comparator "less than"
<= Comparator "less than or equal"
> Comparator "greater than"
>= Comparator "greater than or equal"

+ Operator "addition"
- Operator "subtraction"
* Operator "multiplication"
/ Operator "division"
// Operator "integer division"
** Operator "exponentiation"
& Operator "text concatenation"

_ Underscore within identifiers (not a symbol due to the definition above).

% Used as first character different from blank or tab of a source line the
percent character indicates the beginning of a compiler control statement
interpreted by the HIT-FAN system (not a symbol due to the definition
above)

Table 0: HI-SLANG Symbols

C. Lexical Units - 237 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

C.3. ASCII and EBCDIC Tables
The first table shows the ASCII code, the second table shows the EBCDIC code. Every
character is defined by a pair of hexadecimal digits. The left hex-digit corresponds to
the upper half byte of the character, and it is declared in the head of the tables. The right
hex-digit corresponds to the lower half byte of the character, and it is specified on the
left hand side of the tables. The third table shows the corresponding decimal value.

Examples:

Characters ASCII code EBCDIC code
hex. dec. hex. dec.

'5' 35 53 F5 245
'S' 53 83 E2 226
'm' 6D 109 94 148
'?' 3F 63 6F 111

You can take access to the codes by using rank and char, explained in Appendix D.

The upper bit of the ASCII coding is used as the parity bit. Both even and odd parity
are common. Characters within the range '00' to '1F', and the character '7F' are con-
trol characters in the ASCII code. EBCDIC control bytes are within the range '00' to
'3F'. Unfortunately, the coding of control information is not standardized.

The characters '[', ']', '{' and '}' do not exist in standard EBCDIC. Yet, since they
are symbols in HI-SLANG (see Appendix B.), they are elements of the EBCDIC
tables. They are coded as installed on most Siemens and IBM computers. This is
important to know, for any HI-SLANG source contains characters that are coded in
ASCII or EBCDIC. Since the characters mentioned above are not available on IBM
keyboards, it is necessary to substitute them using special editor options. It is also
possible to substitute those characters by '(.', '.)', '(*', '*)'.

Vacant spaces within the EBCDIC table indicate that their codes are not used.
Correlating to control bytes, these vacancies are not standardized, either.

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P ` p
1 SOH X-ON ! 1 A Q a q
2 STX TP-ON " 2 B R b r
3 ETX X-OFF # 3 C S c s
4 EOT TP-OFF $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 TAB EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l |
D CR GS - = M] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o DEL

Table 1: ASCII Code

- 238 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SP & - 0
1 / a j ~ A J 1
2 b k s B K S 2
3 c l t C L T 3
4 PF RES BYP PN d m u D M U 4
5 HT NL LF RS e n v E N V 5
6 LC BS EOB UC f o w F O W 6
7 DEL IL PR EOT g p x G P X 7
8 h q y H Q Y 8
9 i r z I R Z 9
A SM ` ! ^ :
B . $, # [{
C < * % @ \
D () _ '] }
E + ; > =
F | ¬ ? "

Table 2: EBCDIC Code

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 000 016 032 048 064 080 096 112 128 144 160 176 192 208 224 240
1 001 017 033 049 065 081 097 113 129 145 161 177 193 209 225 241
2 002 018 034 050 066 082 098 114 130 146 162 178 194 210 226 242
3 003 019 035 051 067 083 099 115 131 147 163 179 195 211 227 243
4 004 020 036 052 068 084 100 116 132 148 164 180 196 212 228 244
5 005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245
6 006 022 038 054 070 086 102 118 134 150 166 182 198 214 230 246
7 007 023 039 055 071 087 103 119 135 151 167 183 199 215 231 247
8 008 024 040 056 072 088 104 120 136 152 168 184 200 216 232 248
9 009 025 041 057 073 089 105 121 137 153 169 185 201 217 233 249
A 010 026 042 058 074 090 106 122 138 154 170 186 202 218 234 250
B 011 027 043 059 075 091 107 123 139 155 171 187 203 219 235 251
C 012 028 044 060 076 092 108 124 140 156 172 188 204 220 236 252
D 013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253
E 014 030 046 062 078 094 110 126 142 158 174 190 206 222 238 254
F 015 031 047 063 079 095 111 127 143 159 175 191 207 223 239 255

Table 3: Conversion from Hexa-Decimal to Decimal

D. Modelling Environment - 239 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D. Modelling Environment
All HI-SLANG models can make use of the standard modelling environment of HIT. It
consists of all objects stored in the HIT Standard Mobase (see Appendix F) as well as
the built-in procedures listed in this appendix.

All the predefined procedures and operators (i.e., built-in procedures using infix
notation) listed in Appendix D.1 and D.2 are "globally declared" for every HI-SLANG
source, while the predefinitions listed in Appendix D.3 are only available in a special
context, e.g., only within services or component types.

In contrast to reserved words it is possible to declare other objects using the same name
(e.g., negexp), but then the corresponding predefined procedure is no longer accessible
in that block. This is not valid for the built-in infix operators, since their names are
either keywords or symbols.

- 240 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.1. Operators and Precedence Rules
The following tables list the type of result (or signatures) of all HI-SLANG operators,
depending on the type of their arguments.

unary operators:

operator
operand + -
INT INT INT
REAL REAL REAL

binary operators:

left right operator
operand operand + - * / // MOD **
INT INT INT INT INT REAL INT INT REAL
INT REAL REAL REAL REAL REAL INT INT REAL
REAL INT REAL REAL REAL REAL INT INT REAL
REAL REAL REAL REAL REAL REAL INT INT REAL

left right operator
operand operand EQV AND AND THEN OR OR ELSE
TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE FALSE FALSE TRUE TRUE
FALSE FALSE TRUE FALSE FALSE FALSE FALSE

left right operator
operand operand &
TEXT TEXT TEXT

The result of a comparison is of type BOOLEAN. Both arguments to be compared must
have the same type. There is one exception: Comparing operands of type REAL and
INTEGER is possible, as the INTEGER operand is converted to REAL.

Precedence rules for operators:

(1) = lowest precedence EQV
(2) OR, OR ELSE
(3) AND, AND THEN
(4) NOT
(5) =, <, >, <=, >=, <>, #
(6) +, -, &
(7) *, /, //, MOD
(8) **
(9) = highest precedence (expression), OF

With n<m operators of precedence operators of class n are evaluated after those of class
m. Operators of the same class are evaluated from the left to the right (left associative).

D. Modelling Environment - 241 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2. Predefined Procedures
name type of name of type of name of type of usable1 for comments

result 1. par 1. par 2. par 2. par array
 bounds
abs REAL X REAL - - y
arccos REAL X REAL - - y
arcsin REAL X REAL - - y
arctan REAL X REAL - - y
cos REAL X REAL - - y
cosh REAL X REAL - - y
entier INT X REAL - - y
exp REAL X REAL - - y arithmetic
ln REAL X REAL - - y functions
log REAL X REAL - - n
maxint INT - - - - y
maxreal REAL - - - - y
sign INT X REAL - - y
sin REAL X REAL - - y
sinh REAL X REAL - - y
sqrt REAL X REAL - - y
tan REAL X REAL - - y
tanh REAL X REAL - - y
undefined REAL - - - - y
char CHAR I INT - - -
digit BOOL C CHAR - - - character
letter BOOL C CHAR - - - functions
rank INT C CHAR - - y
cox REAL A REAL B REAL n
coxg REAL A ARRAY - - n
discrete INT A ARRAY - - n
draw BOOL A REAL - - n
erlang REAL A REAL B REAL n
histd INT A ARRAY - - n random
linear REAL A ARRAY B ARRAY n number
negexp REAL A REAL - - n generators
normal REAL A REAL B REAL n
poisson INT A REAL - - n
randint INT A INT B INT n
uniform REAL A REAL B REAL n
cpu_time REAL - - - - n
get_result REAL * * * * n
last_seed INT - - - - n
put_header - link TEXT info TEXT -
put_footer - link TEXT info TEXT -
put_result - * * * * - modelling
set_seed - new_seed INT - - - support
stop_evaluation - message TEXT - - - procedures
time REAL - - - - n
trace_off - - - - - -
trace_on - - - - - -
trace_state - - - - - -
transfer_results - - - - - -
was_message BOOL kind CHAR no INT -
eof BOOL F INFILE - - -
eoln BOOL F INFILE - - -
lastitem BOOL F INFILE - - -
lowten - C CHAR - - - I/O support
sysin INFILE - - - - - procedures
sysout OUTFILE - - - - -
tracefile OUTFILE - - - - -

Legend: ARRAY ⇔ ARRAY [...] OF REAL - ⇔ non existent

* ⇔ more than two parameters, see below

1Usage possible for array bounds definition within hit unit and experiment block

- 242 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2.1.Arithmetic Functions

The exact definitions (concerning precision, allowed parameter values, etc.) for most
arithmetic functions are implementation defined. All functions return best possible ap-
proximations to the exact mathematical results. For argument values where the math-
ematical functions are not defined a run time error occurs.

D.2 .1 .1 . Trigonometric Functions

All trigonometric functions deal with angles expressed in radians. The following func-
tions are available:

sin (X: REAL) RESULT REAL sinh (X: REAL) RESULT REAL

cos (X: REAL) RESULT REAL cosh (X: REAL) RESULT REAL

tan (X: REAL) RESULT REAL tanh (X: REAL) RESULT REAL

arcsin (X: REAL) RESULT REAL

arccos (X: REAL) RESULT REAL

arctan (X: REAL) RESULT REAL

D.2 .1 .2 . Other Arithmetic Functions

The following arithmetic functions are built into the HIT system:

abs (X: REAL) RESULT REAL

The result is the magnitude of X.

entier (X: REAL) RESULT INTEGER

The result is the integer "floor" of the real X, the value always being less than or
equal to X. Thus entier (1.8) returns 1, while entier (-1.8) returns -2.

exp (X: REAL) RESULT REAL

The result is eX.

ln (X: REAL) RESULT REAL

The result is ln X. X must be positive.

D. Modelling Environment - 243 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

log (X: REAL) RESULT REAL

The result is log10 X. X must be positive.

sign (X: REAL) RESULT INTEGER

The result is zero if X is zero, +1 if X is positive and -1 if X is negative.

sqrt (X: REAL) RESULT REAL

The result is X . X must not be negative.

D.2.1 .3 Installation-dependent Functions

These functions result values defined by the underlying hardware or Simula system.

maxreal RESULT REAL

The maxreal value is the maximal real representable by your hardware. If this value
is exceeded during REAL calculation an overflow results from the SIMULA Run
Time System.

The smallest REAL is - MAXREAL.

undefined RESULT REAL

The undefined value is defined as maxreal / 4 (to avoid calculation overflows). It is
especially used in dump files for performance measures which could not be
determined (in table files the word "Undefined" is displayed instead).

If you read values from a dump file by get_result you should take into account that
they may be undefined.

maxint RESULT REAL

The maxint value is the maximal integer representable by your hardware. If this
value is exceeded during INTEGER calculation an integer overflow results from the
SIMULA Run Time System.

- 244 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2.2.Character Functions

All character functions deal with characters. In HI-SLANG the set of characters is either
coded in ASCII or EBCDIC (see Appendix C.3.).

char (I: INTEGER) RESULT CHARACTER

The result is the character obtained by converting I according to the implementation
defined coding of characters. I must be in the range 0..255, otherwise a run time
error occurs. The inversion of char is rank. char (rank (c)) = c always holds.

digit (C: CHARACTER) RESULT BOOLEAN

The result is TRUE if the character C represents a decimal digit.

letter (C: CHARACTER) RESULT BOOLEAN

The result is TRUE if the character C is a letter of the alphabet ('a'..'z', 'A'..'Z').

rank (C: CHARACTER) RESULT INTEGER

The result is an integer in the range 0..255, obtained by converting C according to
the implementation defined character code. The inversion of rank is char. For i in
0..255 rank (char (i)) = i always holds.

D. Modelling Environment - 245 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2.3.Random Number Generators

All (pseudo-)random drawing procedures of HI-SLANG are based on the technique of
obtaining "basic drawings" from the uniform distribution in the interval]0,1[. A basic
drawing (call of a random number generator) replaces the value of the predefined inte-
ger variable seed by a new value according to an implementation defined algorithm,
e.g.,

seed (i+1) = mod (seed (i) * 5** (2*p+1), 2**n)

and generates a stream of pseudo-random numbers in the interval [1,(2**n) -1]. The
result of the i+1th basic drawing called u(i+1) is calculated by

u(i+1) = seed (i+1) / 2**n

The n is an integer related to the size of a computer word (e.g., 35) and p is a positive
integer (e.g., 6). The initial value of seed is 13 within a globally declared procedure or
within the experiment block. Within a model, component or service the predefined
parameter seed (with default 13) of the model type denoting the root of the hierarchy is
used (see chapter 4.).

It can be proved that if seed (= seed (0)) is a positive odd integer, the same holds for
seed (i), and the sequence seed (0), seed (1), ... is cyclic with period 2**n-2.

Of course the user may write his own random drawing procedures based on those listed
below, e.g.,

PROCEDURE geometric_distribution (m : REAL) RESULT REAL;
VARIABLE res : INTEGER;

BEGIN
WHILE draw (m) LOOP res := res + 1; END LOOP;
RESULT res;

END PROCEDURE;

The following random drawing procedures are available in HI-SLANG:

cox (A, B: REAL) RESULT REAL

The result is a COX-distributed pseudo-random number with rate A (reciprocal mean
value) and variation coefficient B. If A ≤ 0 or B < 0.1, a run time error occurs.

coxg (A: ARRAY OF REAL) RESULT REAL

The result is a COX-distributed pseudo-random number. A must be a two dimen-
sional ARRAY OF REAL or ARRAY aggregate denoting step-progress-probabilities
for all service rates given in the first "line" of the array.

- 246 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

A 1 2 3
The array 1 0.2 0.4 0.5 or aggregate [[0.2, 0.4, 0.5], [0.6, 0.3, 0.0]]

2 0.6 0.3 0.0

describes the following COX-distribution:

0.00.2 0.30.6 0.4

0.4 0.7 1

0.5

The values on the vertical arrows are not found in the array; they are the complement of the values
in the second sub array.

Please note that the last value (in the second sub array) must be zero, while all the
other array elements must be positive, otherwise a run time error occurs.

discrete (A: ARRAY OF REAL) RESULT INTEGER

The one-dimensional ARRAY OF REAL A, augmented by the element 1 to the right
(for safety reasons), is interpreted as a step function of the subscript, defining a
discrete (cumulative) distribution function. All array elements must be in the interval
[0, 1] and in ascending order. The result of the function is the smallest index i such
that A[i] > u, where u is the value of the basic drawing. The result thus is an integer
in the range A.lower_bounds[1] .. A.upper_bounds[1]+1.

draw (A: REAL) RESULT BOOLEAN

The result is TRUE with the probability A, FALSE with the probability 1-A. For A
≤ 0 the result is always FALSE, for A ≥ 1 the result is always TRUE.

erlang (A, B: REAL) RESULT REAL

The result is a drawing from the Erlang distribution with mean 1/A and standard
deviation 1/(A*sqrt(B)). Both the rate A and the number of phases B must be greater
than zero.

histd (A: ARRAY OF REAL) RESULT INTEGER

The one-dimensional ARRAY OF REAL A is interpreted as a histogram defining the
relative frequencies of the array elements. The relative frequencies must be less or
equal 1, the sum over all elements must be one. The result of the function is an
index, that is an integer in the range A.lower_bounds[1] ..A.upper_bounds[1].

D. Modelling Environment - 247 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

linear (A, B: ARRAY OF REAL) RESULT REAL

A and B must be one-dimensional ARRAYs OF REAL with equal lower and upper
bounds lb and ub. They define a cumulative distribution f. The result of type REAL
is determined by linear interpolation in the non-equidistant distribution table, defined
by A and B. The function f is defined by

A[i] = f(B[i]) for lb ≤ i ≤ ub

To avoid run time errors or installation dependent results, the following conditions
must hold:

A[lb] = 0 and A[ub] = 1 and both arrays must be monotonous, i.e., for lb ≤ i ≤ ub,
both, A[i] ≤ A[i+1] and B[i] ≤ B[i+1] hold.

negexp (A: REAL) RESULT REAL

The result is a drawing from the negative exponential distribution with mean 1/A
(rate A), defined by - ln(u)/A, where u is the basic drawing. This is the same as a
random "waiting time" in a Poisson distributed arrival pattern with expected number
of arrivals per time unit equal to A. If A is non-positive, a run time error occurs.

normal (A, B: REAL) RESULT REAL

The result is normally distributed with mean A and standard deviation B. B must be
non-negative.

poisson (A: REAL) RESULT INTEGER

The result is a drawing from the Poisson distribution with parameter A. The result n
is defined by n+1 basic drawings u(i), such that n is the smallest non-negative
integer with u(0)*u(1)*.. .*u(n) < exp(-A). For negative A, the result is defined to
be zero. When A is greater than some implementation defined value, e.g., 20, the
result may be approximated by the maximum of entier (normal (A, sqrt(A) + 0.5))
and zero.

randint (A, B: INTEGER) RESULT INTEGER

The result is one of the integers A, A+1,..., B-1, B with equal probability. If B < A,
an error occurs.

uniform (A, B: REAL) RESULT REAL

The result is a uniformly distributed pseudo-random REAL number in the interval
[A..B]. If B < A, an error occurs.

- 248 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2.4.Modelling Support Procedures

HI-SLANG offers some procedures which make modelling more easy. They allow to
query the current time (cpu_time, time) or control evaluations (transfer_result,
stop_evaluation). Most of these procedures can only be used in simulations (implied by
(S) ; if also allowed for analytical solvers (A,S) is used).

(S) cpu_time RESULT REAL

The result is the amount of cpu time in seconds spent since program start, i.e., since
the start of the first evaluation if there are more than one.

(A,S) get_result (esti : TEXT DEFAULT "MEAN";
meas : TEXT;
evaobj : TEXT;
hier : TEXT DEFAULT "ALL";
link : TEXT DEFAULT "DUMP";
absc : REAL DEFAULT 0.0;

 NAME err : REAL DEFAULT -1.0;) RESULT REAL

The result of this procedure is one performance value read from a dump file. The text
parameters estimator, measure, evaluationobject, hierarchy and the real parameter
abscissa together specify the value to search for. The dump file to search in is
specified by its link name.

The use of upper-case or lower-case characters within the text arguments is tanta-
mount. The interpretation of the result value depends on the first parameter
estimator:

"MEAN" : mean value
"STANDARDDEVIATION" : standard deviation
"CONFIDENCE" : half the size of the confidence interval (%)
"FREQUENCY n" : number of events in the n'th interval
"LOWERBOUND" : lower bound
"UPPERBOUND" : upper bound

If there is no such performance value in the dump file as specified by the first six
parameters, the result will be the value of the name parameter err (error_value). This
value can be specified by another call of get_result, which will only be executed in
case of an error, since it is a name parameter, which is not modified.

If there are more than one of such values in the dump file (caused by an evaluation
series), the result will be the performance value of the last completed evaluation
written to that dump file. By writing different abcissa values (see MEASURE state-
ment) for different evaluations of a series, the values of a previous evaluation can be
accessed.

The main application for this procedure is to control evaluation series, but get_result
may appear anywhere in HI-SLANG sources.

 Note that a warning occurs if the specified name of evaluation object, measure or
hierarchy is cut. Please take care that your search criterias could be fulfilled after this
truncation.

D. Modelling Environment - 249 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

TYPE mt MODEL (...);
...
CREATE get_result ("mean","POPULATION","cpu", "all","dump", 0.0, LET err := 0) + 1

PROCESS st;
END TYPE mt;

EXPERIMENT e METHOD SIMULATIVE;
VARIABLE pop : INTEGER;

BEGIN
WHILE get_result (, "TURNAROUNDTIME", "cpu", "cpu_hier",

"DUMP", 2, get_result (, "TURNAROUNDTIME", "cpu2")) < 10;
LOOP

EVALUATE MODEL m : mt (pop);
...
BEGIN

MEASURE POPULATION AT cpu OUTPUT DUMPFILE "DUMP";
CONTROL AT cpu STOP MODELTIME

may_be_ok_at (get_result ("CONFIDENCE", "POPULATION",
"cpu", "hi", "DUMP");

END EVALUATE;
pop := pop + 1;

END LOOP;
END EXPERIMENT;

Appropriate declarations are assumed above.

(A,S) last_seed RESULT INTEGER

This procedure results the current seed value, determined by the previous action of
that list.

There are three ways to modify the seed value:

- calling a random drawing procedure (for simulative analysis in model description
part and experiment part; for analytical methods only in experiment part),

- calling set_seed,
- setting seed via the predefined model parameter seed (within an EVALUATE

statement).

Note:

Normally every simulation in an evaluation series starts with seed value 13, if no
other value is set in the EVALUATE statement. To have a continuous sequence of
seed values please use: EVALUATE MODEL m: mt (LET seed := last_seed);

- 250 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(A,S) put_result (esti :TEXT DEFAULT "MEAN";
meas :TEXT;
evaobj :TEXT;
hier :TEXT DEFAULT "ALL";
link :TEXT DEFAULT "DUMP";
absc :TEXT DEFAULT 0.0;
res :REAL DEFAULT undefined;
lev :INTEGER DEFAULT 95;
wid :REAL DEFAULT 0.0;
int :TEXT DEFAULT "")

This procedure appends one performance entry to a dump file. The first four text pa-
rameters estimator, measure, evaluationobject and hierarchy together specify the
meaning of the values to be added, the parameter link denotes the link name of the
dump file concerned. The use of upper- or lower-case letters within these text argu-
ments is tantamount.

For producing graphs from dump files an abscissa value absc (x-value) may be as-
signed to each performance value (y-value).

The last four parameters result, level, width and intervals define the (possibly struc-
tured) performance value itself. Depending on the value of the first parameter esti it
consists of:

"MEAN" : The mean value res.

"STANDARDDEVIATION" : The standard deviation res.

"CONFIDENCE" : The mean value res of the confidence interval,
the half size wid of the interval in percent and
the confidence level lev.

"FREQUENCY" : The number of intervals lev and a text int, which
contains lev times three blank-separated REAL
values, the first and second denoting lower and up-
per bound of that interval respectively, while the
third gives the number of events with values lying in
that interval.

"LOWERBOUND" : The lower performance bound res.

"UPPERBOUND" : The upper performance bound res.

For the format of a dump file compare Appendix G.3.2. All parameters but meas
and evaobj have default values (see above), so they may be omitted when calling
put_result. Before the first call of put_result the procedure put_header has to be
called, and after the last call put_footer must be activated.

Note that a warning occurs if the specified name of evaluation object, measure,
estimator or hierarchy is cut. Please take care that your search criterias could be
fulfilled after this truncation.

D. Modelling Environment - 251 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Examples:

put_result (, "POPULATION", "eva", LET res := 3); {mean population at eva set to 3}

put_result ("STANDARDDEVIATION", "TURNAROUNDTIME", "e", "h1", "dmp", 1.5, 4.7);

put_result ("CONFIDENCE", "Occupation", "e", LET res := 12.0,
 LET wid := 10.0, LET lev := 99);

put_result ("FREQUENCY", "POPULATION", "e", LET lev := 3,
 LET int := "1 2 7 3 5 2 5 10 1");

put_result ("LOWERBOUND", "THROUGHPUT", "e", LET res := 1.72E-3);

(A,S) put_header (link : TEXT DEFAULT "DUMP";
info : TEXT DEFAULT "")

This procedure has to be called before the first call of put_result. It opens the dump
file denoted by its link name link (which should have an EXTEND binding, see
8.2.2.) and appends a header. This header is only a short form of the standard
header described in Appendix G.3.2., but contains the text passed by parameter
info.

(A,S) put_footer (link : TEXT DEFAULT "DUMP";
info : TEXT DEFAULT "")

This procedure has to be called after the last call of put_result. It appends a footer to
the dump file denoted by its link name link and closes it. This footer is only a short
form of the standard footer described in Appendix G.3.2., but contains the text
passed by parameter info.

Example:

put_header (, "special_results");
put_result (...);
...
put_footer;

(A,S) set_seed (new_seed: INTEGER DEFAULT 13)

This procedure sets the seed value for the next call of a random number generator to
the given value. It enables to use a defined seed start value for the next sequence of
random number generators, which may be useful, e.g., in experiment descriptions
to determine some model data stochastically and with a seed value independent of the
previous evaluation.

(S) stop_evaluation (message: TEXT)

Within a model, component, or service a call of stop_evaluation prints message to
the standard output sysout and stops the current evaluation. The performance values
determined so far are given as specified in MEASURE statements. Then the next
evaluation is started, if it exists.

Within a global procedure (i.e., outside the model description) or the statement part
of the experiment, a call of stop_evaluation has no effect but generates a warning.

- 252 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(S) time RESULT REAL

Within a model, component, or service the result is the current model time, i.e., the
simulation time. Within a global procedure or the statement part of an experiment,
time gives the model time reached by the last simulative evaluation.

(S) trace_state

Within a model, component or service, a call of trace_state adds a state trace to the
trace file, which documents the current state of the model. The format of the state
trace is described in Appendix G.5.

Outside a model or component type a call of trace_state produces a warning. The
procedure can only be used for simulative evaluations, otherwise a warning occurs.

If the model becomes empty and no new processes are to be generated, or all
processes in the model can not perform any further activities, it is possible that a
deadlock has occurred and an appropriate warning is written. In this case the
procedure trace_state is called automatically. If the stop condition in the CONTROL
statement does not contain MODELTIME as a basic condition, the value 'Reached
Model Time' is not the actual model time but the time the last event in the model has
happened. Be aware that the results are most likely useless.

(S) trace_off

Within a model, component or service, a call of trace_off stops the output of
simulative event (not state) trace information, until trace_on is called. The comment

%STOP OF EVENT TRACE. MODELTIME n.nnnnnnEznn

is written to the trace file. It contains a real value which denotes the actual model time
when the call of trace_off has taken place.

If there are several consecutive calls of trace_off, only the first call has the effect
described above, all following calls are ignored. If you want to use the procedure
trace_off, you must give a TRACE or TRACEALL command in the CONTROL
statement, otherwise all calls of trace_off are ignored.

Outside a model or component type a call of trace_off has no effect but generates a
warning.

(S) trace_on

Within a model, component or service, a call of trace_on restarts the output of the
simulative event (not state) trace information, if it has been switched off by trace_off
before. The comment

%START OF EVENT TRACE. MODELTIME n.nnnnnnEznn

is written to the trace file. It contains a real value which denotes the actual model time
when the call of trace_on has taken place.

D. Modelling Environment - 253 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

If there are several consecutive calls of trace_on, only the first call has the effect
described above, all following calls are ignored. If you want to use the procedure
trace_on, you must give a TRACE or TRACEALL command in the CONTROL
statement (which also starts the trace at the beginning of the experiment), otherwise
all calls of trace_on are ignored.

Outside a model or component type a call of trace_on has no effect but generates a
warning.

(S) transfer_results (solver_info : BOOLEAN DEFAULT FALSE)

Within a model, component or service a call of transfer_results immediately starts
calculation and output of all the performance values as specified in MEASURE state-
ments. The evaluation continues. Within a global procedure or the statement part of
the experiment, a call has no effect but generates a warning.

The output format used for these intermediate results is the same as the format of the
final output into tables or dump files performed automatically (see Appendix G.3.).
Calculation of intermediate results is very time consuming and should be used
economically.

If the value of parameter solver_info is TRUE additional solver information will be
produced (see Section G.1.3.4.).

See also the standard component type observer, which contains a call of transfer_-
results.

Example:

TYPE results SERVICE;
VARIABLE t : REAL;

BEGIN
LOOP

WRITELN "Please enter model time for next intermediate results";
READLN t;
hold (t-time);
transfer_results;

END LOOP;
END TYPE results;
...
PROCESS output_results : results;

(A,S) was_message (kind : CHARACTER DEFAULT 'E';
number : INTEGER DEFAULT 0)

RESULT BOOLEAN

This procedure results TRUE if a HI-SLANG message of the given kind and the
given number has previously occured. Previously here means: messages which have
occured after the generation of the last completion message (see G.1.1.3), or just
before the last completion message if there have not yet been messages hereafter.

For kind the values 'W' (for warnings), 'E' (errors) and 'A' (abort errors) are
admissable, even in lower-case. If parameter number is set to zero (the default), this
is interpreted as "any" message of the given kind. Thus was_message without
setting any parameter returns TRUE if some errors have previously occured.

- 254 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Note:

Be careful that the given number has the given kind, otherwise it will never be
found.

Example:

num := 1;

WHILE NOT was_message AND num<100
LOOP

EVALUATE MODEL m: mt (num);
...
END EVALUATE;
num:=num+1;

END LOOP;

Normally the next evaluation of a series is started if there have been errors or
warnings for the previous one. Using was_message an evaluation series can be
better controlled. This enables saving much cpu time in cases where it is obvious that
all further evaluations are senceless if any or a special kind of error was detected for
a previous one.

Calling was_message is especially useful for the following message numbers:

'W' 166 : Possible numerical instabilities
'E' 165 : No computation possible

The procedure can also be applied to modify the model parameters for the next eval-
uation if such a message has previously occured.

D. Modelling Environment - 255 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.2.5.I/O Support Procedures

Working with files or mobase objects is supported by procedures to determine the end
of a line (eoln) or a file/object (eof, lastitem) or to determine the exponent sign of REAL
values (lowten). Moreover, via procedures sysin , sysout and tracefile references to
special file_objects can be obtained.

eof (F: INFILE DEFAULT sysin) RESULT BOOLEAN

When the position pointer of F has reached the end of the INFILE (or mobase ob-
ject) eof results TRUE, otherwise FALSE. The result is also TRUE if F has not just
been opened or has already been closed (see Section 3.6.). When calling eof with no
actual parameter, the default sysin (see below) is used. A similar procedure is
lastitem (see below).

Example: Reading all the records of INFILE f

VARIABLE f : INFILE;
...
OPEN f, "link name" LENGTH 80;

{"link name" has to be bound in the control file}

WHILE NOT eof(f) LOOP
{process current record, e.g., READ it}
READLN FILE f;

END LOOP;
...
CLOSE f;

eoln (F: INFILE DEFAULT sysin) RESULT BOOLEAN

The result is TRUE, if no more characters can be read from the current record of the
file (or mobase object) F, i.e., the position pointer has reached the end of the record.
The result is also TRUE if F has not just been opened or has already been closed
(see Section 3.6.). When calling eoln with no actual parameter the default sysin is
used.

Example: Reading all the characters of the actual sysin record

VARIABLE c : CHARACTER;
...
WHILE NOT eoln LOOP

READ c; {process character c};
END LOOP;

lastitem (F: INFILE DEFAULT sysin) RESULT BOOLEAN

The procedure lastitem first skips past all blanks, tab characters, and line ends and
thus may even skip some INFILE records. Beside this side-effect the result is the
same as for eof.

- 256 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

lowten (C: CHARACTER)

In the textual representation of REAL values the default separator of mantissa and
exponent is the character 'E'. lowten replaces this character by the value C. C should
not be '.', ',', '+', '-', or a control character. Illegal values may cause run time
errors.

Example:

WRITE 1234.5 normally outputs 1.234500E+03
Calling lowten ('&') before outputs 1.234500&+03

After a lowten ('&') call a value "1.234500E+03" is interpreted as 1.2345 by a
subsequent READ; the position pointer pointing at 'E' which is not part of the
REAL.

sysin RESULT INFILE

sysin is the standard input of HI-SLANG, normally bound to the keybord, but it
may be bound to any other file or mobase object (see Chapter 8.). It is automatically
opened at the beginning of an analyzer run and closed at the end of a run. The record
length is 80 characters.

All READ and READLN statements not followed by the keywords FILE or TEXT
concern sysin.

sysout RESULT OUTFILE

sysout is the standard output of HI-SLANG, normally bound to the terminal, but it
may be bound to any other file or mobase object (see Chapter 8.). It is automatically
opened at the beginning of an analyzer run and closed at the end of a run. The record
length is 132 characters.

All WRITE and WRITELN statements not followed by the keywords FILE or TEXT
concern sysout.

tracefile RESULT OUTFILE

The procedure tracefile results a reference to the trace file of the simulator, which is
automatically opened before each evaluation and closed afterwards. It has the link
name "TRACE", which has a standard EXTEND binding to a file, but can be re-
bound (see Chapter 8.). The file record length is 115 characters, the exact format of
the trace is described in Appendix G.5.

The tracefile can be used within HI-SLANG models to write additional information
to this file, which will be sorted chronologically within the regular trace information.
Accessing tracefile within the statement part of the experiment makes no sence be-
cause the trace file is closed then.

Example:

WRITELN FILE tracefile, "So late: ", time;

D. Modelling Environment - 257 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.3. Context-Dependent Predefinitions
Besides the entities listed in the next sections the following predefinitions exist:

- For each ARRAY declared in a HI-SLANG source the array attributes dimension,
lower_bounds and upper_bounds are predefined and accessible via dot notation.

- For every service all the procedures to access the implicit state of the executing
process and the services spend and hold are predefined.

- For every process all the procedures to access its implicit state are available.

- For every component type all component control procedures and popul procedures
are predefined.

- For every evaluation object there exists a HIERARCHY all MERGE ... The dots are
standing for a MERGE of all load filtering hierarchies ending at that evaluation
object. Omitting the DUE TO-part in MEASURE statements means DUE TO all.

The result types and parameters (if any) of these predefinitions are listed in the
following table:

name type of name of type of comments
 result parameter parameter
A.dimension INT - -
A.lower_bounds[] INT n INT array
A.upper_bounds[] INT n INT attributes

arrival_announce REAL - -
arrival_entry REAL - -
arrival_service REAL - - predefinitions
arrival_exit REAL - - for
arrival REAL - - services /
preempted BOOL - - processes
speed REAL - -
- -
hold - t REAL … for
spend - t REAL services
popul_announce INT - -
popul_entry INT - -
popul_service INT - -
popul_exit INT - - predefinitions
popul INT - - for
accept - - - component types
schedule - - -
dispatch - - -
offer - - -

- 258 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.3.1.Predefinitions for Arrays

Each array of simple data type or record type has the attribute dimension, lower_bounds
and upper_bounds, all of which can only be read. These attributes support the access to
dynamic arrays and to arrays being surrendered as parameters. For instance, if arrays
are defined as formal parameters, their dimension is not specified. Specification occurs
when the current array object is handed over. Array attributes are accessed by dot
notation, the attribute following the array name.

A.dimension RESULT INTEGER

Results the number of indices of array A which have to be supplied when accessing
array elements.

A.lower_bounds [n: INTEGER] RESULT INTEGER

Results the lower bound of the n´th index of array A.

A.upper_bounds [n: INTEGER] RESULT INTEGER

Results the upper bound of the n´th index of array A.

D.3.2.Predefinitions in Services

For every service all implicit state procedures and the services spend and hold are
predefined.

arrival_announce RESULT REAL

Returns the arrival time of this process at the announce queue.

arrival_entry RESULT REAL

Returns the arrival time of this process at the entry area (this value is also updated
when a process is preempted, i.e., transferred from service area to entry area), or -1,
if it has not yet arrived.

arrival_service RESULT REAL

Returns the arrival time of this process at the service area (this value is also updated
when a process resumes its activities after a preemption), or -1, if it has not yet
arrived.

arrival_exit RESULT REAL

Returns the arrival time of this process at the exit area, or -1, if it has not yet arrived.

D. Modelling Environment - 259 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

arrival RESULT REAL

Returns the arrival time of this process at the component, i.e., the time of the first
arrival at the entry area, or -1, if it has not yet arrived.

preempted RESULT BOOLEAN

Returns TRUE if the process has been preempted (transferred from service area to
entry area by a rescheduling) at least once.

speed RESULT REAL

Returns the service speed most recently assigned to the process by a SETSPEED
statement in a dispatch procedure, or -1, if this has not yet happened.

hold (T: REAL)

This service can only be called within (the statement part of) services. Here a call of
hold means that a process following the service pattern is delayed for T time units
(model time), independent of the dispatch procedure of the component. Service hold
can be used to model, e.g., terminals, time outs, or timer interrupts.

hold may also be used if the model is to be solved analytically with restrictions listed
in Appendix E. If T is negative within a simulation run, this is interpreted as hold(0)
and a warning is generated.

spend (T: REAL)

This service can only be called within (the statement part of) services. Here, a call of
spend requests the hosting component to give service for T units. This is not model
time, since this request is dispatched. The dispatch procedure of this component can
affect the "speed" of this service (see Section 4.2.2.).

Time consuming components comparable to ones of type server or prioserver can be
defined by the user by using a call of spend in the provided service. Using spend
within a service local to a model is equal to using hold, because a model has no
dispatch procedure, i.e., uses dispatch := equal (1.0).

The service spend may also be used if the model is to be solved analytically, with
restrictions listed in Appendix E. If T is negative within a simulation run, this is
interpreted as spend(0) and a warning is generated.

- 260 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

D.3.3.Predefinitions in Component Types

For every component type all component control procedures (accept, schedule,
dispatch, offer) are predefined, but can be overridden in the type body or via
corresponding actual component type parameters.

accept

Controls the transfer of processes from the announce queue to the entry area of the
component.

schedule

Controls the transfer of processes between entry and service area. Processes in the
entry area can be transferred to the service area (progress is granted) and vice versa
(further progress is denied).

dispatch

Processes in the service area are further controlled by a dispatch procedure. The
procedure assigns service speeds to processes.

offer

Processes in the exit area waiting to be accepted by the next component (providing
the next requested service), but only those processes selected by an offer procedure
are actually allowed to leave the component.

Moreover the popul procedures are predefined and automatically provided. They enable
to determine the current number of all processes in a special component area.
Additionally the OF operator can be used to retrieve population numbers of a specific
service only. It takes a popul procedure and a service-name as arguments and yields a
new restricted popul procedure.

popul_announce RESULT INTEGER

Returns the number of process references in the announce queue.

popul_entry RESULT INTEGER

Returns the number of processes in the entry area.

popul_service RESULT INTEGER

Returns the number of processes in the service area.

popul_exit RESULT INTEGER

Returns the number of processes in the exit area.

popul RESULT INTEGER

Returns the total number of processes in the component
(=popul_entry + popul_service + popul_exit).

E. Restrictions for the HIT Solvers - 261 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E. Restrictions for the HIT Solvers
This appendix lists all restrictions which must be fulfilled for the application of a
specific HIT solver. It starts with a section for all analytical solvers including solver-
specific subsections. The restrictions for the simulative solver conclude this appendix.
Please see also Appendix G.1.3., describing solver information.

E.1. Restrictions for the Analytical Solvers
HIT offers the analytical solvers DOQ4, LIN2 and MARKOV. Most restrictions apply
to all three solvers in common. Generally these restrictions are tested by the analytical
code generator ACG, but partly the restrictions are not verified until the execution of the
experiment.

E.1.1.Restrictions Common to all Analytical Solvers

These restrictions concern the allowed station types, the modelling of chains, allowed
distributions, the use of control statements and other programming features and the
allowed evaluations.

E.1 .1 .1 . Stations

Service stations in the sense of this model class are described by definition of com-
ponent objects of a predefined type. Servers can be used by all solvers, DOQ4
additionally allows prioservers, while MARKOV can additionally deal with counters,
ftservers and prioservers. The use of further standard component types is not permitted.

Standard Type DOQ4 LIN2 MARKOV SIMUL
Server x x x x

Prioserver x x x x
Ftserver - - x -
Counter - - x x
others - - - x

The service strategies permitted have to be described with support of the component
control procedures (see also Appendix F.3.). In general the procedure dispatch
determines the service speed. State-independent service speeds are described by
EQUAL (speed) or SHARED (speed), state-dependent service speeds are described by
the procedures SDEQUAL (...) or SDSHARED (...). The allowed combinations of
dispatch and schedule depend on the solver used and are therefore listed in the solver-
specific parts below. However, only ALWAYS and ALL may be used as accept- or
offer-procedure, respectively.

User-defined component types may contain or enclose stations and objects of other
user-defined component types. They have to fulfil all restrictions listed in the solver-
specific sections. For objects of user-defined component types only the default values
for accept, schedule and offer are allowed. For dispatch all standard procedures can be
used. However, for objects of aggregated (user-defined) component types, no
specifications concerning any control procedure are allowed.

- 262 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1 .1 .2 . Chains

Chains in the sense of this model class are defined by services together with the creation
of process objects through the CREATE statement.

Closed chains have to be described by

CREATE n PROCESS service-name;

The outermost control statement of the service has to be a loop without the possiblility
of termination (the infinite LOOP...END LOOP), in order to keep the customers
permanently in the system, but none of the used services may contain an infinite loop.

Open chains have to be described by

CREATE 1 PROCESS service-name EVERY negexp (arrival_rate);

The corresponding service must not contain an infinite loop, and none of its used
services (and the used services of the latter etc) may contain an infinite loop.

The arrival rate has to be either larger than, or equal to zero. Declarations as for instance
SUBMIT statements and declarations of process names are not possible. Restrictions
by LIMIT may only be used for MARKOV.

E.1 .1 .3 . Distributions

Allowed distributions for describing the required amount of service time are

• cox (rate, coefficient of variation)
• coxg (description of phases)
• negexp (rate)

When requesting services from components which have a non-predefined type the
functions cox, coxg and negexp are not allowed within actual parameter expressions. In
this case, only constants, parameters and terms over these are permitted.

E.1 .1 .4 . Control Statements

Within the bodies of services, only the following control statements are allowed:

• LOOP...END LOOP (infinite loop)
• LOOP...END LOOP UNTIL draw(prob) (UNTIL loop)
• WHILE draw(prob) LOOP...END LOOP (WHILE loop)
• AVERAGE n TIMES LOOP...END-LOOP (TIMES loop)
• IF draw(prob) THEN...ELSE...END IF (IF statement)
• BRANCH-END BRANCH (BRANCH statement)
• OPEN_CHAIN-END OPEN_CHAIN (OPEN_CHAIN statement)
• CLOSED_CHAIN-END CLOSED_CHAIN (CLOSED_CHAIN statement)

An infinite loop (LOOP...END LOOP) is only allowed in the case of defining a closed
chain, and may at most occur once in a service.

E. Restrictions for the HIT Solvers - 263 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The probabilities prob within the control statements above must be greater than 0.0 and
lower than 1.0. In some cases the values 0.0 and 1.0 are allowed as well, depending on
the structure of the chain and the requested analytical method. Moreover, service
parameters are not allowed within the expression prob, but parameters of the enclosing
component type are allowed. Thus service parameters are only useful to define service
requests, not to define routing. All these restritions are made to achieve that the
"structure" of a modelled chain cannot be modified stochastically or by service
parameters.

E.1 .1 .5 . Programming Features

In all model elements (model types, component types, services), only the declaration of
constants is allowed. Variables, procedures and value assignments are not permitted.
Consequently, services may not possess RESULT parameters. All statements for file
and text handling (READ, READLN, WRITE, WRITELN, OPEN, CLOSE) are
forbidden. Note that these restrictions do not apply for the experiment specification.

E.1 .1 .6 . Evaluations

No user-defined streams are permitted, and consequently, neither are UPDATE
statements and COLLECT blocks. Only the standard streams POPULATION,
THROUGHPUT, TURNAROUNDTIME and UTILIZATION are allowed. The
evaluation of component areas is not permitted.

Within a CONTROL statement, no evaluation object may be referenced. Only
CPUTIME and ACCURACY are allowed (singular or connected by OR) as termination
criteria. CPUTIME is ignored by fast solvers (DOQ4, LIN2), while ACCURACY is
ignored by exact solvers (DOQ4).

As an estimator for performance measurements, only the declaration of MEAN is per-
mitted. FREQUENCY is ignored, while STANDARDDEVIATION, CONFIDENCE
LEVEL and BOUNDS are transformed to MEAN. In this cases, a warning is given.

Estimator DOQ4 LIN2 MARKOV SIMUL
MEAN x x x x

BOUNDS mean x mean mean
FREQUENCY ignored ignored ignored x

STANDARDDEVIATION mean mean mean x
CONFIDENCE LEVEL mean mean mean x

For the declaration of experiments and for the control of series of evaluations (in con-
trast to the declaration of model elements), the complete extent of the language HI-
SLANG is permitted.

- 264 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1.2.Further Restrictions for DOQ4

The analytic-algebraical solver DOQ4 allows the exact analysis or aggregation of sep-
arable networks as well as the approximative analysis or aggregation of non-separable
networks (see /MuNS85/, /KLMN88/). Verification of part of the restrictions does not
occur until the experiment is executed. If possible, the exact solver is applied. Other-
wise the approximate solver is automatically selected at run time.

In the following, the restrictions relating to the solvable class of models of the DOQ4
solver are listed. Moreover, the restrictions listed in E.1.1 apply.

E.1 .2 .1 . Stations

Service stations in the sense of this model class are described by definition of com-
ponent objects of the type server or prioserver. The service strategies permitted have to
be described with support of the component control procedures (see also Appendix
F.3.). The following combinations are allowed:

server strategy: schedule dispatch

FCFS: FCFS (1) (SD)EQUAL or (SD)SHARED
RANDOM: RANDOM(1) (SD)EQUAL or (SD)SHARED
LCFSPR: LCFSPR (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL

prioserver strategy: schedule dispatch

PREEMPTIVE REPEAT: PRIOPREP (SD)EQUAL
NONPREEMPTIVE: PRIONP (SD)EQUAL
FCFS: FCFS (1) (SD)EQUAL or (SD)SHARED
RANDOM: RANDOM(1) (SD)EQUAL or (SD)SHARED
LCFSPR: LCFSPR (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL

E.1 .2 .2 . Chains

Open chains in models with state-dependent stations are allowed, unless aggregated
stations with more than one provided service are visited by open chains.

E.1 .2 .3 . Distributions

When the exact analytic algebraic solution methods are applicable and thus automatically
selected, cox is transformed to coxg by selecting a set of rates and phase probabilities
consistent with the parameters of cox. The coefficient of variation may not be negative.
All (phase description-)rates have to be larger than zero.

E. Restrictions for the HIT Solvers - 265 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1 .2 .4 . Evaluations

There are no further restrictions concerning evaluations.

E.1 .2 .5 . Aggregation and Use of Aggregates

The component type to be aggregated and its provided services have to be without pa-
rameters. The aggregate produced can be embedded into models which can then be
evaluated by an arbitrary solution method if certain restrictions are obeyed. These
restrictions are listed in the corresponding sections of this appendix.

By applying DOQ4, aggregated component types can only be used

• within component types, which themselves can be aggregated,

• within models containing only closed chains,

• and within models with open and closed chains, if the services of the aggregated
component type are only used by closed chains.

At this point, it has to be said that aggregated component types may have been orig-
inated from approximate aggregation. The performance measurements determined
during the use of the aggregate are generally also approximate. At present, no corre-
sponding warning is given if such an aggregate is used.

- 266 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1 .2 .6 . Algorithm Selection

E.1 .2 .6 .1 . Exact Analysis

The exact algorithm is only applicable and used, if

• neither schedule procedure PRIOPREP nor PRIOPNP are used,

• the distribution of the needed amount of service in the strategy FCFS or RANDOM
is negexp with equal service rates for all service requests.

Otherwise the approximative algorithm is used.

E.1 .2 .6 .2 . Approximative Analysis

When utilizing the approximative algorithm, the service requests have to satisfy the fol-
lowing conditions:

• At stations with strategy RANDOM, the distribution of the required amount of ser-
vice has to be negexp with equal service rates for all service requests. This also
applies for state-dependent stations with strategy FCFS.

• At state-independent stations with strategy FCFS, the service rates and the coef-
ficients of variation of the required amount of service have to be equal for all service
requests of one chain. Service requests of different chains yet may possess different
rates and coefficients of variation, in particular, they need not be distributed negexp.

• At strategy PRIOPREP and PRIONP, the distribution of the required amount of ser-
vice has to be negexp with equal service rates and priorities for all service requests
of one chain. The priorities of service requests of different chains may not coincide.

E.1 .2 .6 .3 . Remarks on Scaling

In the course of evaluating the performance measurements desired by the user, the
solver DOQ4 determines the relative visit of the service stations for the normalizing
constants as intermediate results.

Here, due to the arrival and service rates determined by the user within the model,
scaling problems could occur. These could cause an under- or overflow in the
evaluation of the normalizing constants.

Principally, scaling methods determining a scaling factor for every normalizing constant
to be calculated could be used here, but this would cause the solver to occupy twice the
amount of storage and time. DOQ4 does not contain such a scaling method. If under- or
overflow problems occur, changes in the description of services (e.g., reordering
sequences of statements in services) may help.

E. Restrictions for the HIT Solvers - 267 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1.3.Further Restrictions for LIN2

With support of the approximate analytic-algebraical solver LIN2, models of the class
of "large" separable queuing systems can be solved (/Knau88/). Furthermore, the
solver LIN2 permits the calculation of exact lower and upper bounds (performance
bounds) for the mean values of the desired performance measurements (see also
/KnND89/).

In the following, the restrictions relating to the solvable class of models of the LIN2
solver are listed. Moreover the restrictions listed in E.1.1 apply.

E.1 .3 .1 . Stations

Service stations in the sense of this model class are described by the definition of
component objects of the type server or prioserver. The service strategies permitted
have to be described with support of the component control procedures (see also
Appendix F.3.). The following combinations are allowed:

server strategy: schedule dispatch

FCFS: FCFS (1) (SD)EQUAL or (SD)SHARED
RANDOM: RANDOM (SD)EQUAL or (SD)SHARED
LCFSPR: LCFSPR (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL

prioserver strategy: schedule dispatch

RANDOM: RANDOM(1) (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL

E.1 .3 .2 . Chains

Open chains may not use any service provided by state dependent stations.

E.1 .3 .3 . Distributions

When the approximative analytic-algebraical solver is applied, cox is transformed to
coxg by selecting a set of rates and phase probabilities consistent with the parameters of
cox. The coefficient of variation may not be negative. All (phase description-)rates have
to be larger than zero.

When using the strategy FCFS or RANDOM, the distribution has to be negexp with
equal service rates for all service requests.

- 268 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1 .3 .4 . Evaluations

As an estimator for performance measurements, only the declaration of MEAN or
BOUNDS (see below) is permitted. For a CONTROL statement in connection with
estimator BOUNDS see below.

E.1 .3 .5 . Aggregation and Use of Aggregates

The aggregation of component types by LIN2 is not possible, meaning the
AGGREGATE statement is not permitted.

Neither is the use of aggregated component types with more than one provided service
permitted. Because of the speed of the solver LIN2 the original component type can be
used instead of the aggregated component type, if possible.

E.1 .3 .6 . Algorithm Selection

When using the solver LIN2, the calculation of exact upper and lower bounds for the
mean values of the desired performance measurements (performance bounds) is only
possible if ESTIMATOR BOUNDS is demanded within the corresponding MEASURE
statements. In addition to the restrictions specified above, calculation of bounds is only
possible if

• all state-dependent stations have monotonously increasing speed functions

or if

• every closed chain has at least one state-independent station with service strategy IS
with "sufficiently" high relative occupation.

The mean values furthermore are determined by the "normal" LIN2 approximation.

The ACCURACY statement has the following effects:

• A performance bounds algorithm is selected, if ACCURACY is set > 0. Even if no
estimator BOUNDS occurs in the source, but ACCURACY is > 0, the approximate
evaluation of mean values may be influenced.

• With the stop condition ACCURACY within the CONTROL statement, the user can
take influence on the quality of the bounds which are to be calculated. Only values
less than or equal 4 are valid concerning accuracy. Although the definition of larger
values implies the calculation of closer bounds, it occurs at a higher effort than with
lower values. Depending upon the size of the investigated model, (number of closed
chains), LIN2 reduces the accuracy to hold the effort of computation within limits.
In these cases, a warning is given.

Real values used as accuracy are rounded to INTEGER values. If the value is lower
than 0.5 or if the ACCURACY stop condition does not exist no bounds are calcu-
lated.

The stop conditions CPUTIME is ignored by LIN2 in calculation of "performance
bounds".

E. Restrictions for the HIT Solvers - 269 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1.4.Further Restrictions for MARKOV

The analytic-numerical solver (MARKOV) allows the analysis of general, not separable
queueing networks (/MuRo87/). In the following, the restrictions relating to the
solvable class of models of the MARKOV solver are listed. Moreover the restrictions
listed in E.1.1 apply.

E.1 .4 .1 . Stations

Service stations in the context of this model class are described by definition of
component objects of the type server, prioserver, ftserver and counter. The allowed
service strategies have to be described using the component control procedures (see also
Appendix F.3.). The following combinations are allowed:

server strategy: schedule dispatch

RANDOM: RANDOM (1) (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL

prioserver strategy: schedule dispatch

RANDOM: RANDOM (1) (SD)EQUAL or (SD)SHARED
PS: IMMEDIATE (SD)SHARED
IS / NODELAY: IMMEDIATE (SD)EQUAL
PREEMPTIVE REPEAT: PRIOPREP (SD)EQUAL or (SD)SHARED
NONPREEMPTIVE: PRIONP (SD)EQUAL or (SD)SHARED

ftserver strategy: schedule dispatch

RANDOM: RANDOM (1) (SD)EQUAL or (SD)SHARED
PREEMPTIVE REPEAT: PRIOPREP (SD)EQUAL or (SD)SHARED
NONPREEMPTIVE: PRIONP (SD)EQUAL or (SD)SHARED

Although the RANDOM parameter has to have value 1 for ftserver, it will actually be
redefined by the value of the parameter processors of the component type ftserver.

counter strategy: schedule dispatch

RANDOM: CRANDOM ignored
PRIORITY: CPRIO ignored

For objects of type counter, only CRANDOM (random choice of one waiting service
call) and CPRIO (choice of the service call with the highest priority) are allowed as
schedule procedure. The dispatch procedure is of no significance in this case.

The following restrictions have to be taken into account when employing the component
type counter:

- 270 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

• If the counter object uses the schedule procedure CRANDOM as a parameter, the
state vector may only have one dimension and all change requests (= parameters of
the corresponding service calls) have to be identical in regard of their absolut values.

• If the counter object has the schedule procedure CPRIO as a parameter, all priorities
should be different. If two or more service calls have the same priority, the solver
internally assigns distinctive priorities.

• Service calls may not be blocked at a counter object due to capacity restrictions of one
of the following components. Consequently, if the following component uses
RESTRICT (...), the capacity of a succeeding component may not be exhausted
when the preceding counter service call terminates.

• Only ALWAYS and ALL may be used as accept or offer procedures, respectively.

Component objects of limited capacity are defined by the accept procedure RESTRICT
(...). Apart from RESTRICT (...), only ALWAYS and ALL may be used as accept or
offer procedures, respectively. RESTRICT (...), however, has a different meaning
from the accept procedure LIMITED (...) in the case of a simulative solver: If the
capacity of a component is exhausted, the admission of further services is not possible.
Services calling for service are rejected and repeat the service (or the last phase of
service in the case of cox service time distribution with several phases) at the last visited
component.

E.1 .4 .2 . Chains

The population of open chains always has to be limited. Thus open chains have to be
described by

CREATE 1 PROCESS service-name LIMIT n EVERY negexp (arrival_rate);

E.1 .4 .3 . Distributions

When using cox, the coefficient of variation should not lie under the value of 0.32,
since such service requests would be transformed to a cox distribution with more than
10 phases. Here, however, only 10 phases are assigned for this transformation, and
therefore the distribution of phases should explicitly be defined with support of coxg.

E.1 .4 .4 . Evaluations

Within a CONTROL statement no evaluation object may be defined, and only
CPUTIME and ACCURACY are eligible as stop conditions (separately or connected by
OR). These, however, refer only to the CPU time necessary for solving the system of
equations and to the accuracy of the iterative solution, respectively.

Reasonable values for ACCURACY should lie between zero and one. They are inter-
preted as accuracy of the numerical solution in percent, whereas the accuracy refers to
the relative error of the calculated state probabilities of the underlying Markov chain.
The attained accuracy is verified by estimation.

E. Restrictions for the HIT Solvers - 271 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.1 .4 .5 . Aggregation and Use of Aggregates

The aggregation of component types by MARKOV is currently not possible, and the
AGGREGATE statement, consequently, is not permitted. However, aggregates can be
used.

E.1 .4 .6 . Algorithm Selection

The solver MARKOV determines performance measures in five steps.

1. The model data is transformed and a model structure is determined heuristically to
partition the state space in the following steps.

2. The state space is generated.

3. The generator matrix is build up.

4. The system of linear equations is solved.

5. Basic performance measures are computed using the stationary probability
distribution of the states.

The algorithm selection is related to step 4, the solution of the systems of linear
equations. One of the following three algorithms can be selected: a direct algorithm
(Grassmann algorithm), an iterative algorithm (Gauss-Seidel) combined with aggre-
gation/disaggregation (a/d) steps and a point iteration algorithm (SOR).

The direct algorithm solves the equations with a fixed number of operations, but is not
applicable to large systems because of its computation and storage requirements. A
measure of the size of a system is the product of order and bandwidth of the matrix.

The Gauss-Seidel algorithm with a/d steps is chosen if the number of macro states is in
an acceptable domain, otherwise the SOR algorithm with an heuristical determination of
a relaxation parameter is selected.

Note that the algorithm selection uses results of the previous steps 1-3.

- 272 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.2. Restrictions for the Simulative Solver
The simulative solver SIMUL allows for the analysis of nearly all models specifyable
via HI-SLANG, but compared to analytical solvers simulation is very time-consuming
and the results are only approximate. Thus analytical solvers should be applied
whenever possible.

If an analytic-algebraical HI-SLANG source code is (e.g., due to extensions made in
later analysis steps) to be analyzed with the simulative solver, the following
modifications are necessary:

• METHOD ANALYTICAL "..." has to be replaced by METHOD SIMULATIVE.

• A CONTROL statement has to be added or the given CONTROL statement has to be
modified in order to fulfill the requirements of simulation (i.e., evaluation objects
should be supplied for control). An ACCURACY declaration within the CONTROL
statement is ignored.

Generally, when changing from an analytical to a simulative solver, not only mean
values (estimator MEAN ...) but also confidence intervals (estimator CONFIDENCE
...) should be demanded for reasons of statistical certainty. Mean value and standard
deviation are then automatically computed and given out. Fading out the transient phase
is also reasonable. The declaration of estimator BOUNDS is ignored by the simulative
solver.

E.2.1.Restrictions on Modelling

Almost all analytically solvable models can be solved simulatively, with the following
exceptions:

• The accept procedure RESTRICT can be used only analytic-numerically and not for
the simulative solver, since no implementation is possible. The component control
procedure, registered in the HIT standard mobase, only supplies a run time error
message and stops the evaluation run.

• The component type ftserver can only be used analytic-numerically since the results
would be questionable at least. The HI-SLANG source code, filed in the HIT
standard mobase, only contains the interface of the component type ftserver and of
its provided service request. Using it in the simulative case would entail all service
execution of this ftserver-request without time; a warning will be additionally
supplied.

• When using the component type prioserver with the schedule procedure PRIOPREP
for a simulative solver, attention has to be paid to the circumstance that the next
service in execution, if he has been preempted before, is carried out with exactly the
same service demand (identical), while using PRIOPREP in the case of the
numerical solver, the service demand is drawn anew (resampling). Although both
strategies are close together this can lead to different results in extreme cases.
Another, different implementation is neither possible for the simulative nor for the
numerical solver.

E. Restrictions for the HIT Solvers - 273 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

E.2.2.Restrictions on Evaluation

When actualizing a user-defined stream with the UPDATE statement, the following
points are of importance:

• In the case of the stream type STATE, the given value is interpreted as the difference
to the last observed value. Thus the change of the state is specified.

• In the case of the stream type EVENT, the given value is interpreted as the value of
the observed value itself.

• In the case of the stream type COUNT, the given value is 1, therefore higher
numbers are attained only with several UPDATE statements.

The estimator MEAN for a stream of the type STATE results from the average of the
observed values, weighted with the respective amount of time being observed. For a
stream of the type EVENT this equals the average of the observed values. Regarding a
stream of the type COUNT, the estimator results from the quotient of the number of
counted events and the full length of the time interval of the observation.

The estimator CONFIDENCE INTERVAL refers to the mean value estimator for all
three types of streams.

The estimator STANDARD DEVIATION refers to the mean value for STATE and
EVENT streams and to the time interval between the events for COUNT streams.

E.2.3.Aggregation and Use of Aggregates

A simulative aggregation (AGGREGATE ... END AGGREGATE) is not possible,
whereas the use of an aggregate is legitimate. Only ACCEPT and OFFER control
procedures can be specified for aggregates.

F. The HIT Standard Modelling Base - 275 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F. The HIT Standard Modelling Base
This appendix describes the objects (members) of the HIT standard mobase. Working
on mobases by means of HIT-OMA is explained in /Weis92b/. The possibilities of ac-
cess to mobases by HI-SLANG are treated in Chapter 8.

The HIT standard mobase contains on the one hand HI-SLANG sources and on the
other hand predefined component control procedures, written in Standard SIMULA.
Correspondingly, this appendix is divided into three sections: The first two concentrate
on the explanation of the HI-SLANG sources (predefined component types and
services), the third treats the predefined SIMULA component control procedures.

There are certain restrictions for the application of the mobase objects. They are indi-
cated in the following way throughout this appendix:

(*) implies: application possible for all HIT solvers

(S) implies: only allowed for METHOD SIMULATIVE

(M) implies: only allowed for METHOD ANALYTICAL "MARKOV"

(D) implies: only allowed for METHOD ANALYTICAL "DOQ4"

(L) implies: only allowed for METHOD ANALYTICAL "LIN2"

All but the first mark may occur in combinations, e.g.,

(S,M) means: applicable for the simulative and the Markov solver.

- 276 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1. Standard Component Types
The following table gives an overview of all standard component types of HI-SLANG
and their provided services. Moreover the default for the component procedure schedule
is given. Here hi-slang means that the default procedure is contained in the component
type, formulated in HI-SLANG. The defaults for accept, dispatch and offer are
ALWAYS, EQUAL(1.0) and ALL, respectively. As before, the method range of
application is denoted by (S), (M), (D), (L) and (*) marks.

Component
Type

Allowed
Methods

Provided Services Schedule
Default

Server * request IMMEDIATE
Counter S,M change CRANDOM
Semaphor S p v SEMSCHED
Tokenpool S allocate release destroy produce TOKSCHED
Synchsend S send receive hi-slang
Nowaitsend S send receive hi-slang
Ftserver M request PRIONP
Prioserver S,M,D request PRIONP
Observer S - IMMEDIATE

These types are described in detail on the next pages. Before that the following table
lists all component control procedures that are admissable for those types:

Control Component Type
Procedure Server Counter Sema-

phor
Token-

pool
Synch-
send

Nowait-
send

Ft-
server

Prio-
server

Oserve
r

Aggre-
gate-
type

others

ALWAYS D F F F F F D D F D D1
LIMITED O - - - - - - O - O O

RESTRICT O - - - - - O O - - -
hi-slang - - - - - - - - - - D2
CPRIO - O - - - - - - - - -

CRANDOM - D - - - - - - - - -
FCFS O - - - - - - - - - O

IMMEDIATE D - - - - - - O F F D1
LCFS O - - - - - - - - - O

LCFSPR O - - - - - - - - - O
PRIONP - - - - - - D D - - -

PRIOPREP - - - - - - O O - - -
PRIOPRES - - - - - - - O - - -
RANDOM O - - - - - O O - - O

SEMSCHED - - F - - - - - - - -
TOKSCHED - - - F - - - - - - -

hi-slang - - - - F F - - - - D2
AGGRDISP - - - - - - - - - F -

EQUAL D F F F F F D D F - D1
SDEQUAL O - - - - - O O - - O

SDSHARED O - - - - - - O - - O
SHARED O - - - - - - O - - O
hi-slang - - - - - - - - - - D2

ALL D F F F - F D D F D D1
hi-slang - - - - F - - - - - D2

Legend: O: optional, - : illegal,
F: fixed, setting this control procedure makes no sense,
D: default,
D1: default if no HI-SLANG is given in the type,
D2: default if HI-SLANG is given in the type

F. The HIT Standard Modelling Base - 277 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.1. Server

The component type server (which can be used with all solvers) provides a base service
request with the parameter amount of the type REAL. The parameter amount specifies
the amount of work to be done by the server, creating the possibility of modelling time
consumptions with aid of a server and the service request it provides. In HI-SLANG
notation the component type server has the following structure:

TYPE server COMPONENT;
PROVIDE

SERVICE request (amount : REAL);
END PROVIDE;

TYPE request SERVICE (amount : REAL);
BEGIN

spend (amount);
END TYPE request;

END TYPE server;

In accordance to the other component types, the type server has the predefined param-
eters accept, schedule, dispatch and offer, and provides as a standard the functional
procedures popul, popul_announce, popul_entry, popul_service and popul_exit.

Please note that the component type server can´t be redefined in HI-SLANG since the
compiler recognizes the server as a standard.

At the point of declaration, objects of the type server can be provided with the standard
procedures for component control as parameters, initiating a possibility to imitate strat-
egies such as "processor sharing" or "infinite server", which are important for model-
ling:

Example:

COMPONENT bus : server (LET dispatch := shared);
terminal : server (LET dispatch := equal);

- 278 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.2. Counter

The component type counter (Simulative and Markov only), which is used for
modelling space consumption, serves as a counter part to the component type server,
allowing the modelling of time consumption. Objects of this type can be interpreted as
passive servers. Important possibilities of application are for example the realization of
a semaphore, of a tokenpool or of mechanisms for synchronization. In the case of
simulation, though, components more efficient under the aspect of run time can be
employed. These will be explained later.

A component of the type counter provides the change of a state vector as a service:

TYPE counter COMPONENT (min, max, init: ARRAY OF INTEGER);
PROVIDE

SERVICE change (amount : ARRAY OF INTEGER;
 prio : INTEGER DEFAULT 32767);

END PROVIDE;

VARIABLE
state_vector : ARRAY [init.lower_bounds[1] ..

init.upper_bounds[1]] OF INTEGER;

TYPE change SERVICE (amount : ARRAY OF INTEGER;
prio : INTEGER DEFAULT 32767);

PROCEDURE change_state (amount : ARRAY OF INTEGER);

VARIABLE run : INTEGER;

BEGIN
FOR run := state_vector.lower_bounds[1] STEP 1 UNTIL

state_vector.upper_bounds[1]
LOOP

state_vector[run] := state_vector[run] + amount[run];
END LOOP;

END PROCEDURE CHANGE_STATE;

BEGIN
change_state (amount);

END TYPE change;

PROCEDURE init_state_vector (init : ARRAY OF INTEGER);
VARIABLE run : INTEGER;
BEGIN

FOR run := state_vector.lower_bounds[1] STEP 1 UNTIL
state_vector.upper_bounds[1]

LOOP
state_vector[run] := init[run];

END LOOP;
END PROCEDURE init_state_vector ;

BEGIN
IF init.dimension<> 1 THEN

stop_evaluation ("Illegal actual parameter for INIT at COUNTER.");
ELSE

init_state_vector (init);
END IF;

END TYPE counter;

F. The HIT Standard Modelling Base - 279 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The lower and upper limits of the state vector and its initial value are given by the pa-
rameters min, max, and init, respectively. Changes of the state vector achieved by
change occur without consuming time. Waiting situations may arise if change calls are
temporarily not allowed. CRANDOM (default) and CPRIO are allowed as values for
the component control procedure schedule in order to solve a waiting situation.

To illustrate the application, the realization of a binary semaphore is presented here, the
component type counter being introduced by a %COPY statement to the HI-SLANG
program. Calls of change ([+1]) and change ([-1]) correspond to the known v and p
semaphore operations:

Example:

%COPY "counter"
...
COMPONENT bin_semaphore : counter (LET min := [0], LET max := [1],

LET init := [1], LET schedule:= crandom);

Note that this implementation of the semaphore has the property that v is blocking in the
case that more v- than p-operations have been executed: p and v are symmetric.

Services intending to change the state vector cannot do this before a situation occurs in
which the permitted limits (between min and max) are not exceeded by the change. If
the change is allowed, it happens without time consumption. Otherwise the service has
to wait until the change is allowed. Waiting services with legitimate changes are either
selected according to their priority by LET schedule := cprio, or randomly by LET
schedule := crandom. Corresponding to the prioserver (see below), the priorities here
are also assigned at the point of the service call (prio is a parameter of the provided ser-
vice change).

The following restrictions are of importance in the case of applying the numerical
solver:

When using the schedule procedure CRANDOM, which is the default, only a state
vector with one dimension, in other words a state variable, is allowed. Furthermore for
the Markov solver all changes of this state variable should be identical regarding their
absolute value. If, applying the procedure CPRIO, two or more service calls have the
same priority, the solver internally gives out distinctive priorities.

Only ALWAYS and ALL may be used as accept or offer procedures, respectively.
Change requests to a counter object may not be blocked because of capacity restrictions
of a following component. Consequently, when using RESTRICT (...) on the compo-
nent following a counter object, the capacity of this component may not be exhausted at
the moment a service call of the preceding counter object terminates.

- 280 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.3. Semaphor

In the case of simulation only, a more efficient component type, regarding time con-
sumption, can be employed as semaphore. It is named semaphor (note the missing 'e'
at the end), provides the (parameterless) services p and v and has a formal INTEGER
parameter sem_init, to initialize a semaphor. The default value of sem_init is "1",
implying that the default of this component type realizes a binary semaphore. This is not
completely right, since 1 is only the default value and can arbitrarily be incremented by
successive v-calls.

TYPE semaphor COMPONENT (sem_init : INTEGER DEFAULT 1);
PROVIDE

SERVICE p; v;
END PROVIDE;

VARIABLE sem : INTEGER DEFAULT sem_init;

TYPE p SERVICE;
BEGIN

sem := sem - 1;
END TYPE p;

TYPE v SERVICE;
BEGIN

sem := sem + 1;
END TYPE v;

END TYPE semaphor;

When declaring the component object, no assignments should be done concerning the
four component control procedures, since only the internally defined default values are
meaningful.

The component type semaphor has to be notified by %COPY to a HI-SLANG program.

Example:

%COPY "SEMAPHOR"
...
COMPONENT bin_sem : semaphor;

common_sem : semaphor (LET sem_init := 3);
...
TYPE serv SERVICE;

USE
SERVICE passeer; verlaat;
...

END USE;

BEGIN
passeer;
... { critical section }
verlaat;

END TYPE serv;

REFER serv, ... TO bin_sem, ... EQUATING
serv.passeer WITH bin_sem.p;
serv.verlaat WITH bin_sem.v;

END REFER;

F. The HIT Standard Modelling Base - 281 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.4. Tokenpool

As a further variant of modelling space-consumption in the simulative case, HI-SLANG
provides the component type tokenpool (Simulative only). Tokenpool is a modelling
element, known for example by RESQ (see also /SaMN84/). A tokenpool contains a
number of objects (tokens). Processes can take access to these objects by certain
functions (services). Tokens may be reserved exclusively (allocate) and can be set free
again in the following (release). Newly created objects can be added to the pool
(produce) and finally, objects may be destroyed (destroy). The tokens within the pool
cannot be identified individually. The services have an INTEGER parameter named
number which declares how many tokens should be reserved, released, created or
destroyed:

TYPE tokenpool COMPONENT (no_of_tokens : INTEGER);
PROVIDE

SERVICE allocate (number : INTEGER);
release (number : INTEGER);
destroy (number : INTEGER);
produce (number : INTEGER);

END PROVIDE;

VARIABLE tokens : INTEGER DEFAULT no_of_tokens;

TYPE allocate SERVICE (number : INTEGER);
BEGIN

tokens := tokens - number;
END TYPE allocate;

TYPE release SERVICE (number : INTEGER);
BEGIN

tokens := tokens + number;
END TYPE release;

TYPE destroy SERVICE (number : INTEGER);
BEGIN

tokens := tokens - number;
max_avail_tokens := max_avail_tokens - number; {used in TOKSCHED}

END TYPE destroy;

TYPE produce SERVICE (number : INTEGER);
BEGIN

tokens := tokens + number;
max_avail_tokens := max_avail_tokens + number; {used in TOKSCHED}

END TYPE produce;
END TYPE tokenpool;

The component type tokenpool has an INTEGER parameter no_of_tokens which de-
fines the initial number of available tokens. No assignments should be done concerning
the four component control procedures, since only their default values are meaningful.
The special built-in schedule procedure TOKSCHED cannot be displayed here. It
causes calls of allocate and destroy to wait, if there are not enough tokens available.

The tokenpool is very convenient for instance for the plain modelling of main storage: A
token here represents a page of the main storage. The component type tokenpool has to
be introduced to a HI-SLANG program by %COPY:

- 282 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

%COPY "TOKENPOOL"
...
COMPONENT memory : tokenpool (LET no_of_tokens := 1024);

The following service calls can then be made:

allocate (5) : Five tokens are reserved. If they are not available at the moment, they are
reserved as soon as an appropriate number of tokens has been set free by release
or has been created by produce.

release (5) : Five tokens are released.

produce (1) : One new token is created.

destroy (7) : Seven tokens are destroyed. If they are not available at the moment, they are
destroyed as soon as an appropriate number of tokens has been set free by
release or has been created by produce.

You will get a warning if more tokens were released than allocated.

F. The HIT Standard Modelling Base - 283 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.5. Synchsend

The parameterless component type synchsend (usable only in simulation) enables
processes to communicate with each other, that means, to exchange messages. A
component object of the type synchsend allows communication between two processes
in one direction, one of the processes acting as the sender, the other as the receiver. If
the communication is to occur in both directions or if more than two processes are to
exchange messages, several component objects of the type synchsend or even an array
of components should be declared.

In process communication by synchsend, sender and receiver synchronize each other
by exchanging messages:

In the first case (sender "arrives" prior to receiver) the sender waits for the receiver to
make sure that the receiver actually gets the message, in the other case (receiver
"arrives" prior to sender) the receiver naturally waits until the sender produces the
message and makes it accessible to him. Due to this kind of synchronization between
sender and receiver, no additional buffer is necessary for message exchange, because
the sender does not produce and send messages "on store". A text variable is used to
give the receiver a copy of the message.

Synchsend provides the services send and receive: the sender calls send if he wants to
transmit a message. The actual parameter contains the text of the message (name of the
formal parameter : what). On the other side the receiver calls receive and gets the text of
the message as RESULT. The text handling in HI-SLANG (treated in Section 3.6.)
allows the construction and processing of message of a complex structure.

According to this pattern the user may define a synchsend component type operating on
an arbitrary record type instead of text.

TYPE synchsend COMPONENT;
PROVIDE
SERVICE send (what : TEXT);

receive RESULT TEXT;
END PROVIDE;

CONTROL

PROCEDURE schedule;
BEGIN

IF POPUL_SERVICE = 0 THEN
IF last_service = 'R' THEN
IF POPUL_ENTRY OF send > 0 AND POPUL_ENTRY OF receive > 0 THEN

INSPECT ENTRY_AREA WHILE last_service = 'R' LOOP
WHEN SEND : SELECT;

last_service := 'S';
END LOOP;
END IF;

ELSE
INSPECT ENTRY_AREA WHILE last_service = 'S' LOOP
WHEN RECEIVE : SELECT;

last_service := 'R';
END LOOP;

END IF;
END IF;

END PROCEDURE SCHEDULE;

END CONTROL;

- 284 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

VARIABLE buffer : TEXT;
last_service : CHARACTER DEFAULT 'R';

TYPE send SERVICE (what : TEXT);
BEGIN

buffer := what;
END TYPE send;

TYPE receive SERVICE RESULT TEXT;
BEGIN

RESULT buffer;
buffer := "";

END TYPE receive;

END TYPE synchsend;

Synchsend has to be copied (by a %COPY statement) when being used. No setting of
control procedures make sense in the declaration of objects of the type synchsend:

Example:

%COPY "SYNCHSEND"
...
COMPONENT commun : synchsend;

sender: receiver:

. { produce message } .

. .
send (message); message := receive;
. .
. . { process message }

F. The HIT Standard Modelling Base - 285 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.6. Nowaitsend

The communication between processes allowed by the component type nowaitsend
(usable only in simulation) is widely comparable to that of synchsend. Therefore only
the differences are explained here.

In contrast to synchsend, the sender does not wait for the receiver to collect the message
but may go on ("no-wait-send") and produce and send further messages as long as the
space of the buffer is not exhausted. If it is, the sender is forced to pause until the
collection of a message by the receiver provides a new vacancy in the buffer.

The buffer is written and read as a ring buffer, i.e., the receiver always processes the
oldest message first. Naturally the receiver has to wait for the sender if no message is
available to be processed, in other words if the buffer is empty.

The buffer is represented by a TEXT array. The size of the array (number of buffer
cells) is defined by the INTEGER parameter no_of_buffers with default 1.

TYPE nowaitsend COMPONENT (no_of_buffers : INTEGER DEFAULT 1);
PROVIDE

SERVICE send (what : TEXT);
receive RESULT TEXT;

END PROVIDE;

CONTROL

PROCEDURE schedule;
BEGIN

INSPECT ENTRY_AREA LOOP
WHEN send : IF no_of_filled_pos < no_of_buffers AND POPUL_SERVICE < 1

 THEN SELECT;
no_of_filled_pos := no_of_filled_pos + 1;

 END IF;
WHEN receive : IF no_of_filled_pos > 0 AND POPUL_SERVICE < 1

 THEN SELECT;
no_of_filled_pos := no_of_filled_pos - 1;

 END IF;
END LOOP;

END PROCEDURE schedule;

END CONTROL;

VARIABLE buffer : ARRAY [1..no_of_buffers] OF TEXT;
no_of_filled_pos: INTEGER DEFAULT 0;
pos_send,
pos_receive : INTEGER DEFAULT 1;

TYPE send SERVICE (what : TEXT);
BEGIN

buffer[pos_send] := what;

IF pos_send = no_of_buffers
THEN pos_send := 1;
ELSE pos_send := pos_send + 1;
END IF;

END TYPE send;

- 286 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

TYPE receive SERVICE RESULT TEXT;
BEGIN

RESULT buffer[pos_receive];
buffer[pos_receive] := "";

IF pos_receive = no_of_buffers
THEN pos_receive := 1;
ELSE pos_receive := pos_receive + 1;
END IF;

END TYPE receive;

END TYPE nowaitsend;

The component type nowaitsend has to be introduced to a HI-SLANG program by a
%COPY statement. No setting of component control procedures is meaningful for
nowaitsend and is thus not allowed.

Example:

%COPY "NOWAITSEND"
...
COMPONENT proc_comm : nowaitsend (100);

sender: receiver:

. { produce messages } .

. .
send (message); message := receive;
. .
. . { process message }

F. The HIT Standard Modelling Base - 287 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.7. Ftserver

The component type ftserver (usable with solver Markov only) (fault tolerant server)
realizes a fault tolerant standard element, with access to one or more processors, the
number being defined by processors ≥1. Each of these processors is subject to a
Poisson failure process with rate failure_rate or rate dormancy * failure_rate,
respectively, where failure_rate denotes the failure rate of an active processor and
dormancy, 0 ≤ dormancy ≤ 1, denotes the "dormancy" factor.

Every defective processor is repaired with rate repair_rate. Depending on the parameter
repair_units, a processor not operating might have to wait for the beginning of its re-
pair.

RANDOM (random choice with identical probabilities) is the standard strategy for the
choice of services, which have to be deactivated or reactivated. Furthermore (essentially
for reasons of the techniques used for the solvers) the maximum degradation degmax,
0 ≤ degmax ≤ processors, can be specified.

The parameters relevant for ftserver are:

processors number of processors, processors ≥ 1

degmax maximal degradation, 0 ≤ degmax ≤ processors

repair_units number of repair units, 1 ≤ repair_units ≤ processors

failure_rate failure rate of an (active) processor, failure_rate > 0.0

repair_rate repair rate (per repair unit), repair_rate > 0.0

dormancy "dormancy" factor, 0 ≤ dormancy ≤ 1
(The failure rate of a passive processor is equal to dormancy *
failure_rate)

The component type ftserver provides the service request. Apart from the demanded
amount of service, request disposes of a parameter for the specification of a priority
prio, 0 resembling the highest priority. Although this parameter has a default it must be
given in a corresponding USE declaration.

- 288 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

TYPE ftserver COMPONENT
(processors : INTEGER;
degmax : INTEGER DEFAULT 1;
repair_units : INTEGER DEFAULT 1;
failure_rate : REAL;
repair_rate : REAL;
dormancy : REAL DEFAULT 1.0);

PROVIDE
SERVICE request (amount : REAL;

prio : INTEGER DEFAULT 32767);
END PROVIDE;

TYPE request SERVICE (amount : REAL;
prio : INTEGER DEFAULT 32767);

{body not implemented in HI-SLANG}
END TYPE REQUEST;

BEGIN
… { writing the warning (for simulative solution)}

 END TYPE ftserver;

In a component of type ftserver, only RANDOM, PRIOPREP and PRIONP are al-
lowed for the component control procedure schedule (as in prioserver, see below).
PRIONP is the default, but if parameter prio of request is not used or all priorities are
set equal, this equals RANDOM. Only EQUAL and SDEQUAL are allowed for
dispatch.

Note that there may occur conflicts between parameter processors and the component
control procedures: e.g., processors := 2 and schedule := RANDOM (3) actually
means RANDOM (2). For numerical solution only RANDOM(1) is allowed.

The component type ftserver has to be introduced to a HI-SLANG program by a
%COPY statement.

Example:

%COPY "FTSERVER"
...
COMPONENT triple_computer : ftserver (3, 1, 1, 1E-5, 0.005);

The use of the service request of triple_computer is just as in the case of a normal server
or prioserver. Employment of ftserver in the case of simulation is not yet possible (see
also Appendix E.2.).

F. The HIT Standard Modelling Base - 289 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.8. Prioserver

The component type prioserver (for Simulative, Markov and DOQ4) allows modelling
of priority-controlled service strategies (zero being the highest priority):

TYPE prioserver COMPONENT;
PROVIDE

SERVICE request (amount : REAL;
prio : INTEGER DEFAULT 32767);

END PROVIDE;

TYPE request SERVICE (amount : REAL;
prio : INTEGER DEFAULT 32767);

BEGIN
spend(amount);

END TYPE request;
END TYPE prioserver;

In the simulative case the body equals that of the normal server. The additional pa-
rameter prio is only treated in the component control procedures available: PRIONP,
PRIOPREP, PRIOPRES (only for simulation) and RANDOM are eligible for the com-
ponent control procedure schedule of a prioserver, see below. As for the ftserver,
PRIONP is the default. All strategies for accept, dispatch and offer legitimate for the
normal server in the case of the analytic-algebraic solver are allowed for the prioserver
in the numerical case; in the case of simulation, any predefined component control pro-
cedure (legitimate for the normal server) may also be specified.

Just as all the other standard component types (with the exception of server) the type
prioserver has to be introduced to a HI-SLANG program by a %COPY statement.

Example:

%COPY "PRIOSERVER"
...
TYPE diaproc SERVICE (my_prio : INTEGER);

USE
SERVICE compute (amount : REAL; prio : INTEGER);

END USE;
BEGIN

...
compute (negexp(3/7), my_prio);
...

END TYPE diaproc;

COMPONENT cpu : prioserver (LET schedule := prionp);

REFER diaproc TO cpu EQUATING
diaproc.compute WITH cpu.request;
...

END REFER;

- 290 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Five strategies for the control procedure schedule are eligible for components of type
prioserver, the first four of which allow only one process at a time to be in the service
area of the component.

- PRIOPREP: In the preemptive priority strategy (schedule procedure) PRIOPREP
("PRIOrity Preemptive REPeat"), processes with high priority are served
foremost. If several processes have the same priority, one of them is chosen
randomly.

A process of lower priority will be interrupted if one of higher priority arrives.
When the process is restarted, the time consumed before the interruption is
neglected; the process starts from the beginning ("repeat" strategy). While the new
process is done with exactly the same demand of time (identical) in the simulative
method, the demand of time is "drawn" again (resampling) in the numerical method.
In extreme cases, this can lead to different results. Note that in the numerical case
PRIOPREP is interpretable as PRIOPRES with resampling, since the distribution
must be negexp.

- PRIOPRES: The preemptive priority strategy (schedule procedure) PRIOPRES
("PRIOrity Preemptive RESume") proceeds in a way simular to PRIORPREP. At
resumption, however, the process continues from the position reached prior to being
interrupted. The consumed time, therefore, is not lost ("resume" strategy).
PRIOPRES can only be used for the simulative solver.

- PRIONP: When using the non-preemptive priority strategy (schedule procedure)
PRIONP ("PRIOrity Non Preemptive") no preemption results from the arrival of a
process. Apart from this distinciton, PRIONP proceeds just as the preemptive prior-
ity strategy PRIOPREP.

- RANDOM: When the schedule mechanism RANDOM is selected, one of all
waiting processes is randomly chosen. This strategy can also be used for
components of the ("normal") type server.

- IMMEDIATE: When using the strategy IMMEDIATE, all processes in the entry
area are immediately moved to the service area. This strategy can also be used for
components of the ("normal") type server.

In contrast to service calls of request from a "normal" server, the assigning of priorities
to service calls of request from a prioserver requires an additional parameter.

F. The HIT Standard Modelling Base - 291 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.1.9. Observer

The standard component type observer (Simulative) should be used instead of the
former standard service watcher to produce intermediate result outputs. Opposite to the
watcher it does not influence the hosting model and it can be used in a more easy and
flexible way.

The observer has no provided services, but internally creates one watcher-like process
which will interactively prompt the user for new time points for the next intermediate
results, if the parameter interactive is set. An initial observation model time interval can
be set by the real parameter obs_interval. The interactive observer will then produce the
results, print the current model time and amount of cpu time used, and query for one of
the following alternatives:

q : quit simulation
s : s top observing, continue simulation
c : keep current model time interval and continue observing
n : as c, but switch to non-interactive mode
<real value n.nnEnn> : set new interval, continue observing

It is implemented as follows:

TYPE observer COMPONENT
(obs_interval : REAL;
 interactive : BOOLEAN DEFAULT FALSE);

TYPE watcher SERVICE (watch_interval : REAL);
VARIABLE

answer : TEXT;
first : CHARACTER;
ok : BOOLEAN;

BEGIN
LOOP

hold (watch_interval);
transfer_results;

WRITELN "Current model time :", time;
WRITELN "Cpu time used [sec.] :", cpu_time;
WRITELN;

IF interactive THEN
LOOP
WRITELN "Please enter one of:";
WRITELN "q : quit simulation";
WRITELN "s : stop observing, continue simulation";
WRITELN "c : keep current model time interval and continue observing";
WRITELN "n : as c, but switch to non-interactive mode";
WRITELN "<real value n.nnEnn> : set new interval, continue observing";

lastitem;
READ answer::20;
READ TEXT answer, first;
ok := TRUE;

- 292 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

CASE first
WHEN 'q' : stop_evaluation ("YOU didn't want to continue!");
WHEN 's' : watch_interval := maxreal;
WHEN 'n' : interactive := FALSE;
WHEN 'c' : ;
ELSE :

IF digit (first)
THEN READ TEXT answer, watch_interval;

WRITELN "> New interval is ", watch_interval;
ELSE WRITELN "> ILLEGAL input : ", first;

ok := FALSE;
END IF;

END CASE;
END LOOP UNTIL ok;

END IF;

END LOOP;
END TYPE watcher;

BEGIN
CREATE 1 PROCESS watcher (obs_interval);

END TYPE observer;

To use the observer it has to be copied from the standard modelling base (via %COPY
statement). An observer component should preferable be declared within the model
type.

Example:

%COPY "OBSERVER"

COMPONENT obs : observer (500, TRUE);

Note:

Normally the results are directed to a file (the default is OUTPUT TABLE
"TABLE") and can in this case not be watched interactively. Thus the observer
should be used in combination with OUTPUT TABLE "SYSOUT", or (on UNIX
systems) a separate process to display the results should be started, e.g., tail -f
t.*.tab &.

F. The HIT Standard Modelling Base - 293 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.2. Standard Services
Currently there is only one standard service, besides the predefined services spend and
hold.

F.2.1. Watcher

The only standard service HI-SLANG currently provides for simulation is the type
watcher (S), which permits, when called, the computation and output of intermediate
results (the current values of all results demanded), allowing the progress of a simula-
tion to be observed and thus controlled to a certain degree. The parameter watch_inter-
val defines the intervals of model time at which the body of the watcher is executed.
Processes of the type watcher therefore are permanently in the model from the moment
of their creation. For reasons of efficiency, only a single watcher-process should be
created (by CREATE) at one point of the HI-SLANG program.

TYPE watcher SERVICE (watch_interval : REAL DEFAULT 50);
BEGIN

LOOP
hold (watch_interval);
transfer_results;

END LOOP;
END TYPE watcher;

Like all standard types, the service watcher has to be introduced to a HI-SLANG
program by a %COPY statement. This has to take place within the model type or com-
ponent type that is to contain the CREATE statement corresponding to the creation of
the watcher :

Example:

TYPE ct COMPONENT ;

%COPY "WATCHER"
...

BEGIN
...
CREATE 1 PROCESS watcher (LET watch_interval := 100);

END TYPE ct;

Note:

Since watcher is a normal service and exactly one watcher process permanently
exists within the enclosing component, the performance value for its POPULATION
is influenced by this process (increased by 1).

Note:

The watcher only exists for reasons of upward compatibility. Please use the new
component type observer instead.

- 294 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.3. Standard Component Control Procedures
The following component control procedures are predefined; they are implemented in
SIMULA and contained in the HIT standard mobase. Although they are no keywords
their names are mostly written upper-case within this manual to stress their importance
for modelling.

name
name

of
1. par

type /
default
1.par

name
of
2.
par

type /
default
2. par

only for
component

type

kind
of

procedure

ALWAYS *
LIMITED S capacity INT 1 ACCEPT
RESTRICT M capacity INT 1
CPRIO S,M counter
CRANDOM S,M counter
FCFS * capacity INT 1
IMMEDIATE *
LCFS S capacity INT 1
LCFSPR *
PRIONP S,M prioserver SCHEDULE

ftserver
PRIOPREP S,M prioserver

ftserver
PRIOPRES S prioserver
RANDOM S,M capacity INT 1
SEMSCHED S semaphor
TOKSCHED S tokenpool
AGGRDISP -
EQUAL * speed REAL 1
SDEQUAL * sdspeeds ARRAY speed REAL 1 DISPATCH
SDSHARED * sdspeeds ARRAY speed REAL 1
SHARED * speed REAL 1
ALL * OFFER

Some of the standard procedures for component control, described in the following,
possess parameters. In this case the procedure heads are given below. Since these pro-
cedures are, for reasons of efficiency already implemented in SIMULA, standard pro-
cedures with parameters cannot be checked for the correctness of their actual parameters
by the HI-SLANG compiler. Only the modeller is therefore responsible for the correct-
ness of these expressions on HI-SLANG level. Thus, if for example the types of the
actual parameters do not correspond with the types of the formal parameters, it is pos-
sible that compilation errors occur in the SIMULA compilation.

Calls of these procedures by the user (e.g., within services) are of no effect and are
commented with warnings by HIT at run time (simulation).

For the meaning of the marks (S), (M), (D), (L) and (*) and combinations of them see
the introduction at the beginning of this appendix.

F. The HIT Standard Modelling Base - 295 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

F.3.1. ACCEPT Procedures

(*) ALWAYS

Acceptance without limitations.

(S) LIMITED (capacity : INTEGER DEFAULT 1)

Acceptance with capacity limitations. The INTEGER parameter specifies the
limitation. The solution of the waiting situation occurs according to FCFS.

Example:

COMPONENT c : ct (LET accept := limited (5));

(M) RESTRICT (capacity : INTEGER DEFAULT 1)

In the analytic-numerical case, a server's capacity can be restricted by using
RESTRICT. The integer parameter specifies the limitation. When the capacity of
a server is exhausted, acceptance of further services is not possible. Services re-
quiring service are refused and repeat the service (or the last phase of service in
COX-distributions with several phases) at the server visited last. In the case of
simulation, the use of RESTRICT is not possible (also see Appendix E.2.).

Example:

COMPONENT c : server (LET accept := restrict (3));

F.3.2. OFFER Procedures

(*) ALL

Every process in the exit area is offered. There are no parameters.

F.3.3. SCHEDULE Procedures

(S,M) CPRIO

Choice of the service call with highest priority allowed to perform its change
operation. This procedure is only usable for components of type counter. See
section E.1.4.1. for further restrictions in the analytical-numerical case.

(S,M) CRANDOM

Random choice of one waiting process allowed to perform its change operation.
This procedure is only usable for components of type counter.

- 296 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(*) FCFS (capacity : INTEGER DEFAULT 1)

First-Come-First-Scheduled. The INTEGER parameter specifies the limitation
of the service area. Thus fcfs (3) means, that a maximum of three processes is
let into the service area.

Example:

COMPONENT c : ct (LET schedule := fcfs (3));

(*) IMMEDIATE

Immediate access to the service area, no preemption.

(S) LCFS (capacity : INTEGER DEFAULT 1)

Last-Come-First-Scheduled. The INTEGER parameter specifies the limitation
of the service area. Thus lcfs (3) means, that a maximum of three processes is
let into the service area.

(*) LCFSPR

Last-Come-First-Scheduled-Preemptive-Resume, without parameters.

(S,M) PRIONP

PRIOrity Non-Preemptive, usable only for components of type prioserver or
ftserver. The capacity of the service area is limited by 1. In case of an empty
service area one of the processes with highest priority is scheduled, each one
having the same probability to be scheduled.

(S,M) PRIOPREP

PRIOrity Preemptive REPeat, usable only for components of type prioserver or
ftserver. The capacity of the service area is limited by 1. A preempt occurs if a
process with the same or higher priority than the actually served process has
entered the entry area. In case of one or more processes with highest priority a
possible selection is performed randomly. It has to be considered here that the
semantics of PRIOPREP vary between the simulative and the numerical case
(see Appendix E.2.1. and F.1.8.).

(S) PRIOPRES

PRIOrity Preemtive RESume, usable only for components of type prioserver or
ftserver. The capacity of the service area is limited by 1. A preempt occurs if a
process with the same or higher priority than the actually served process has
entered the entry area. Reentering the service area after a preemption the service
execution will be repeated completely with an identical amount. In case of one
or more processes with highest priority in the entry area a possible selection is
performed randomly.

F. The HIT Standard Modelling Base - 297 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(*) RANDOM (capacity : INTEGER DEFAULT 1)

When RANDOM is used, waiting processes are chosen randomly. The
INTEGER parameter specifies the limitation of the service area. Thus, random
(2) means that a maximum of two processes is let into the service area.
In the analytical case, RANDOM may only be used for the component types
server, prioserver and ftserver and only RANDOM (1) is permitted.

Example:

COMPONENT c : ct (LET schedule := random (2));

(S) SEMSCHED

Required only for the component type semaphor, where it is the default. The
scheduling strategy is First-Come-First-Scheduled.

(S) TOKSCHED

Required only for the component type tokenpool, where it is the default. The
scheduling strategy is First-Come-First-Scheduled.

F.3.4. DISPATCH Procedures

(-) AGGRDISP

This dispatch procedure is internally required for aggregated component types in
the simulative case. The procedure may not be specified by the HI-SLANG
user.

(*) EQUAL (speed : REAL DEFAULT 1.0)

Each process of the service area gets the same "full" service speed, defined by
parameter speed. The parameter speed also specifies the standard speed (stream
UTILIZATION, see Section 5.1.2.).

(*) SDEQUAL (VALUE sdspeeds : ARRAY OF REAL;
speed : REAL DEFAULT 1.0)

State-dependent service speeds. Each process of the service area gets the same
"full" service speed, defined by the product of parameter speed and the
appropriate entry of the array sdspeeds. For the meaning of parameter sdspeeds
and an example see SDSHARED.

- 298 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

(*) SDSHARED (VALUE sdspeeds : ARRAY OF REAL;
speed : REAL DEFAULT 1.0)

State-dependent service speeds, equal distribution of the service speed of the
component (product of parameter speed and the appropriate entry of the array
sdspeeds) on all processes in the service area.

The parameter speed specifies the standard speed (see also Section 5.1.2.,
stream UTILIZATION), sdspeeds names the populations and the corresponding
service speeds of the component. sdspeeds is a two-dimensional REAL array,
which cannot be modified by concurrently executing processes.

Example:

VARIABLE sp : ARRAY [1..2, 1..anz_pop] OF REAL;

The first line contains the populations (> 0) in ascending order, which are
rounded to INTEGER. Gaps are allowed (for interpretation, see below). The
second line contains the corresponding speed factors of the component (> 0.0).

For speed factor selection the actual number of processes in entry area and
service area is used.

Example:

Let the following speeds array be given:

 1 7 8 12 ← populations
1.2 1.1 0.7 0.4 ← corresponding service

speeds of the component
↑ ↑ ↑ ↑

1-6 7 8-11 from 12 ← valid for area of populations

The corresponding array aggregate has the form:

[[1, 7, 8, 12] , [1.2, 1.1, 0.7, 0.4]]

Note:

The first specified population (the first element in the first line of the field)
has to be equal to one to avoid errors.

(*) SHARED (speed : REAL DEFAULT 1.0)

Distribution of the service speed of the component (parameter speed) in equal
parts on all processes in the service area. The parameter speed also specifies the
standard speed (stream UTILIZATION, see Section 5.1.2.).

Example:

COMPONENT c : ct (LET dispatch := shared (1.5));

G. Description of Output Formats - 299 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G. Description of Output Formats
This appendix describes all the compiler and analyzer outputs being of interest for the
user. Using the HIT standard link names (see table in Section 8.1.) these are:

G.1. "LISTING" The listing generated by the HI-SLANG compiler as well
as by all analyzers. The latter normally includes the
solver information, while the compiler listing may
contain an XREF listing.

G.2. "SYSOUT" The standard output (e.g., on terminal) of compiler or
analyzer.

G.3.1. "TABLE" Analyzer results in form of a table.

G.3.2. "DUMP" Analyzer results in form of a dump file.

G.3.3. "GRAPH" Simple graphs producable from dump files.

G.3.4. "HISTOGRAM" Histograms producable from dump files.

G.4. "PREANA" An aggregated component type producable by the DOQ4
solver.

G.5. "TRACE" The trace of a simulation.

G.5.1. Event trace.

G.5.2. State trace.

The numbers prefixing the link names above denote the subsection of this appendix de-
scribing that output format. Outputs which do not contain information for the user but
intermediate data sets of the tool are not explained here, as:

"CODE" the SIMULA code generated by the HI-SLANG compiler
"MATRIX" the matrix scheme of the MARKOV solver
"STATES" the state table of the MARKOV solver
"PRINTDS" for internal use only: displays the data structures of an analyzer.

Most of the output formats described here are illustrated by the example in Appendix I.

- 300 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1. Format of the Listing
The compiler as well as every generated analyzer of the HIT system produces a listing
via the standard link name "LISTING". It has record length 133 including a print con-
trol character. The listing has a default binding to a file named by the file name gener-
ator (see Section 8.2.6.). Normally the analyzer listing is appended to the compiler
listing if "LISTING" is not rebound in the control file.

The compiler listing (G.1.2.) informs the user about the current translation. It consists
of

G.1.2.1. a listing of those parts of the control file relevant for the compiler, if there are
any,

G.1.2.2. a listing of the assembled HI-SLANG source,

G.1.2.3. an optional cross reference table (XREF).

The analyzer listing (G.1.3.) informs the user about all the evaluations performed. It
also starts with a listing of those parts of the control file relevant for the analyzer.
Moreover information why a certain algorithm was used to solve the model are given, if
this facility is not suppressed in the control file.

G.1.1.Common Elements of the Listing

In both listings the parts listed above are

1. numerated twice (except XREF and solver information),
2. started or interrupted by a new page with a title line,
3. separated by completion messages which may be preceded by a list of error mes-

sages or warnings.

These common elements will be introduced first. A sample listing can be found in Ap-
pendix I.3.

G.1 .1 .1 . Numeration within Listings

Every line listed is numbered twice: columns 1-5 contain the absolute line number
unique within the assembled source, while columns 6-10 contain a file relative line
number. The latter is very useful for error corrections since it permits a direct access to
the relevant file or object and the relevant line number within it. The file or object is de-
noted by a code character immediately following the relative line number. Most code
characters are letters (starting with 'a'); for the control file a blank is used and SYSIN is
marked by a '*'.

Within the line follows a seperator "': '" and source code which may be indented. The
colon may be substituted by the capital letters 'E' or 'W', this way marking lines con-
taining errors or causing warnings. Because the source listing is completed after PASS
1 this facility is only implemented for messages produced by FAN or PASS 1.

G. Description of Output Formats - 301 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1 .1 .2 . Page Titles

Every page of the listing is started with a title having the following format:

column meaning format

1-20 : version number of HIT HIT Version n.n.nn
25-67 : variable title text 43 arbitrary characters
70-80 : date of compilation installation dependent,

e.g., jjjj/mm/dd
84-89 : time of compilation installation dependent

e.g., hh:mm
93-102 : page number PAGE nnnn

106-128 : place of HIT development University of Dortmund

The variable text may be specified by %TITLE statements in the source. One empty line
and 63 regular lines follow. This number may be overridden by using
%PARM=LINES=n.

G.1 .1 .3 . Completion Messages and Message Tables

The end of every compiler pass is indicated by one empty line and one completion
message. The same holds for every evaluation. Completion messages have the fol-
lowing format:

column meaning format

1 : message indication >
3-13 : pass name FAN, PASS1, PASS2, PASS3,

 ACG, SCG, SIMUL, DOQ4,
LIN2, MARK or T O T A L

16-42 : pass status Okay.
(4 possibilities) Only nnnn Warnings.

nnnn Errors detected.
nnnn Errors, nnnn Warnings.

45-77 : used cpu time Cpu Time used: nnnn.nnn Seconds.
(for this pass resp. evalutation)

In the following "pass" does not only mean a compiler pass, but also one evaluation (of
a series).

Pass name and pass status are separated by a colon. If the status is not Okay the com-
piler resp. analyzer has detected errors and/or warnings for this pass. These are sum-
marized in a table of messages preceeding the completion message. The title of this table
is underlined:

Number Line : Description of Errors or Warnings detected by <pass name>.

- 302 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

All messages consist of the following elements, as indicated by the title line:

- The code number of the message (W.nnnn, E.nnnn, or A.nnnn for warnings, errors
or severe errors (abort errors) respectively).

- The number of the source line causing the message. This number may be missing,
especially for analyzer messages.

- A colon.
- The message text. It is contained in columns 16-132 and may be continued on the

same columns of the next lines. All message texts are read from the HIT message li-
brary.

If the relative line number and the absolute line number are different, another message
line is given in an analogous format:

- The number of the message is the same and therefore not given.
- The relative line number within that file object causing the message. This number is

followed by the code character of that file object.
- No colon.
- The message text is "IN LINK=", followed by the link name of the file object.

If there was a message number starting with 'E', then only the running pass is con-
tained. For message numbers starting with 'A', which indicates a severe error, the cur-
rent pass is terminated at once. This means that the compiler resp. the current evaluation
is also terminated after printing a completion message with pass name "T O T A L".

G. Description of Output Formats - 303 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1.2.Compiler Listing

As already mentioned the compiler listing consists of a control file listing, a listing of
the assembled HI-SLANG source and an optional XREF listing. If the control file
contains a record %PARM=NOSOURCE, there will be no listing at all.

G.1 .2 .1 . Control File Listing

The compiler listing starts with a listing of all records within the control file used which
are interpreted by the FAN system of the compiler. The default title text gives the name
of the control file. A completion message with pass name FAN completes this listing. If
the control file does only contain HI-SLANG source text there will be no control file
listing and no such completion message.

Please note that by numbering and indenting, a listed line will be cut if the line would
become longer than 132 characters.

G.1 .2 .2 . Assembled Source Listing

The main part of the compiler listing follows on a new page. If it does not start with a
%TITLE statement the default title remains. The source listing is assembled by ex-
ecuting all %COPY statements within the source and/or within the files or objects being
copied.

The listing may be suppressed totally by %PARM=NOSOURCE or partially by using
%NOSOURCE at the beginning and %SOURCE at the end of the HI-SLANG portion
not to be listed. Although these %-commands are not listed such listing gaps can be
detected by gaps in the absolute and relative line numbering.

A %PAGE within the source causes the listing to be continued on a new page. %TITLE
has the same effect, but the first 43 characters of its argument define the new title text.

Moreover the appearance of the listing is influenced by the %PARM parameters
NORESWD and INDENT. Without NORESWD all keywords are printed upper-case
and all user-defined identifiers are printed lower-case. With INDENT = c n a blockwise
indenting of n positions may be specified, c being a character connecting block start and
block end (see Section 8.2.1.). The keywords BEGIN and TO (for CONCURRENT)
interrupt this connection to clearly separate declaration part and statement part or the
different statement parts respectively.

By numbering and indenting, a listed line will be cut if the line was longer than 132
characters.

The source listing ends with a completion message with pass name PASS 1. An XREF
listing may follow but may be preceded by a message

> XREF-Listing may be incomplete due to Errors in PASS 1.

- 304 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1 .2 .3 . XREF Listing

If %PARM=XREF was specified a cross reference table of all objects and types oc-
curing in the assembled source is generated. These source elements are not only differ-
entiated by their names, but also by their scopes. For example, variables with the same
name, but declared within different blocks are presented separately.

The title line of XREF listing pages has standard format, but the title text already starts
in column 1. It reads:

Identifier S/: Type or ConstantLine Access Pairs * XREF *

Consequently every XREF line has the following structure:

column meaning format

1-12 : name of HI-SLANG element up to 12 lowcase letters
14 : marking of a system defined element 'S' or ':'

16-33 : kind or value of the element see below
35-132 : line number / access-pairs nnnnnccc

The HI-SLANG elements are listed in alphabetical order, the first element starting with
a new first letter is preceded by an empty line.

The element name is separated from the following information by one colon, which is
substituted by an 'S' for predefined standard elements.

The kind of the element is indicated next in the line (columns 16-33). There are the fol-
lowing possibilities.

kind of element meaning or comments

Type VARIABLE Type missing for record objects
Type CONSTANT Type missing for record constants
Type PROCEDURE USE-, PROVIDE- and main-declarations of

procedures and PROCEDURE ARRAYs.
Type missing for zero- or multi-valued pro-
cedures.

Type SERVICE USE-, PROVIDE- and main-declarations of
services resp. service arrays. Type missing
for zero- or multi-valued services.

Type ARRAY (nn) Type missing for record arrays. nn is the ar-
ray dimension.

PROCESS ARRAY (1) process array
COMPONENT ARRAY (1) component array

PROCESS declared process
MODEL model object
COMPONENT component object
ENCLOSE multiply used component object

TYPE SERVICE service, if the service is not provided
TYPE COMPONENT component type
TYPE MODEL model type

STREAM Kind Kind ::= STATE | EVENT | COUNT, user-
defined stream

G. Description of Output Formats - 305 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

COLLECT COLLECT-block. If there is no AS name
there is no element name in columns 1-12.

SIMULA SIMULA component control procedure
EXPERIMENT experiment
EVAOBJECT evaluation object
HIERARCHY load filtering hierarchy

For Type above the following possibilities exist:

Type ::= REAL | INTEGER | BOOLEAN| CHARACTER | TEXT |
INFILE | OUTFILE | POINTER

For arrays also their dimension is given in brackets. For constants their value is given
instead of their type. The format is

nnnnnnnnnEznn for REAL
nnnnnnnn for INTEGER
TRUE or FALSE for BOOLEAN
'c' for CHARACTER
"13 characters" for TEXT. Text values longer than 13 characters are indicated

by three dots appended.

Starting at column 35 the line/access-pairs are printed one after the other and may con-
tinue on the same column in the next lines. Every pair has the format "nnnnnccc". The
first 5 digits denote the absolute line number in the assembled source listing where the
source element occurs, while at most three following characters characterize this oc-
curance. The alternatives are:

d : Declaration of the element.
r : Read access.
w : Write access.
p : Occurance as actual parameter, replaces r or w or both, depending on the pa-

rameter transmission mode. (Formal parameters are marked with d.)
* : Multiple occurance within one line.

Example:

A line

13 2b : i := abs (i);

in the source listing causes these XREF entries:

abs S INTEGER PROCEDURE 13r
i : INTEGER VARIABLE 5d 13wp*

A further example can be found in Appendix I.3. The XREF listing is completed by a
message giving the number of different elements and names occuring in the source:

> nnnnn different Objects, nnnnn different Identifiers.

- 306 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Up to 4 completion messages follow (if there are no errors), having the pass names
PASS 2, PASS 3, ACG or SCG (depending on the method) and "T O T A L ", the
latter summarizing all completion messages of the single passes. Additionally the
compile rate is given just below the cpu time used for the total compilation:

Compile Rate : nnnn.nnn Lines/Sec.

It is defined as the number of compiled source lines divided by the sum of the cpu times
of all compiler passes. The latter is less than the cpu time used by the compiler, due to
the compiler main program and especially to the initialization phase.

G.1.3.Analyzer Listing

The analyzer listing gives some relevant information about all evaluations (or
aggregations) performed. It also starts with a listing of a section of the used control file.
Here the section valid for the analyzer appears. If this section does not contain an
explicit binding of the link name "LISTING" the analyzer listing is appended to the
compiler listing.

The control file listing is followed by information concerning each single evaluation. It
always starts on a new page with a table identifying that evaluation (the same
information is found in the beginning of all tablular result outputs):

Control name

Experiment Name name

Model Type name
Model Name name

Model Parameters Name Type Actual Value
name type value
.. .

Used Method method

Date of Compile date Time of Compile time
Start Date of Run date Start Time of Run time

Next some relevant information is given, why a special evaluation algorithm was
selected. They are called solver information. All analytical solvers (modules used by the
generated analyzers) implement more than one algorithm for the class of models
denoted by the method name given in the experiment specification. An appropriate
algorithm is selected automatically when the analyzer is started.

By specifying %PARM=NOSOLVERINFO in the analyzer control file the generation
of such solver information can be suppressed. Their format depends on the solver used,
although the general structure is similar: It normally starts with a decision table:

G. Description of Output Formats - 307 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

SELECTION CRITERIA OF solver_name:

Model/Experiment
Features

algorithm_1 algorithm_2 ... algorithm_m

condition_1 yes no no
condition_2 yes yes no

. . .
condition_n no no yes

A no in a column means that the algorithm cannot be selected if that condition holds.
Thus the first algorithm from the left which only contains yes in all lines with fulfilled
conditions for the model under study is selected, if any. If no condition is fulfilled then
the leftmost algorithm is selected.

Note:

The table does not contain any information about the applicability of the
corresponding solver: With the assumption that the solver can be applied it denotes
the solution algorithm selected. For the restrictions of each solver see Appendix E.

Next the SELECTED ALGORITHM is given and the REASONS FOR SELECTION
are listed in more detail, followed by some additional explanations and data, which
concludes the solver information.

A completion message with the solver name as pass name (SIMUL, DOQ4, LIN2 or
MARKOV) follows, which may be preceeded by a table of error messages for this
evaluation. Next comes a footer of the following format:

Stop Date of Run date Stop Time of Run time
Used Cpu Time value

The above information (besides the control file listing) are given sequentially for every
evaluation or aggregation performed. After finishing the last evaluation a completion
message with pass name "T O T A L" is emitted.

%PARM=NOSOLVERINFO only suppresses those parts of the analyzer listing which
are described in greater detail for all solvers in the following subsections.

- 308 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1 .3 .1 . Solver Information of DOQ4

The header information is followed by the SELECTION CRITERIA OF DOQ4:

Model/Experiment
Features

Exact
MVA

Convolution/
MVA

Approximate
MVA

Response Time
Preservation

Aggregation no yes no yes
Server with population

dependent service speeds
no yes no yes

Prioserver no no yes yes
Server with FCFS

scheduling and non-
identical service demands

no no yes yes

Prioserver with PRIONP
scheduling used by closed

chains (services)
no no no yes

Prioserver with
PRIOPREP scheduling
used by open and closed

chains (services)

no no no yes

Server with FCFS
scheduling and non-
exponential service

demands

no no no yes

The SELECTED ALGORITHM line inserts one of the above algorithm names into a
message, which distinguishes between exact evaluation of separable queueing models
from approximate evaluation of non-separable queueing models. The REASONS FOR
SELECTION given next is one of the following:

For Exact MVA:
The model can be mapped to a product form queueing network. Service speeds of its
servers are population independent.

For Convolution/MVA or RTP:
Exact and approximate MVA techniques cannot be applied:
- An aggregation is requested.
- Server name has population dependent service speeds.

For Approximate MVA or RTP:
Exact MVA and Convolution/MVA techniques cannot be applied:
- Server name has a priority scheduling discipline.
- Service demands at server name with FCFS scheduling are not identical.

For Response Time Preservation (RTP):
Exact MVA, Convolution/MVA and approximate MVA techniques cannot be applied:
- Server name has PRIONP scheduling and is used by closed chains (services).
- Server name has PRIOPREP scheduling and is used by open and closed chains

(services).
- Service demands at server name with FCFS scheduling are not negative exponen-

tially distributed.

The RTP algorithm additionally give the following INFORMATION ABOUT THE
SOLUTION PROCESS: The number of RTP iterations has been n.
Moreover the exact algorithms (the first two above) yield a warning if more than 50 cpu
seconds are estimated for the solution process.

G. Description of Output Formats - 309 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1 .3 .2 . Solver Information of LIN2

The LIN2 solver always applies the Linearizer algorithm for calculation of mean values.
If performance bounds are additionally requested via estimator BOUNDS, one of two
performance bounds algorithms runs in connection with the Linearizer. Thus the header
information is followed by the following SELECTION CRITERIA OF LIN2:

Model/Experiment
Features

Linearizer
and
PBH

Linearizer
and

Asymptotic Expansion
Linearizer

Speed values at state
dependent stations are

not monoton decreasing
no yes yes

A closed chain doesn't visit an
infinite server station

yes no yes

0.75 < Mean alpha value < 1.0 no yes yes
Mean alpha value ≤ 0.0 yes no yes
No bounds requested no no yes

The mean alpha value is necessary to verify the normal usage condition. The normal
usage condition is, from the interpretation view, a indication for the utilization at infinite
server stations. A simple explanation of the normal usage condition is not possible
because the underlying theory is not easy to understand. We refer to /KnND89/ and
/MiKe86/.

After the name of the SELECTED ALGORITHM one of the following REASONS FOR
SELECTION is then given:

For Linearizer and Asymptotic Expansion:
- Accuracy is set to n.
- The mean alpha value (n.nnnnnn) is less than 1.0 and greather than 0.75. If the

alpha value is in this range then the asymptotic expansion method will always be
selected.

- The (mean) alpha value (n.nnnnnn) is less than 1.0 and greather than 0.0.
The other implemented performance bounds method (based on MVA techniques)
isn't applicable to the specified model because the sequence of speed values at name
is not monoton increasing.

For Linearizer and PBH:
- Accuracy is set to n.
- The other implemented performance bounds method (named asymptotic expansion)

• is also applicable but not selected because the alpha value (n.nnnnnn) is less or
equal 0.75.

• isn't applicable to the specified model. The closed chain (service)name doesn't
visit an infinite server station.

• isn't applicable to the specified model. The normal usage condition is violated
because the alpha value at station name is n.nnnnnn .

Otherwise:
- Selection of a performance bounds method is not possible:

• The PBH method isn't applicable because the sequence of speed values at name is
not monoton increasing.

• The asymptotic expansion isn't applicable because the closed chain (service) name
doesn't visit an infinite server station.

• The asymptotic expansion isn't applicable because the alpha value at station name
is n.nnnnnn .

- No bounds are desired, since accuracy is not set or set to less than or equal 0.0.

- 310 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.1 .3 .3 . Solver Information of MARKOV

Since the decision between the available algorithm is delayed until the state space is
explored the standard evaluation identifying table is immediately followed by some
information about this state space:

STRUCTURAL MODEL INFORMATION:

Number of states.. : n
Kind of state equivalence for partitioning............ : Chain population(s)
Number of components of a macro state............. : n
Number of macro states................................ : n
Number of states of the largest macro state.......... : n
Number of states of the smallest macro state........ : n
CPU-time used for state space generation........... : n.nnnnnn seconds
CPU-time used for matrix construction.............. : n.nnnnnn seconds
Order of the matrix ... : n
Bandwidth of the matrix............................... : n
Fill-in of the matrix..................................... : n
Fill-in of the matrix..................................... : n.nnnnnn %

Besides "Chain population(s)" the texts "Degradation state of ft_server(s)" or "none"
may appear in the second line of that block. Next MARKOV's decision table and the
name of the selected algorithm (one of those found in the table) follows:

SELECTION CRITERIA OF MARKOV:

Model/Experiment
Features

DIRECT Gauss-Seidel
with A/D steps

SOR

order * bandwidth > r no yes yes
no. macro states = 1 yes no yes
no. macro states > s yes no yes

SELECTED ALGORITHM:

ANALYTICAL MARKOV: algorithm is used as linear equations solver.

Note that r and s in the table above are substituted by implementation-dependent values.
Hereafter one of the following five sentences appears in the REASONS FOR
SELECTION part:

- DIRECT solution method (Grassmann algorithm) selected, because the product of
the order of the matrix and its bandwidth, which restricts the possible fill-in, is lower
than r.

- SOR method is selected, because the system of linear equations is large and
• the number of macro states is 1,
• the number of macro states is greater than s.

- Gauss-Seidel iteration with aggregation/disaggregation steps is selected, because the
system of linear equations is large and the number of macro states is in the range of 2
to s.

G. Description of Output Formats - 311 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Next the MARKOV solver emits INFORMATION ABOUT THE SOLUTION
PROCESS. This may start with:

Number of iterations : n
Number of aggregation/disaggregation steps........ : n
Used relaxation factor.................................. : n.nnnnnn
Reduction factor ... : n.nnnnnn
Estimated error for state probabilities : n.nnnnnn %

The above block is repeated periodically, until the estimated error for state probabilities
is small enough. Finally (or sometimes only) the following three lines are given:

CPU-time used for matrix construction
and equations solution.................................. : n.nnnnnn seconds
CPU-time used for computation of basic measures. : n.nnnnnn seconds

The following messages may occur in between in the case of numerical problems:
- Inaccurate results from direct method are improved by iterations.
- The solution method is changed to Gauss-Seidel iteration.
- A switch from direct to iterative solution method occured.

G.1 .3 .4 . Solver Information of SIMUL

Since there are no different algorithms for the simulative solver, there is no decision
table, and the REASONS FOR SELECTION do only contain a trivial information:
"SIMUL requested.".

Hereafter a list of Start and Stop Conditions reached (titled EVALUATION TRACE) is
given, ordered by model time: For user convenience such a message is written during
simulation whenever a start or stop condition is reached relating to a MEASURE
statement, or a basic stop condition in a CONTROL statement changes its value. This
special kind of condition trace helps the user in understanding unexpected system
behavior. For MEASURE statements it has the following examplary format:

EVENTS n DUE TO HIERARCHY name: START condition reached in MEASURE
statement:
EVAULATIONOBJECT name, STREAM name, DUE TO HIERARCHY name,
MODELTIME n.nnnnnn

or

START condition reached in MEASURE statement:
EVALUATIONOBJECT name, STREAM name, DUE TO HIERARCHY name,
MODELTIME n.nnnnnn

The format for CONTROL statements is similar:

EVENTS n DUE TO HIERARCHY name:
STOP condition reached in CONTROL statement, MODELTIME n.nnnnnn

- 312 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The next section is titled INFORMATION ABOUT ESTIMATORS. It contains
information about estimators that yield the value undefined after an evaluation. The
output has general format:

Estimator {MEAN | STANDARDDEVIATION | CONFIDENCE LEVEL} for
stream_type stream stream_name at evaluationobject due to hierarchy is undefined
because: reason

One of the following possible reasons is inserted:

Mean

Event - No updates
Count - Measure interval has length zero
State - Measure interval has length zero

Standarddeviation

Event - No updates
- Mean value is too large

Count - Mean value is nearly zero
State - Measure interval has length zero

- Mean value is too large

Confidence level (independent of stream type)

- Degree of autoregressive model is zero
- Mean value is nearly zero
- Time series is alternating
- Parameters of autoregressive model are too large
- Variance is negative
- Variance is too large
- Autoregressive model has less than one degree of freedom
- Confidence interval is wider than 50% of mean value
- Stream is in pre phase
- Not enough data to estimate confidence interval

Some of these reasons (e.g., 'Variance is negative') are only consequences of
numerical problems, which may occur. For more information about estimation of
confidence intervals using autoregressive models cf. /LiSS89/.

Moreover the autocorrelation values are given for every stream which has
CONFIDENCE LEVEL as an estimator. The output has the following format :

Autocorrelation values for stream at evaluationobject due to hierarchy :

1: n.nnnnnnEnn 2: n.nnnnnnEnn 3: n.nnnnnnEnn 4: n.nnnnnnEnn 5: n.nnnnnnEnn
6: n.nnnnnnEnn . . .

The lines consist of the autocorrelation values (of values having the denoted distances),
which are calculated in order to estimate the confidence interval. There are up to five
values in one line. Each value lies in the interval [-1..1]. The first line consists of the
values for the distances one to five, the next of the values for the distances six to ten
and so on. The distance is written in front of each value. There may be less values than
the degree given in the MEASURE statement. In some cases (e.g., numerical problems
during computation) there may be no values at all. In such a case the message

G. Description of Output Formats - 313 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

No values available

will appear.

If the stream is still in its pre phase, there also will be no autocorrelation values, but
then the message

Stream is in pre phase

will occour.

Note:

It may additionally be helpful to set %PARM=UPDATES: In this case the number of
updates that have occured is displayed in result tables within all mean value fields.

- 314 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.2. Format of the Standard Output
During the running of the HI-SLANG compiler or analyzer (or even OMA), messages
are yielded on standard output (e.g., terminal) to inform the user about the state of the
compilation or evaluation and the errors detected. These are essentially the same mes-
sages as given in the listing (see Appendix G.1.), but reformatted to lines of no more
than 80 characters. Detected by <pass name> does not appear in the title of the error
message tables.

The following start message initially appears on the standard output:

line 1: columns contents

1-21 : HIT <kind> licence (kind: denotes the kind of the licence)
27-53 : <name of licence token>
54-80 : ends <date> (or: no termination date)

line 2: columns contents

1-21 : HIT Version n.n.nnn
27-53 : <program name> (HI-SLANG Compiler,

 HIT-Analyzer <Name>, HIT-OMA)
54-80 : of <date and time of program creation>

Queries of the FAN system (e.g., %BIND "CONTROL" TO ?) and the echo of the
answer entered by the user follow next, furthermore completion messages of all passes,
preceeded possibly by error message tables.

The outputs caused by HI-SLANG WRITE statements also occur on the analyzer stan-
dard output. See Appendix I.3. for an example.

G. Description of Output Formats - 315 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.3. Format of Results
The performance values of the specified model, computed by the analyzer, can be repre-
sented directly as

1) a TABLE and/or
2) a DUMP FILE.

With the help of PLOT statements, dump files can be converted to a

3) simple GRAPH or
4) HISTOGRAM.

These four result formats are now described in detail. The outputs of the individual
evaluations are concatenated, each starting on a new page (except dump files) in the
case of an evaluation series, provided the corresponding link name has an EXTEND
binding (which is also the default).

G.3.1.Format of a Table

Tables are written via link name "TABLE" (as default) or the link name appearing in the
optional OUTPUT part of MEASURE statements or EVALUATIONOBJECT declar-
ations. "TABLE" has a default EXTEND binding to a file named by the file name
generator (see Section 8.2.6.). The record length is 133 characters including print
control characters.

Table files start with a title line containing the page number in column 123 (PAGE
nnnn). An empty line follows, and the link name of the table appears in the first column
of the third line.

Next is an identification block. Line by line, it has the following contents:

line columns 1-23 columns 25-80

1 : Control <name of control file or object>
2 :
3 : Experiment name <name of experiment>
4 :
5 : Model Type <model type>
6 : Model Name <name of model object>
7 :
8 : Model Parameters Name Type Actual Value
9 : =================================

10 : <n+1 lines giving name, type and actual value
of . all model parameters including seed (in case of

10+n : simulation)>
11+n :
12+n : Used Method <method name>

For analytical experiments, the line giving the acutal value of the parameter seed is
omitted.

- 316 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The identification block is followed by one empty line and a date block of the format:

line columns 1-23 columns 25-36

1 : Date of Compile <date value>
2 : Start Date of Run <date value>
3 :
4 :
5 :
6 :
7 : Stop Date of Run <date value>
8 : Used Cpu Time <fixed point REAL with 5 fraction digits>
9 :

10 : Reached Model Time <fixed point REAL with 5 fraction digits>

Here as well as in the following, <date value> and <time value> stand for installation
dependent output formats of dates and times.

Lines 9 and 10 are only given for simulative experiments. Lines 1, 2 and 7 have more
contents:

line columns 50-66 columns 70-.. .

1 : Time of Compile <time value>
2 : Start Time of Run <time value>
7 : Stop Time of Run <time value>

The tabular output of the performance values follows on a new page. There is a separate
table for every evalution object. This is the design of such a table:

Evaluationobjectname : <evaobj>

Hierarchy Esti <stream 1> . . . <stream s>
<hier 1> <esti 1> <value 111> . . . <value s11>

<esti 2> <value 112> . . . <value s12>
. . . .
. . . .

<esti m> <value 11m> . . . <value s1m>
<hier 2> <esti 1> <value 121> . . . <value s21>

. . . .

. . . .
<esti m> <value 12m> . . . <value s2m>

. . . .

. . . .

. . . .

. . . .
<hier n> <esti 1> <value 1n1> . . . <value sn1>

. . . .

. . . .
<esti m> <value 1nm> . . . <value snm>

G. Description of Output Formats - 317 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Such tables are split into several tables if they do not fit on a page concerning their
length or width. For every load filtering hierarchy <hier 1> to <hier n> occuring in
MESAURE statements and for every desired estimator <esti 1> to <esti m>, and finally
for every predefined or user-defined stream <stream 1> to <stream s> the user was in-
terested in, the corresponding field of the table contains the performance value <value
ijk>. 1≤i≤s, 1≤j≤n, 1≤k≤m related to the given specifications.

Every such table thus resembles the entire set of MESAURE statements

MEASURE <stream 1>, ..., <stream s>
AT <evaobj>

DUE TO <hier 1> , ..., <hier n>
ESTIMATOR <esti 1> , ..., <esti m>

referring to the same evaluationobject <evaobj>. The estimator <esti k> may already be
given in the declaration of <evaobj> and may therefore not appear in the MEASURE
statement.

Note:

Even if there are several MEASURE statements for the same evaluation object there
will be only one table for that object. If you want to have several tables for measure-
ments of the same component, please use different evaluation objects referring this
component!

Load filtering hierarchy names are shortened to 12 characters if necessary, while stream
names, centered in the table head, may assume a length of up to 25 characters. Names
of predefined load filtering hierarchies or streams (e.g., ALL, POPULATION) are
printed in upper-case letters, user-defined names are given in lower-case letters. The
following abbreviations are used for estimator names:

Mean : mean value (all solvers)
Lower : lower performance bound of mean value (only LIN2)
Upper : upper performance bound of mean value (only LIN2)
Stdev : standard deviation (only simulative)
Con nn% : confidence interval of width nn% (only simulative)
Freq : frequency intervals (only simulative)

Within the following format descriptions each n denotes a single digit or a leading
blank. Especially nnnnn.nnnnnn means additionally:

nnnnnn.nnnnn for 10-4 ≤ x < 106

-nnnnn.nnnnn for -105 < x ≤ -10-4

n.nnnnnnEznn otherwise (implementation dependent)

- 318 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The estimators yield a different number of values:

• Mean: Up to 4 values may be written to such fields:

 nnnnn.nnnnnn [nnn]
[nnnnn.nnnnnn nnnnn.nnnnnn]

Here the first number is the mean value. The number behind the mean value gives
the number of updates for that stream recorded during simulation, if %parm=updates
was used. Correspondingly, the two numbers in the second line denote the minimum
and maximum value recorded, if %parm=minmax was used in the control file.

• Lower, Upper, Stdev: The corresponding value x is given simply in the format

nnnnn.nnnnnn

in the first 13 columns of the field of the table which has the total length of 27
characters.

• Con: The format for Con is

nnnnn.nnnnnn+- nn.nn %
nn nn

The subfields contain the mean value of the confidence interval, the width of this in-
terval as percentage and, in the next line, the specified degree (of the autoregressive
model) and the degree that seems to be sufficient (cf. /Litz85/). As before, the mean
value may also be given in an exponential format.

• Freq: For the estimator Freq (only for EVENT or STATE streams), the frequency
value is given in the first line and the interval bounds in the second line of the field.
For every specified interval such a two-line field is given. For absolute occurrences
in context with EVENT streams it has the following form:

nnnnnn
nnnnn.nnnnnn nnnnn.nnnnnn

In other cases the frequency value is a real.

 nnnnn.nnnnnn
nnnnn.nnnnnn nnnnn.nnnnnn

The format depends on the analyzer option FREQUENCYFORMAT (see 8.2.1.3).

"Undefined" can appear instead of a value for any estimator (for the reasons see Section
5.1.4.). If there is more than one MEASURE statement for an evaluation object, some
fields in the table may remain empty.

G. Description of Output Formats - 319 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Example:

MEASURE POPULATION AT evaobj DUE TO hier
ESTIMATOR MEAN;

MEASURE TURNAROUNDTIME AT evaobj DUE TO hier
ESTIMATOR FREQUENCY ...;

In this case, the table generated has the following appearance:

Evaluationobjectname : evaobj

HIERARCHY ESTI POPULATION TURNAROUNDTIME
hier Mean <value> <no value>

Freq <no values> <values>
. . .
. . .
. . .

Freq <no values> <values>

A table may contain performance values for up to 4 streams. If there are more than 4
streams, at least one further table of the same type is calculated. If the table becomes too
long due to too many load filtering hierarchies, it is continued on the next page.

Every new page begins with the three-line heading described earlier. After three empty
lines the table head is repeated, then the table continues. A new table begins after four
empty lines.

An example for a table output can be found in Appendix I.5.

- 320 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.3.2.Format of a Dump File

Dump files are written via link name "DUMP" (as default) or the link name used in the
optional OUTPUT part of MEASURE statements or EVALUATIONOBJECT declar-
ations. "DUMP" has a default EXTEND binding to a file named by the file name gen-
erator (see Section 8.2.6.). The record length is 132 characters; there are no print
control characters within dump files.

A dump file basically contains the same information as the tables described above,
though it is presented in a compact, machine-readable format, which is not easy to sur-
vey for a human reader. Dump files are nevertheless described here because they serve
as interface for the simple graphical result presentations described below. Moreover,
dump files may be interpreted by user-written special purpose software.

Values contained in dump files can also be written or accessed by using the predefined
procedures put_result and get_result, respectively, within a HI-SLANG source (see
Appendix D.1.).

A dump file starts with an identification block and a date block similar to those of table
outputs; however, they are prefixed by "% " in each line to make them easy to skip by
programs. Lines 7 and 9 (see Appendix G.3.1.) are not used and the date block is split
after "Start Date of Run" by inserting the link name of the dump file and all dump infor-
mation records: In detail it has the following appearance:

line columns 1-23 columns 25-80

1 : % Control <name of control file or object>
2 : %
3 : % Experiment name <name of experiment>
4 : %
5 : % Model Type <name of model type>
6 : % Model Name <name of model object>
7 : % Model Parameters Name Type Actual Value
8 : % <n+1 lines giving name, type and actual value
. of all model parameters including seed (in case

8+n : % of simulation)>
9+n : %

10+n : % Used Method <method name>
11+n : %
12+n : % Date of Compile <date value>
13+n : % Start Date of Run <date value>
14+n : % Header is <dump file header>
15+n : %
16+n : %

In analytical experiments the line giving the actual value of parameter seed is omitted.
The date values of lines 12+n and 13+n only extend to column 38. These same lines, as
known already from tables, also contain time values:

line columns 52-68 columns 72-.. .

12+n : Time of Compile <time value>
13+n : Start Time of Run <time value>

The format of <date value> and <time value> is installation dependent.

G. Description of Output Formats - 321 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Line 16+n is followed by a title line and one percent-blank line. The title line and the
format and meaning of the entries in each column (the dump records following) can be
described as follows:

columns title format meaning

1-12 : % Ev. Object t12 evaluation object name
14-38 : Measure t25 stream name
41-47 : Degree i7 degree of autoregressive model, if > 0

(only for CONFIDENCE, cf. /Litz85/)
56-67 : Hierarchy t12 load filtering hierarchy name
70-82 : Abcissa r13 abcissa value given in MEASURE

statement (default 0) for graphical
result presentation

85-101 : Estimator t17 one of the estimator names MEAN,
UPPER BOUND, LOWER BOUND,
STANDARDDEVIATION,
CONFIDENCE or FREQUENCY

104-108 : <none> i5 for CONFIDENCE: the level
for FREQUENCY: number of lines
following (intervals)

110-122 : Result r13 performance value (for CONFI-
DENCE: interval width as percentage)

125-132 : # / Degree i8 for CONFIDENCE:
actual degree of the autoregressive
model

Each such line describes one performance value. The following format forms have been
used in the table above:

tx : text with up to x characters
ix : right bordering integer in a field of length x
rx : real number with x-6 mantissa digits and field width x.

Note that evaluation object names, stream names and hierarchy names are shortened
automatically, if necessary (i.e., limit of format is exceeded).

For estimator CONFIDENCE each regular line is followed by a second line containing
the means of the confidence interval using format r13 in the Result-row.

An additional line is used for every specified interval by the estimator FREQUENCY.

For EVENT streams, the additional lines have the following format:

columns format meaning

95-107 : r13 lower interval bound
110-122 : r13 upper interval bound
125-132 : i8 Number of events with performance values occuring in the

interval. The title of this row may thus be interpreted as
number or degree (#/Degree).

- 322 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

For STATE streams, the additional lines have the following format:

columns format meaning

81- 93 : r13 lower interval bound
95-107 : r13 upper interval bound

110-122 : r13 accumulated time, the trajectory value is within the interval,
divided by the observation time

In dump files the value "Undefined" is represented by an installation-dependent large
real value (maxlongreal/4). The HI-SLANG constant UNDEFINED yields this value.

Two lines containing only "% " terminate the list of dump records. Finally, the date
block is completed by the following four lines:

columns 1-25 columns 27-38

% Stop Date of Run <date value>
%
% Used Cpu Time <used cpu time>
% Reached Model Time <fixed point number with 5 fraction digits>

The first line further contains:

columns 52-68 columns 72-.. .

Stop Date of Run <time value>

The last two lines are only given for simulations. In case of evaluation series the dump
output of the next evaluation is appended. The example of a dump file can be found in
Appendix I.6.

G. Description of Output Formats - 323 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.3.3.Format of a Histogram

Histograms are written via link name "HISTOGRAM" (as default) or the link name oc-
curing in the optional OUTPUT part of a HISTOGRAM statement. "HISTOGRAM"
has a default EXTEND binding to a file named by the file name generator (see Section
8.2.6.). The record length is 133 characters including print control characters.

Every page of a histogram starts with a title in the standard format (G.1.1.2.) with the
histogram link name in the title field. One empty line always follows the title line.

On the first page there is an identification block of this format:

line columns 1-23 columns 25-80

1 : HISTOGRAM
2 : ==========
3 :
4 : EVALUATION OBJECT <evaobj>
5 : MEASURE <stream>
6 : HIERARCHY <hier>
7 : ESTIMATOR FREQUENCY
8 :
9 :

10 :
11 : <separator line consisting of 132 '-'-characters>

The histogram itself follows on the next pages, beginning with a "starting mark" and
continued by the sequence of bars. Every bar uses five lines, the fifth line of a bar being
the first line of the next bar.

If there are more than 13 bars a "successor mark" is printed at the bottom of the page
and the new page starts (with the title line and) with a "predecessor mark", followed by
the next 13 bars, etc.

When all bars have been printed, the ending mark and inscription of the abscissa are
printed. All marks have this format:

line columns meaning format

1 : 1-132 ordinate inscription right-adjusted
2 :

3, 4 : 15-17 starting mark ---
 !

56, 57 : 15-17 successor mark !
 V

1, 2, 3 : 15-17 predecessor mark ^
 !
 !

n : 15-17 ending mark !
n+1 : ---
n+2 : 11-132 abscissa inscription left-adjusted

- 324 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

A bar entry looks like this:

line columns 1-14 16 17-m (m is length of the bar)

1 : <lower bound> ! %%%%%%%%%%%%%%%%
2 : ! %%%%%% n.nnn E+-nnn %%
3 : <upper bound> ! %%%%%%%%%%%%%%%%
4 : ! /
5 : ! __________________________/

Line 2 contains the frequency value, which is also the bar length. If the bar is not long
enough to hold this integer value the value is written to the right of the bar, separated by
two blanks. The first line of the next bar (provided it exists) on the same page over-
writes the fifth line of its predecessor.

The values <lower bound> and <upper bound> are given in a format depending on
their value x:

10-4 ≤ x < 106 : nnnnnn.nnnnnn
-105 < x ≤ -10-4 : -nnnnn.nnnnnn
otherwise : zn.nnnnnnEznn

For an example see Appendix I.8.

G.3.4.Format of a Graph

Graphs are written via the standard link name "GRAPH" (as default) or the link name
given in the optional OUTPUT part of a GRAPH statement. "GRAPH" has a default
EXTEND binding to a file named by the file name generator (see Section 8.2.6.). The
record length is 133 characters including print control characters.

Every page of a graph starts with a title in the standard format (G.1.1.2.) with the
graph's link name in the title field. One empty line always follows the title line.

The graph output starts with one identification block for every curve:

line columns 1-23 columns 25-80

1 : CURVE (<symbol>)
2 : ==============
3 :
4 : EVALUATION OBJECT <evobj>
5 : MEASURE <stream>
6 : HIERARCHY <hier>
7 : ESTIMATOR <esti>
8 :
9 :

10 :
11 : <separator line consisting of 132 '-'-characters>

G. Description of Output Formats - 325 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

The actual graphs follow after the last identification block, each of them shown on a
new page. Their appearence depends on the points to be plotted.

Every graph consists of

- the abcissa, partitioned by 13 marks, each fixed with a corresponding value,
- the ordinate, partitioned by 7 marks, each fixed with a corresponding value, and
- the scaling, two lines at the bottom of the page.

The page for a graph has an imaginative grid of 13 vertical and 7 horizontal lines. One
horizontal line is the abscissa and one vertical line is the ordinate. The respective
meanings of the axes are appended at their free ends as text values, followed by a
scaling factor, a text "*& nn" (corresponding to multiplied by 10n). The intersection of
both axes is marked 0.

Curve symbols (the dots composing the different curves) have priority over the axis
symbols and their inscriptions and may therefore overwrite these. If several curve sym-
bols require the same "pixel", only the last (with identification block given last) can be
seen. The curve symbols used are mentioned in the identification blocks. They are as-
signed in the following order:

* X # % § $. A B C D E F G H I J K L M N O P Q R S T U V W Y Z
 (32 symbols)

If there are more than 32 curves, the 33rd curve will again be assigned the first charac-
ter listed, etc.

For a curve for estimator CONFIDENCE the confidence interval is also "plotted" by
two '-'-characters appearing above and below the curve symbol at an appropriate dis-
tance. The '-'-characters may overwrite the curve symbol.

At the bottom of the page the scaling is given as follows:

ABSCISSA SCALE DIVISION:n.nnnnnnn PER '-' <per column>
ORDINATE SCALE DIVISION:n.nnnnnnn PER '!' <per line>

- 326 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.4. Format of an Aggregated Component Type
Experiments of METHOD ANALYTICAL "separable" (where "separable" may be sub-
stituted by one of its aliases, e.g., "DOQ4", see Section 4.2.10.) may contain
AGGREGATE statements. In this case the generated (pre-)analyzer creates an
aggregated component type (shortly called aggregate) for every AGGREGATE
statement executed. Such aggregates may be used instead of the original HI-SLANG
component type for reasons of efficiency if certain resticitions are satisfied (see
Appendix E.1.).

Aggregates are written via the standard link name "PREANA" (as default) or the link
name appearing in the optional OUTPUT part of an AGGREGATE statement. The stan-
dard link name has a default binding to a file named by the file name generator (see
Section 8.2.6.). The record length is 132 characters.

Aggregates start with five lines of comments similar to those of a dump file (see
Appendix G.3.2.), but only the experiment name, component type name and the date
and time of the compilation and pre-analyzer run is contained, followed by the method
name.

One empty line separates these comments from the HI-SLANG interface of the aggre-
gate, i.e., the declaration of the component type including its PROVIDE declaration and
service declarations of all provided services (dummy declarations with empty bodies).
The component type body is also empty since all bodies are represented by the speeds
table.

Another empty line separates the HI-SLANG interface from the speeds table starting
with the control statement %SPEEDS, interpreted as %EOF by the compiler (see
Section 8.4.). In contrast, an analyzer using such an aggregate, i.e., interpreting the
speeds table, interprets %SPEEDS as start of data.

%SPEEDS is followed by D+1 lines giving the number of provided services D and for
each such service its maximal population allowed in the component, as defined by
CREATE statements within the AGGREGATE statement. This information appears as
follows:

line columns 1-25 27-34 30-39 40-65

1 : NUMBER OF PROVIDES <Integer>
2 : <Provide name 1> POPULATION <Integer>

...
D+1 : <Provide name D> POPULATION <Integer>

The list of speed values follows next. It is terminated by two percent-blank lines, the
second containing the stop date and time of the pre-analyzer run.

An AGGREGATE statement such as

AGGREGATE ct;
CREATE N(1) PROCESS st1;
. . .
CREATE N(D)PROCESS stD;

END AGGREGATE;

G. Description of Output Formats - 327 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

creates a SPEEDS-table with

(1)
D ⋅ N(i)+1∏

i=1..D

 - 1

(D, N(i) are defined below)

real values of field length 13 and format n.nnnnnnE±nn, with 9 values to a line. Their
meaning is defined as follows:

Let D > 0 be the number of provided services of the aggregate and N(d) be the maxi-
mum population of service number d defined by CREATE statements, 1 ≤ d ≤ D. Then
the speeds table for service d contains the values

(2) sd n =
D I, d; n

nd
 = 1

T I, d; n

where D(...) signifies the throughput of service d within the aggregated system I con-
taining n_ customers of D classes, n_ =(n1, ..., nD). On the other hand, T(...) stands for
the corresponding turnaround times, the reciprocal also yielding the speeds according to
Little's law.

The following definitions are only given for users interested in how to obtain the speed
values sd(n_), 1 ≤ d ≤ D, from the SPEEDS-table:

(3) back (D) = 1

(4) back (d) = back (d+1) . (N (d+1)+1), 1 ≤ d ≤ D-1.

Then the index for sd(n_) within the speeds values for service d and a population vector
n_ is

(5) nd ⋅ back d∑
d=1

D

and the index for the speeds table in total is

(6) d - 1 ⋅ #speeds_d + nd ⋅ back d∑
d=1

D

where

(7) #speeds_d = number of speeds for every service d

:= N d + 1∏
d=1

D

 - 1

The speed values are arranged in the order defined by the CREATE statements of the
AGGREGATE statement. This order is also given just after the %SPEEDS keyword
within the aggregate.

- 328 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.5. Format of a Trace

G.5.1.Event Trace

If desired, a simulative event trace is written via the standard link name "TRACE". By
default it has an EXTEND binding to a file named by the file name generator (see
Section 8.2.6.). The record length is 115 characters; there are no print control
characters within a trace. A trace file either contains all events of a simulative evaluation
(CONTROL TRACEALL) or only those occuring in selected components (CONTROL
AT <evaobj> TRACE) in an order of increasing model time. All area transitions of
processes form events that can be subject to tracing. The events are caused by local
processes, i.e., by process declarations or processes generated by CREATE SUBMIT
statements, while service calls do not generate a new process. Moreover, every branch
of a CONCURRENT statement creates a subprocess recorded in the trace.

The trace consists of a starting message (first line), a list of all actual model parameters,
a (possibly very long) set of trace records and a stop message (last line). These lines of
additional information are prefixed by "% ", distinguishing them from trace records. All
user-defined identifiers utilized in the trace are printed lower-case with a maximum of
12 characters.

The starting message successively contains the experiment name, model type name,
model object name and the date and time of simulator generation and simulator start,
separated by " / ". The formats used for date and time are installation-dependent.

The following lines specify the name, type, and actual value for each formal parameter
of the model type being simulated, concluded by one such line for the predefined model
parameter seed.

An arbitrary number of trace records follows. Their format depends on the selected
TRACEFORMAT (see Section 8.2.1.3.).

The last trace record is followed by a one-line stop message containing the used cpu
time, reached model time and termination date and time of the simulation, in this order,
separated by " / ".

Additional information can be written chronologically into the trace file by using
WRITE FILE tracefile statements (see Appendix D.2.). An example trace can be found
in Appendix I.7.

G.5.1.1. First Format of Trace Records

In the first format of event records, each line characterizes one event of the simulation
under up to 8 aspects of information (a-h):

columns meaning

a) 1-13 : Actual model time of the event (real value of format n.nnnnnnEznn)

b) 15-27 : Record descriptor. The following events are registered:

- BIRTH, DEATH : Creation and termination of a local
process, respectively. Only given
for TRACEALL.

G. Description of Output Formats - 329 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

- ASK : A service call occuring in a process.
The process descends to the com-
ponent providing that service, i.e.,
the next activities take place there.
The process puts his announcement
in the announce queue.

- >ENTRY : A process arrives in the entry area of
the component providing the service
called.

- ENTRY>SERVICE : Process transition to the service
area, i.e., start or resumption of
process execution.

- SERVICE>ENTRY : Preemption of a process.

- SERVICE>EXIT : Termination of a service execution.

- ENTRY>EXIT : Resumption of a process which has
nothing more to do.

- FORK : Start of a CONCURRENT state-
ment; generation of a new
concurrent branch.

- JOIN : Termination of a concurrent branch
(not the last one).

- LAST-JOIN : Termination of the last concurrent
branch, i.e., termination of a CON-
CURRENT statement.

c) 29-40 : Type name of the local process registered.

d) 42-53 : PROVIDE name of the service called by its respective USE name.

e) 55-61 : Unambignous number of the local process or a concurrent branch
(see FORK).

f) 63-80 : Name of the component providing the previously called service
(for ASK and >ENTRY, compare g) or the service just called
(otherwise). If this component belongs to an array, the array name
appears here and the array index is given in columns 76-80.

g) 82-99 : Only given for ASK and >ENTRY: the name of the component
providing the service just called. Again there may be a component
array index in columns 95-99.

h) 100-112 : Remaining service request of the process; only given for request
of a server and for hold and spend for the events
ENTRY>SERVICE or SERVICE>ENTRY. In the case of an
initial arrival in the service area, consequently the actual value of
the request parameter appears here.

The information fields d and f-h do not appear for the events BIRTH and DEATH.

- 330 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

System-defined components of type server called hold_server and spend_server exist
for calls of hold or spend within services, respectively. These names may be used in the
trace (see f and g).

If CONTROL AT <evaobj> TRACE is used for the evaluation, the trace file contains
only those trace records which contain the name of the component addressed by
<evaobj> in columns f or g.

G.5.1.2. Second Format of Trace Records

The event trace of the second format starts with an empty line and a header line, both
introduced by "% ". One line per event is given with the following fields:

a) 1- 13 : Model time.
b) 15- 21 : A unique number identifying the involved process.
c) 23- 35 : The kind of event (BIRTH, DEATH, ANNOUNCE, >ENTRY,

ENTRY>SERVICE, SERVICE>ENTRY, SERVICE>EXIT,
ENTRY>EXIT, EXIT>, FORK, JOIN, LAST-JOIN).

d) 37- 54 : The component of the event, in case of ANNOUNCE the
component of the calling service, if any; columns 50-54 contain an
array index, if necessary.

e) 56- 67 : The involved service, in case of ANNOUNCE the calling service,
if any.

f) 69- 80 : The next component in case of an ANNOUNCE, column 76-80
index, if necessary.

g) 88- 99 : The service at the next component in case of an ANNOUNCE.
h) 101-113 : The remaining service request of the process at a server.

The meaning of events is as follows:

BIRTH : Creation of a process.
DEATH : Termination of a process.
ANNOUNCE : An announcement is put into an announce queue.
>ENTRY : A process enters the entry area.
ENTRY>SERVICE : A process is transfered from entry to service area.
SERVICE>ENTRY : A process is transfered from service to entry area.
SERVICE>EXIT : A process is transfered from service to exit area.
ENTRY>EXIT : A process is transfered from entry to exit area.
EXIT> : A process leaves an exit area.
FORK : A concurrent branch of a CONCURRENT statement starts.
JOIN : A concurrent branch (not the last one) of a CONCURRENT

statement finishes.
LAST-JOIN : The last concurrent branch of a CONCURRENT statement

finishes.

If not relevant, fields in a line can be left empty. Note, that each FORK generates a new
process identification number for the concurrent branch. JOIN and LAST-JOIN mark
the end of a concurrent branch respectively the last concurrent branch. System-defined
components of type server called hold_server and spend_server appear in the trace.

The appearance of events is controlled by the TRACE and TRACEALL attributes of the
CONTROL statement (cf. Section 5.8.2.) and dynamically by TRACE_ON and
TRACE_OFF (cf. Appendix D.2.4.).

G. Description of Output Formats - 331 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

G.5.1.3. Third Format of Trace Records

The third format of trace records is an extension of the second format (cf. the previous
section). Additionally, all calls of component control procedures of components to be
traced appear. As event names, ACCEPT, SCHEDULE, DISPATCH and OFFER are
used. Only the fields for model time and the component name are filled for these kind of
events.

G.5.2.State Trace

The trace file may also contain the so-called state trace. The state trace gathers
information about the locations of processes in the model. It is produced either by the
user (with the procedure trace_state) or automaticly if a possible deadlock situation
occurs. The state trace is always written to the trace file, even if you have not given
TRACE or TRACEALL in the CONTROL statement. The procedures trace_on and
trace_off have no effect on the state trace.

Each line of the state trace begins with a % in column 1. The state trace consists of three
parts, the starting message, the actual information about the process locations and a stop
message. The start message begins with an empty line, followed by a line with the
format

%START OF STATE TRACE. MODELTIME n.nnnnnnEznnn
TIME OF LAST EVENT n.nnnnnnEznnn

The real values denote the model time of the trace output and, respectively, the time
when the last event in the model has happened. The last line of the start message is
again empty.

The stop message consists of two lines. The first line contains

%END OF STATE TRACE.

and the second is empty.

The information part of the state trace lists all components that contain at least one
process in any of their areas. The order of the components represent the structure of the
model. After each component all its subcomponents can be found. Components that
contain no processes are not listed. Remember that the model itself is treated like a
component and therefore may occur here, too.

Each component description starts with a line that has the format:

columns meaning

 2-10 The word 'COMPONENT'.
13-24 Name of the component.
26-32 If the component belongs to an array, the index of the array is listed

here, otherwise this field is empty.

- 332 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

This line is followed by a list of lines with the information about all processes in the
component. Each of these lines has the following format:

columns meaning

 6-19 Component area (ANNOUNCE QUEUE, ENTRY AREA,
SERVICE AREA, EXIT AREA).

21-32 Name of the process in that area.
34-40 Number of the process. This is the same number as in the event

trace.
42-54 Arrival time of the process in the area (real value of format

n.nnnnnnEznnn).

If one area contains more than one process, each process information is written on a
new line, but the area name is only given for the first process. The processes are listed
in ascending order due to their arrival time in the specific area. Areas not containing any
process are not listed.

Each component description ends with an empty line. If there are no processes at all in
the model, you will get the message: %NO PROCESSES IN THE MODEL.

Example:

%
%START OF STATE TRACE. MODELTIME 1.200000E+00 TIME OF LAST EVENT 1.175000E+00
%
%COMPONENT c_1
% ENTRY AREA proc_1 1 9.000000E-001
% proc_2 4 1.100000E+000
%
%COMPONENT c_2 2
% SERVICE AREA proc_2 5 5.500000E-001
%
%END OF STATE TRACE.
%

H. Advice on Error-Identification - 333 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

H. Advice on Error-Identification
If errors emerge during HI-SLANG-compilation, it is advisable to study the corre-
sponding section in the main part of the reference manual for correct treatment. This ap-
pendix starts with some remarks on error messages and warnings emitted by the HIT
system and concentrates on giving advice for handling errors that result from the
SIMULA compiler (this should never occur) or from executing an analyzer.

H.1. Error Messages and Warnings of HIT
Error messages and warnings can be delivered from all passes of the HI-SLANG
compiler, from all analyzers and from OMA. Every error message and warning consists
of a (error) number and accompanying line number that precedes a message or warning
text. Errors are characterized by an 'E', warnings by a 'W' preceding that error
number. Errors causing an immediate interruption of compiling or running a program,
are identified by an 'A' (ABORT).

Error messages and warnings issued by the FAN system as well as those ones resulting
from mobase accesses may appear in any compiler pass and any analyzer execution.
Additionally the analyzers may cause errors of the SIMULA run time system (see be-
low).

Upon detection of an error that does not cause an immediate interruption of the
compilation the compiler recovers a position from which it can continue the
compilation. Every rule of the HI-SLANG syntax disposes of such recovery positions.

Such information is yielded as a warning following the corresponding PASS1 error
message in the following format:

W.0473 line : One token of the following set was expected: {a b}. Skipped
source until terminal c was found within current line.

This means the tokens a and b are allowed at this position, and the following source is
skipped up to the next recovery position, which is token c found in line line.

This accounts for the possibility of follow-up errors either not being detected at all or
being assigned a wrong message. The additional warning will help you to understand
what has happened.

- 334 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

H.2. Unexpected Analyzer Behaviour
If the generated analyzer does not behave as expected, e.g., if it produces false results
or error messages, or should the SIMULA run time system even abort, the following
steps should be gone through:

H.2.1.Additional Outputs

First, some additional control code should be inserted with WRITE statements into the
section of HI-SLANG code presumably containing the error. This, however is only
possible if having chosen the simulative method, or if only the experiment description
part is concerned. The search for an error may therefore necessitate a temporary change
of the solving method. This could be an appropriate application for conditional
compilation using compiler directives (%IF, see Section 8.3.).

Additionally, the simulator can be activated to generate a trace (see Appendix G.5) that
may deliver valuable information to analyze error states. The trace file, though, could
grow very rapidly, but this can be controlled by tracing only at specific components (via
CONTROL AT ... TRACE), or at specific time intervals (using trace_off, trace_on).

Besides the normal event trace a state trace can be additionally requested by calling
procedure trace_state, and the control messages can be inserted into the trace using
WRITE FILE tracefile, ...;

H.2.2.Code Inspection

If the error cannot be located that way, the generated code or rather the SIMULA listing
can be investigated by using XREF (if provided by the Simula system used). This is
advisable concerning SIMULA run time errors. Here are a few tips:

Run time errors such as division by zero, I/O-errors and the like are detected and an-
nounced by the SIMULA system in order to make the generated SIMULA code as short
and efficient as possible. The SIMULA run time system has been principally adopted,
so it has not been necessary to write a HI-SLANG run time system for basic computa-
tions.

These messages may contain line numbers which of course do not refer to the HI-
SLANG but to the SIMULA source code. Please use the new compiler option
%parm=DEBUG to add HI-SLANG line numbers to the code! It may be helpful to look
for a SIMULA error in the SIMULA listing locating an error by line number. It is also
possible to use a SIMULA cross reference listing (if available) since the names within
the SIMULA source are nearly equal to the names of the HI-SLANG source. They only
have an additional prefix to make them unambiguous. Note that in old SIMULA
systems the 12 leading characters of a name are significant whereas in HI-SLANG up
to 80 characters of a name are significant. The prefix has the following notation:

znnnmmmm

The z specifies the mode of the named object (SIMULA procedure or class):

c : service or local process
m : model type
p : PROVIDE name, this is a service

H. Advice on Error-Identification - 335 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

s : implicite state of a process (given by the service parameters)
x : component type, if SIMULA control procedures have been specified (see I.2.)
z : component type and any other variable

In addition there are the characters 'g', 'o', 'q', 'u', 'v' and 'y', which are, however,
not important in this context.

The following three digits nnn distinctively enumerate all component types and model
types. mmmm is a distinctive number for each object within a model type or component
type.

Example:

z0010023hi_slang_name

Predefined procedures and constants (Appendix D.) as well as predefined elements of
HI-SLANG such as seed, popul... and request (Chapter 7.) do not have such a prefix
because they are already unequivocal.

The generated SIMULA source is very similar to the HI-SLANG source, especially re-
garding services. HI-SLANG control elements like, e.g., LOOP ... END LOOP,
LOOP ... UNTIL, AVERAGE ... TIMES, CASE, BRANCH and CONCURRENT,
nonexistent in SIMULA, are an exception.

An independent SIMULA class is generated for each of the parallel branches of a
CONCURRENT statement, and is assigned a name by the following mode:

conc<i>

where i is a numbering of all CONCURRENT statements in a HI-SLANG source.

A detailed description of the generated code for simulation is given in /BuSt90/.

If a logical error within a HI-SLANG program cannot be found in spite of an intensive
search, there may actually be an error in the HIT system. In this case, please contact the
University of Dortmund (the exact address can be found in the beginning of this
Manual).

- 336 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

H.3. SIMULA Compile Errors
If errors appear while compiling a generated simulator or analyzer using the SIMULA
compiler, three cases have to be regarded:

a) Error in standard component procedures written in SIMULA:

Correct the error or better, write the control procedure in HI-SLANG, since
SIMULA control procedures are no longer supported.

b) Constant arithmetic errors:

Optimizing SIMULA compilers will evaluate constant expressions. This may cause
compile time errors similar to run time errors just like "division by zero".

c) Other errors:

These may be bugs within the HIT system. You should contact the Universität
Dortmund if they occur.

I. An Example - 337 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.An Example
The cooperation of all the HI-SLANG constructs presented will be demonstrated by a
complex but well structured and documented example. It is a model of a computing
system, somewhat artificial, but uses most of the HI-SLANG constructs.

The first segment describes the model and the experiment step by step. The complete
source listing, including XREF, is followed by listings of all the results produced, but
compressed from record length 132 to 80 for editing reasons.

I.1. Description of the Model
The model description consists of four main parts: the definition of model type, system,
and component types console_type, installation and dms. Moreover, the predefined
component types server , semaphor and observer are used.

The structure of the model is given using the following HITGRAPHIC display (for
HITGRAPHIC see /Sczi93/):

terminals
[0..100]
:server

console
:console_type

centre
:installation

sem
:semaphor

link
:server

obs
:observer

disk
:dma

printer
:server

drive
:server

cpu
:server

:system

TYPE system MODEL

- 338 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.1.1. Model Type system
The computing system model is parameterized to allow being used in a series of evalu-
ations with different actual parameters. One parameter denotes the number of terminals
in the system, while the other gives the degree of parallelity of batch processes.

Two event streams, wait_time and run_time follow. The event streams are used for
measuring mean time intervals between generation and activation as well as between
activation and termination. They are written by UPDATE statements in the service
body.

Many processes described by the services batch and dialog are generated in the model,
but there is only one process of a third type, watch_batch, observing and sometimes
starting batch jobs.

These three services of the model will now be described in detail:

batch:

In HI-SLANG the state of a process is modelled by the parameter set of the corre-
sponding service (we didn't want to introduce an explicit state concept).

The state of batch jobs can be observed during their existence. It consists of the owner
of the job, the time of generation, submitted_at, the time of activation, started_at, and a
flag, terminated, set as the last action of batch.

All these parameters have a default value, so they need not be assigned when creating
processes. The default value of submitted_at results from a call of the predefined pro-
cedure, time, at the time of process generation.

Declarations of all services used (provided by other components) follow.

The body starts with a semaphor, P-operation, limitting the number of batch jobs run-
ning in parallel, thus avoiding overloading the system. Storing of the start time, in-
crementing of batch_count and appending the sequence number of the batch job to
owner for identifying batch jobs clearly within print statements, follow. All these state-
ments are timeless (with regard to model time), so the wait_time stream can be updated
subsequently.

Only the next two statements affect model time: Starting a batch job results in trans-
ferring it to and executing it on a computer. Then the run_time stream is updated, a ter-
mination message produced, flag terminated set and semphor V-operation executed.

dialog:

A dialog process is represented by a dialog cycle: run 500 times at mean. Thus some
dialogs will run infinitely, that is as long as the current evaluation runs. It may also oc-
cur that one dialog process models more than one user dialog, the new user immediately
starting when the other logs out.

One dialog cycle is modelled as follows: A mean thinking time of 20 seconds is as-
sumed for each terminal in the array and a transmission time of approx. 2 seconds per
command is supposed.

I. An Example - 339 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

There are two classes of commands: either the user has started a batch job (probability
5%), then a message containing the number of the current dialog process is sent to the
console, or he has entered another command which is executed and the result transmit-
ted back to the terminal.

watch_batch:

The service watch_batch is to observe batch jobs via the process name last_batch,
which is updated by every execution of a corresponding SUBMIT statement. Period-
ically, every 300 seconds, a new batch job is generated if currently no batch job is run-
ning (more exactly: last_batch terminated) because system utilization is low then, and
jobs with lower priority can be started by the system. The watch_batch process
terminates after two hours of model time.

Rest of system:

The services of the model use services of different components: an array of terminals, a
hierarchically modelled computer of type installation, a communication channel link, a
console of type console_type for message output and a semaphor to limit the number of
batch jobs running in parallel. The predefined type semaphor therefore has to be copied
from the standard mobase (modelling base), using %COPY. The behaviour of all these
components is controlled by predefined or user written component control procedures
given as actual parameters of the component types.

A declaration of six initial batch jobs init_batch as a process array and the process name
last_batch follow. In the REFER part all used services of all services are bound to
provided services of the above components. After the keyword BEGIN the load of the
model is specified: Apart from all processes of the init_batch ARRAY (the number of
which is written to the tracefile), it consists of the watch_batch process, one dialog
process for each terminal and a further batch process. The last one has owner name
"LOAD" and serves to initialize the process name last_batch.

I.1.2. Component Type console_type

This component type provides one timeless service, print, to output two texts on the
console (represented by the standard output) in form of a table. The result value of the
service is its first parameter, so print can be used within expressions.

Every message is prefixed by the current model time formatted as clock time hh:mm:ss.
This is achieved by a local multi-valued procedure named hms to convert model time in
seconds to hours, minutes and seconds. Blanks within clock times in the case of second
or minute values less than 10 are avoided by the expressions in the WRITELN
statement.

In the body of this component type the table head is printed. The declaration of a global
procedure to_text follows to convert an integer to its textual representation without lead-
ing blanks.

- 340 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.1.3. Component Type installation

This component type models a computer providing two services of interest: execute and
search. This hierarchical type is planned to be aggregated by the analytic algebraical
method. Therefore it is stored in another file, copied here (in the listing this can be de-
tected by finding a letter following the relative line number). Neither the component
type nor its provided services are parameterized.

execute:

Processes of type execute perform the following cycle about 7 times: First the cpu is
occupied for approx. 6 seconds, then the computed result may be printed, lasting 0.2, 2
or 20 seconds at mean with different probabilities.

search:

Processes of type search execute the following cycle 5 times at mean: First approx. 12
bytes are read from a disk, then the cpu is used for about 50 msec. to process these
bytes.

Rest of installation:

The services used are bound to three different components: a cpu, a printer and a disk.
The first two components are modelled as servers, while the disk of type dms is
modelled more detailled.

The REFER part is followed by the statement part of the component body, periodically
generating local processes of typ search, roughly modelling the overhead of installation.

I.1.4. Component Type dms

The disk management system, dms, provides one service, transfer, to read from a disk.

transfer:

This service models a read access on a disk using the cpu for about 20 msec. and the
disk for about 1.2 msec. per byte to be read.

Rest of dms:

The body consists of component declarations and the REFER part as usual. The same
cpu as within component type installation is used. Therefore the cpu is declared as
ENCLOSE, that is virtual. The main declaration of the cpu can be found in the body of
installation.

I. An Example - 341 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.2. Description of the Experiment
The model type system, described above, is analyzed by a series of simulations. Type
installation can be aggregated first, but is not done here. All performance values are
written to a table with link name "TABLE" as well as to a dump file "DUMP".

The declaration part of the experiment consists of three variables, num_term, cpu_time,
and more to control the series. The statement part follows, consisting of an UNTIL
loop. Its body begins with a query on the number of terminals and the maximum cpu
time to be used. The values entered for the current evaluation are protocolled, then the
EVALUATE statement follows. It also has a declaration part and a statement part.

Declaration Part of EVALUATE:

A model, named edv of type system, parameterized with the number of terminals read
from standard input and the initial value 3 for the semaphor is generated and six evalu-
ation objects are declared. The evaluation objects specify those components as end
points of a path in the component hierarchy, which have performance values of interest.
Their estimators, kinds of result representation and measuring start times are predefined
here to avoid repeating these specifications in every measure statement.

Declarations of load filtering hierarchies follow to allow differentiating the results due to
initially causing local processes in higher model layers and the REFER-paths over
which services are called transitively down to the evaluation object.

The hierarchies dia and bat serve to filter out the load portions induced by dialog resp.
batch processes. They are used as abbreviations within the next load filtering hier-
archies declared.

The hierarchies cent_bat, link_bat and sema_bat filter out batch load portions at the
centre, the link and the semaphor, while cent_dia and link_dia filter out dialog load por-
tions at the same components. The hierarchy sema_bat_p is more specialized than
sema_bat: only the load induced by P_operations within batch processes is filtered.
Link_merge is a merge of two hierarchies with the same end point.

Finally there are two hierarchies not starting at edv, but at centre. They filter loads in
cpu induced by local processes within centre. These two hierarchies have identical start
and end points, but describe different paths from start to end point.

Statement Part of EVALUATE:

The statement part is composed of five MEASURE and one simulation CONTROL
statement. Only these kinds of statements are allowed within EVALUATE.

The first MEASURE statement concerns the user-defined streams of the model type,
i.e., wait_time and run_time of batch processes. Beside mean value and standard devi-
ation of these streams, the values for a non cumulative histogram are calculated.

At computer centre (addressed by cent) the number and turnaround time of processes
caused by batch processes, dialog processes and any processes (hierarchy all) within
the model are measured. At channel link its occupation and the probability for being
utilized are measured separately for load portions caused by dialog and batch processes
as well as both of them.

- 342 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

At the semaphor the throughput of all semaphor operations and especially P_operations
done by batch processes is measured. As before, the estimators given for the evaluation
object are used, but the standard deviation for UTILIZATION is not defined.

Finally at the cpu OCCUPATION and POPULATION are measured in total (hierarchy
all) and especially for local processes in centre, i.e., the load portion caused by the
statement part of installation, separately for both possible paths.

The simulation CONTROL statement stops the simulation after the given amount of cpu
seconds or after six hours of model time, if POPULATION at centre is precise enough
at that time. To save cpu time this test is only done at the component addressed via cent.
Further, a trace is demanded for semaphor events.

At the end of all evaluations a histogram for one of the self-defined streams is plotted
from the data written to the dump file.

I. An Example - 343 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.3. Listing with XREF
The listing is a concatenation of the compiler listing and the listing produced by the gen-
erated analyzer.

I.3.1. Compiler Listing

The compiler listing starts with a formatted printing of the control file and the HI-
SLANG source. Completion messages of the different compiler passes and an XREF
listing follow.

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 1 University of Dortmund

 1 1a: %COMMON
 2 2a: %PARM=LINES=60
 3 4a: %COMPILER
 4 5a: | %PARM=INDENT=|3,XREF,MAXERROR=20
 5 6a: | %BIND "INSTALL" TO RefMan.ins
 6 10a: %END

> FAN : Okay. Cpu Time used : 0.010 Seconds.

- 344 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996
13:18 PAGE 2 University of Dortmund

 1 12a: % Example as contained and described in
 2 13a: % the HI-SLANG Reference Manual.
 3 14a:
 4 15a:
 5 16a: CONSTANT hour : INTEGER DEFAULT 3600 {sec.};
 6 17a:
 7 18a:
 8 19a:
 9 20a: TYPE system MODEL
 10 21a: | (number_of_terminals ,
 11 22a: | batch_parallel : INTEGER);
 12 23a: |
 13 24a: | STREAM wait_time : EVENT;
 14 25a: | run_time : EVENT;
 15 26a: |
 16 27a: | VARIABLE batch_count : INTEGER;
 17 28a: |
 18 29a: |
 19 30a: | TYPE batch SERVICE
 20 31a: | | {process state}
 21 32a: | | (owner : TEXT DEFAULT "INIT";
 22 33a: | | submitted_at : REAL DEFAULT time;
 23 34a: | | started_at : REAL DEFAULT -1;
 24 35a: | | terminated : BOOLEAN DEFAULT FALSE);
 25 36a: | |
 26 37a: | | USE SERVICE
 27 38a: | | | p; v;
 28 39a: | | | print (t1, t2:TEXT) RESULT TEXT;
 29 40a: | | | transmit (amount:REAL DEFAULT 2.0);
 30 41a: | | | execute;
 31 42a: | | END USE;
 32 43a: | |
 33 44a: | BEGIN
 34 45a: | | p;
 35 46a: | | started_at := time;
 36 47a: | | batch_count := batch_count + 1;
 37 48a: | |
 38 49a: | | WRITE TEXT owner,
 39 50a: | | batch_count::3, '/', owner;
 40 51a: | |
 41 52a: | | print(owner, "starting after " &
 42 53a: | | to_text(time-submitted_at) & " sec.");
 43 54a: | |
 44 55a: | | UPDATE wait_time BY time-submitted_at;
 45 56a: | | transmit;
 46 57a: | | execute;
 47 58a: | | UPDATE run_time BY time-started_at;
 48 59a: | |
 49 60a: | | print(owner, "terminated after " &
 50 61a: | | to_text(time-started_at) & " sec.");
 51 62a: | |
 52 63a: | | terminated := TRUE;
 53 64a: | | v;
 54 65a: | END TYPE batch;
 55 66a: |
 56 67a: | TYPE dialog SERVICE (terminal_number:INTEGER);
 57 68a: | | USE
 58 69a: | | | SERVICE
 59 70a: | | | transmit (amount:REAL);
 60 71a: | | | print (t1, t2:TEXT) RESULT TEXT;

I. An Example - 345 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 3 University of Dortmund

 61 72a: | | | compute;
 62 73a: | | | SERVICE ARRAY
 63 74a: | | | think (time:REAL);
 64 75a: | | END USE;
 65 76a: | |
 66 77a: | BEGIN
 67 78a: | | AVERAGE 500 TIMES
 68 79a: | | {mean: 500 iterations}
 69 80a: | | LOOP
 70 81a: | | | think [terminal_number] (negexp(1/20));
 71 82a: | | | transmit (negexp(1/2));
 72 83a: | | |
 73 84a: | | | IF draw(0.05)
 74 85a: | | | | THEN {enter batch job from dialog}
 75 86a: | | | |
 76 87a: | | | | SUBMIT batch (print("DIALOG" &
 77 88a: | | | | to_text(terminal_number),""))
 78 89a: | | | | NAME last_batch AFTER negexp(1);
 79 90a: | | | | ELSE
 80 91a: | | | | compute;
 81 92a: | | | | transmit (negexp(1/5));
 82 93a: | | | END IF;
 83 94a: | | END LOOP;
 84 95a: | END TYPE dialog;
 85 96a: |
 86 97a: |
 87 98a: | TYPE watch_batch SERVICE;
 88 99a: | | {uses process name last_batch to}
 89 100a: | | {inspect batch jobs every 300 sec.}
 90 101a: | | USE
 91 102a: | | | SERVICE
 92 103a: | | | print (t1, t2:TEXT) RESULT TEXT;
 93 104a: | | | SERVICE ARRAY
 94 105a: | | | display (time:REAL);
 95 106a: | | END USE;
 96 107a: | |
 97 108a: | BEGIN
 98 109a: | | LOOP
 99 110a: | | | display[0](300);
 100 111a: | | |
 101 112a: | | | IF last_batch.terminated
 102 113a: | | | | {no batch running}
 103 114a: | | | | THEN
 104 115a: | | | | SUBMIT batch (print("SYSTEM",""))
 105 116a: | | | | NAME last_batch;
 106 117a: | | | END IF;
 107 118a: | | |
 108 119a: | | END LOOP UNTIL time > 1*hour;
 109 120a: | | trace_off;
 110 121a: | END TYPE watch_batch;
 111 122a: |
 112 123a: %COPY "SEMAPHOR"
 132 124a: %COPY "INSTALL"
 133 1c: |
 134 2c: % component type installation included in Refman.hit
 135 3c: |
 136 4c: | TYPE installation COMPONENT; {may be aggregated}
 137 5c: | | PROVIDE
 138 6c: | | | SERVICE
 139 7c: | | | execute;

- 346 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 4 University of Dortmund

 140 8c: | | | search;
 141 9c: | | END PROVIDE;
 142 10c: | |
 143 11c: | |
 144 12c: | | TYPE dms COMPONENT; {---------------------------}
 145 13c: | | | PROVIDE
 146 14c: | | | | SERVICE
 147 15c: | | | | transfer (bytes:INTEGER);
 148 16c: | | | END PROVIDE;
 149 17c: | | |
 150 18c: | | |
 151 19c: | | | TYPE transfer SERVICE (bytes:INTEGER);
 152 20c: | | | | USE
 153 21c: | | | | | SERVICE
 154 22c: | | | | | overhead (time :REAL);
 155 23c: | | | | | drive_access (amount :REAL);
 156 24c: | | | | END USE;
 157 25c: | | | |
 158 26c: | | | BEGIN
 159 27c: | | | | overhead (negexp(1/0.02));
 160 28c: | | | | drive_access (negexp(1/(bytes/1.2E3)));
 161 29c: | | | END TYPE transfer;
 162 30c: | | |
 163 31c: | | |
 164 32c: | | | ENCLOSE cpu :server;{cpu of installation}
 165 33c: | | | COMPONENT drive :server;
 166 34c: | | |
 167 35c: | | |
 168 36c: | | | REFER transfer TO cpu, drive
 169 37c: | | | EQUATING
 170 38c: | | | | transfer.overhead WITH cpu .request;
 171 39c: | | | | transfer.drive_access WITH drive.request;
 172 40c: | | | END REFER;
 173 41c: | | |
 174 42c: | | END TYPE dms; {---------------------------------}
 175 43c: | |
 176 44c: | | TYPE execute SERVICE;
 177 45c: | | | USE
 178 46c: | | | | SERVICE
 179 47c: | | | | calculate (time :REAL);
 180 48c: | | | | print (amount:REAL);
 181 49c: | | | END USE;
 182 50c: | | |
 183 51c: | | BEGIN
 184 52c: | | | WHILE draw(0.875) {mean: 7 iterations}
 185 53c: | | | LOOP {1/(1-p)}
 186 54c: | | | |
 187 55c: | | | | calculate (LET time := negexp(1/6));
 188 56c: | | | |
 189 57c: | | | | BRANCH
 190 58c: | | | | | PROB 0.32 : print (negexp(1/0.2));
 191 59c: | | | | | PROB 0.20 : print (negexp(1/2));
 192 60c: | | | | | PROB 0.03 : print (negexp(1/20));
 193 61c: | | | | END BRANCH;
 194 62c: | | | END LOOP;
 195 63c: | | END TYPE execute;
 196 64c: | |
 197 65c: | |
 198 66c: | | TYPE search SERVICE;
 199 67c: | | | USE

I. An Example - 347 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 5 University of Dortmund

 200 68c: | | | | SERVICE
 201 69c: | | | | disk_access (much:INTEGER);
 202 70c: | | | | cpu_access (time:REAL);
 203 71c: | | | END USE;
 204 72c: | | |
 205 73c: | | BEGIN
 206 74c: | | | LOOP
 207 75c: | | | | disk_access (12); {mean: read 12 bytes}
 208 76c: | | | | cpu_access (negexp(1/0.05));
 209 77c: | | | |
 210 78c: | | | END LOOP UNTIL draw(0.2);{mean: 5 iterations}
 211 79c: | | END TYPE search;
 212 80c: | |
 213 81c: | |
 214 82c: | | COMPONENT
 215 83c: | | cpu : server (LET dispatch:=shared);
 216 84c: | | printer : server;
 217 85c: | | disk : dms;
 218 86c: | |
 219 87c: | |
 220 88c: | | REFER execute, search TO cpu, printer, disk
 221 89c: | | EQUATING
 222 90c: | | | execute.calculate WITH cpu .request;
 223 91c: | | | execute.print WITH printer .request;
 224 92c: | | |
 225 93c: | | | search .disk_access WITH disk .transfer;
 226 94c: | | | search .cpu_access WITH cpu .request;
 227 95c: | | END REFER;
 228 96c: | |
 229 97c: | BEGIN
 230 98c: | |
 231 99c: | | CREATE 1 PROCESS search EVERY negexp(1/15);
 232 100c: | | {modelling of an overhead}
 233 101c: | |
 234 102c: | END TYPE installation;
 235 125a: %COPY "OBSERVER"
 292 126a: |
 293 127a: | COMPONENT
 294 128a: | terminals : ARRAY [0..100] OF server;
 295 129a: | centre : installation (LET schedule:=fcfs);
 296 130a: | link : server (LET dispatch:= sdequal
 297 131a: | ([[1, 3, 7], [1.5, 1, 0.5]]));
 298 132a: |
 299 133a: | console : console_type;
 300 134a: | sem : semaphor (batch_parallel);
 301 135a: | obs : observer (2000, TRUE);
 302 136a: |
 303 137a: | PROCESS
 304 138a: | init_batch: ARRAY [1..6] OF batch;
 305 139a: | last_batch: NAME FOR batch;
 306 140a: |
 307 141a: |
 308 142a: | REFER dialog, batch, watch_batch TO
 309 143a: | terminals, link, centre, console, sem
 310 144a: | EQUATING
 311 145a: | | dialog .think WITH terminals .request;
 312 146a: | | dialog .transmit WITH link .request;
 313 147a: | | dialog .compute WITH centre .search;
 314 148a: | | dialog .print WITH console .print;
 315 149a: | |

- 348 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 6 University of Dortmund

 316 150a: | | batch .p WITH sem .p;
 317 151a: | | batch .v WITH sem .v;
 318 152a: | | batch .transmit WITH link .request;
 319 153a: | | batch .execute WITH centre .execute;
 320 154a: | | batch .print WITH console .print;
 321 155a: | |
 322 156a: | | watch_batch.print WITH console .print;
 323 157a: | | watch_batch.display WITH terminals .request;
 324 158a: | END REFER;
 325 159a: |
 326 160a: BEGIN {load of the model}
 327 161a: |
 328 162a: | WRITELN FILE tracefile, "initial batch load:",
 329 163a: | init_batch.upper_bounds[1] ;
 330 164a: |
 331 165a: | CREATE 1 PROCESS watch_batch;
 332 166a: |
 333 167a: | {one dialog for every terminal}
 334 168a: | BLOCK
 335 169a: | | VARIABLE run : INTEGER;
 336 170a: | BEGIN
 337 171a: | | FOR run:=1 STEP 1 UNTIL number_of_terminals
 338 172a: | | LOOP
 339 173a: | | | CREATE 1 PROCESS dialog(run)
 340 174a: | | | AT normal(15*run, 5);
 341 175a: | | END LOOP;
 342 176a: | END BLOCK;
 343 177a: |
 344 178a: | SUBMIT batch("LOAD") NAME last_batch;
 345 179a: |
 346 180a: END TYPE system;
 347 181a:
 348 182a:
 349 183a: TYPE console_type COMPONENT;
 350 184a: | PROVIDE
 351 185a: | | SERVICE
 352 186a: | | print (t1, t2:TEXT) RESULT TEXT;
 353 187a: | END PROVIDE;
 354 188a: |
 355 189a: |
 356 190a: | TYPE print SERVICE (t1, t2:TEXT) RESULT TEXT;
 357 191a: | |
 358 192a: | | PROCEDURE hms RESULT INTEGER,INTEGER,INTEGER;
 359 193a: | | BEGIN
 360 194a: | | | RESULT time // hour MOD 24, {hours}
 361 195a: | | | time MOD hour // 60, {min. }
 362 196a: | | | time MOD 60; {sec. }
 363 197a: | | END PROCEDURE hms;
 364 198a: | |
 365 199a: | | VARIABLE h, m, s : INTEGER;
 366 200a: | BEGIN
 367 201a: | |
 368 202a: | | (h, m, s) := hms;
 369 203a: | | RESULT t1;
 370 204a: | |
 371 205a: | | IF t2="" THEN t2 := "submitted"; END IF;
 372 206a: | |
 373 207a: | | WRITELN h::2, ':', m//10::1, m MOD 10::1,
 374 208a: | | ':', s//10::1, s MOD 10::1,
 375 209a: | | " |", t1::12, "| ", t2;

I. An Example - 349 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 7 University of Dortmund

 376 210a: | END TYPE;
 377 211a: |
 378 212a: |
 379 213a: BEGIN
 380 214a: |
 381 215a: | WRITELN " TIME NO / OWNER STATE OF BATCH";
 382 216a: | WRITELN "---------+------------+-----------------------";
 383 217a: END TYPE console_type;
 384 218a:
 385 219a:
 386 220a:
 387 221a: PROCEDURE to_text (i:INTEGER) RESULT TEXT;
 388 222a: |
 389 223a: | VARIABLE t:TEXT;
 390 224a: BEGIN
 391 225a: | IF i<>0
 392 226a: | | THEN
 393 227a: | | WRITE TEXT t, i:: entier(log(abs(i)))+1;
 394 228a: | | ELSE
 395 229a: | | WRITE TEXT t, 'O';
 396 230a: | END IF;
 397 231a: |
 398 232a: | RESULT t;
 399 233a: END PROCEDURE to_text;
 400 234a:
 401 235a:
 402 236a: EXPERIMENT analysis METHOD SIMULATIVE;
 403 237a: |
 404 238a: | VARIABLE
 405 239a: | cpu_time : REAL;
 406 240a: | num_term : INTEGER DEFAULT 1;
 407 241a: | more : CHARACTER;
 408 242a: |
 409 243a: BEGIN
 410 244a: | LOOP
 411 245a: | | WRITELN;
 412 246a: | | WRITELN "Please enter cpu time and #terminals";
 413 247a: | | READLN cpu_time, num_term;
 414 248a: | | WRITELN cpu_time::3::21, num_term;
 415 249a: | | WRITELN;
 416 250a: | |
 417 251a: | | EVALUATE
 418 252a: | | | MODEL edv : system (num_term, 3);
 419 253a: | | |
 420 254a: | | | EVALUATIONOBJECT
 421 255a: | | | syst VIA edv,
 422 256a: | | | cent VIA edv.centre,
 423 257a: | | | link VIA edv.link,
 424 258a: | | | sem VIA edv.sem
 425 259a: | | | DEFAULT
 426 260a: | | | ESTIMATOR MEAN, STANDARDDEVIATION
 427 261a: | | | OUTPUT TABLE "TABLE",
 428 262a: | | | DUMPFILE "DUMP";
 429 263a: | | |
 430 264a: | | | EVALUATIONOBJECT
 431 265a: | | | cpu VIA edv.centre.cpu
 432 266a: | | | DEFAULT
 433 267a: | | | ESTIMATOR CONFIDENCE LEVEL 90
 434 268a: | | | START MODELTIME 300;
 435 269a: | | |

- 350 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 8 University of Dortmund

 436 270a: | | |
 437 271a: | | | HIERARCHY
 438 272a: | | | bat DEFAULT (edv, batch);
 439 273a: | | | dia DEFAULT (edv, dialog);
 440 274a: | | |
 441 275a: | | | cent_bat DEFAULT bat.(centre);
 442 276a: | | | link_bat DEFAULT bat.(link);
 443 277a: | | |
 444 278a: | | | sema_bat DEFAULT bat.(sem);
 445 279a: | | | sema_bat_p DEFAULT (edv,batch,p).(sem);
 446 280a: | | |
 447 281a: | | | cent_dia DEFAULT dia.(centre);
 448 282a: | | | link_dia DEFAULT dia.(link);
 449 283a: | | |
 450 284a: | | | link_merge MERGE link_dia, link_bat;
 451 285a: | | |
 452 286a: | | | cpu1_own DEFAULT (edv.centre,search).(cpu);
 453 287a: | | | cpu2_own DEFAULT (edv.centre).(disk).(cpu);
 454 288a: | | |
 455 289a: | | BEGIN
 456 290a: | | |
 457 291a: | | | MEASURE wait_time, run_time
 458 292a: | | | AT syst
 459 293a: | | | ESTIMATOR MEAN, STANDARDDEVIATION,
 460 294a: | | | FREQUENCY INTERVAL
 461 295a: | | | [0..1,1..2,2..5,5..10,
 462 296a: | | | 10..50,50..1000];
 463 297a: | | |
 464 298a: | | | MEASURE POPULATION, TURNAROUNDTIME
 465 299a: | | | AT cent
 466 300a: | | | DUE TO cent_bat, cent_dia, all
 467 301a: | | | OUTPUT TABLE "SYSOUT", TABLE "TABLE"
 468 302a: | | | START EVENTS 2 DUE TO cent_bat;
 469 303a: | | |
 470 304a: | | | MEASURE OCCUPATION, UTILIZATION
 471 305a: | | | AT link
 472 306a: | | | DUE TO link_dia, link_bat, link_merge;
 473 307a: | | |
 474 308a: | | | MEASURE THROUGHPUT
 475 309a: | | | AT sem
 476 310a: | | | DUE TO sema_bat, sema_bat_p
 477 311a: | | | OUTPUT TABLE "TABLE";
 478 312a: | | |
 479 313a: | | | MEASURE OCCUPATION, POPULATION
 480 314a: | | | AT cpu
 481 315a: | | | DUE TO cpu1_own, cpu2_own, all;
 482 316a: | | |
 483 317a: | | |
 484 318a: | | | CONTROL
 485 319a: | | | AT cent
 486 320a: | | | STOP CPUTIME cpu_time
 487 321a: | | | OR MODELTIME 6*hour
 488 322a: | | | OR CONFIDENCE LEVEL 91 WIDTH 20
 489 323a: | | | MEASURE POPULATION
 490 324a: | | | AT sem TRACE;
 491 325a: | | |
 492 326a: | | END EVALUATE;
 493 327a: | |
 494 328a: | | WRITELN;
 495 329a: | | WRITELN "Another experiment ? (y,n)";

I. An Example - 351 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:18 PAGE 9 University of Dortmund

 496 330a: | | READLN more;
 497 331a: | |
 498 332a: | END LOOP UNTIL more # 'y';
 499 333a: |
 500 334a: | HISTOGRAM
 501 335a: | PLOT MEASURE "wait_time"
 502 336a: | EVALUATIONOBJECT "syst"
 503 337a: | HIERARCHY "all"
 504 338a: | INPUT "DUMP";
 505 339a: |
 506 340a: END EXPERIMENT analysis;

> PASS 1 : Okay. Cpu Time used : 1.060 Seconds.

- 352 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Identifier S/: Type or Constant Line Access Pairs * XREF * 1996-03-25
13:18 PAGE 10 University of Dortmund

 : COLLECT 13 d
 : COLLECT 14 d

abs S REAL PROCEDURE 393 p
amount : REAL VARIABLE 29 d
amount : REAL VARIABLE 59 d
amount : REAL VARIABLE 155 d
amount : REAL VARIABLE 180 d
analysis : EXPERIMENT 402 d
answer : TEXT VARIABLE 241 d 265 w 266 r 276 r

bat : HIERARCHY 438 d 441 r 442 r 444 r
batch : TYPE SERVICE 19 d 76 r 104 r 304 r 305 r
 308 r 316 r 317 r 318 r 319 r
 320 r 344 r 438 r 445 r
batch_count : INTEGER VARIABLE 16 d 36 rw* 39 r
batch_parall : INTEGER VARIABLE 11 d 300 p
bytes : INTEGER VARIABLE 147 d 151 d 160 r

calculate : TYPE SERVICE 179 d 187 r 222 r
cent : EVAOBJECT 422 d 464 r 484 r
cent_bat : HIERARCHY 441 d 464 r 468 r
cent_dia : HIERARCHY 447 d 464 r
centre : COMPONENT 295 d 309 r 313 r 319 r 422 r
 431 r 441 r 447 r 452 r 453 r
compute : TYPE SERVICE 61 d 80 r 313 r
console : COMPONENT 299 d 309 r 314 r 320 r 322 r
console_type : TYPE COMPONENT 299 r 349 d
cpu : ENCLOSE 164 d 168 r 170 r 453 r
cpu : COMPONENT 215 d 220 r 222 r 226 r 431 r
 452 r
cpu : EVAOBJECT 431 d 479 r
cpu1_own : HIERARCHY 452 d 479 r
cpu2_own : HIERARCHY 453 d 479 r
cpu_access : TYPE SERVICE 202 d 208 r 226 r
cpu_time : REAL VARIABLE 405 d 413 w 414 r 486 r
cpu_time S REAL PROCEDURE 251 r

dia : HIERARCHY 439 d 447 r 448 r
dialog : TYPE SERVICE 56 d 308 r 311 r 312 r 313 r
 314 r 339 r 439 r
digit S BOOLEAN PROCEDURE 275 r
disk : COMPONENT 217 d 220 r 225 r 453 r
disk_access : TYPE SERVICE 201 d 207 r 225 r
dispatch : SIMULA SIMULA 215 r 296 r
display : TYPE SERVICE 94 d 99 r 323 r
dms : TYPE COMPONENT 144 d 217 r
draw S BOOLEAN PROCEDURE 73 r 184 r 210 r
drive : COMPONENT 165 d 168 r 171 r
drive_access : TYPE SERVICE 155 d 160 r 171 r

edv : MODEL 418 d 421 r 422 r 423 r 424 r
 431 r 438 r 439 r 445 r 452 r
 453 r
entier S INTEGER PROCEDURE 393 r
execute : TYPE SERVICE 30 d 46 r 319 r
execute : TYPE SERVICE 139 d 176 d 220 r 222 r 223 r
 319 r

fcfs S PROCEDURE 295 p
first : CHARACTER VARIABLE 242 d 266 w 269 r 275 p 278 r

h : INTEGER VARIABLE 365 d 368 w 373 r
hms : PROCEDURE 358 d 368 r
hold S PROCEDURE 247 r

I. An Example - 353 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Identifier S/: Type or Constant Line Access Pairs * XREF * 1996-03-25
13:18 PAGE 11 University of Dortmund

hour : 3600 5 d 108 r 360 r 361 r 487 r

i : INTEGER VARIABLE 387 d 391 r 393 rp*
init_batch : PROCESS ARRAY(1) 304 d 329 r
installation : TYPE COMPONENT 136 d 295 r
interactive : BOOLEAN VARIABLE 238 d 254 r 272 w

last_batch : PROCESS 78 w 101 r 105 w 305 d 344 w
lastitem S BOOLEAN PROCEDURE 264 r
link : COMPONENT 296 d 309 r 312 r 318 r 423 r
 442 r 448 r
link : EVAOBJECT 423 d 470 r
link_bat : HIERARCHY 442 d 450 r 470 r
link_dia : HIERARCHY 448 d 450 r 470 r
link_merge : HIERARCHY 450 d 470 r
log S REAL PROCEDURE 393 p

m : INTEGER VARIABLE 365 d 368 w 373 r*
maxreal S 1.6342665E+308 271 r
more : CHARACTER VARIABLE 407 d 496 w 498 r
much : INTEGER VARIABLE 201 d

negexp S REAL PROCEDURE 70 p 71 p 78 r 81 p 159 p
 160 p 187 p 190 p 191 p 192 p
 208 p 231 r
normal S REAL PROCEDURE 340 r
num_term : INTEGER VARIABLE 406 d 413 w 414 r 418 p
number_of_te : INTEGER VARIABLE 10 d 337 r

obs : COMPONENT 301 d
obs_interval : REAL VARIABLE 237 d 289 p
observer : TYPE COMPONENT 237 d 301 r
ok : BOOLEAN VARIABLE 243 d 267 w 279 w 282 r
overhead : TYPE SERVICE 154 d 159 r 170 r
owner : TEXT VARIABLE 21 d 38 r 39 r 41 p 49 p

p : TYPE SERVICE 27 d 34 r 316 r 445 r
p : TYPE SERVICE 116 d 121 d 316 r
print : TEXT SERVICE 28 d 41 r 49 r 320 r
print : TEXT SERVICE 60 d 76 p 314 r
print : TEXT SERVICE 92 d 104 p 322 r
print : TYPE SERVICE 180 d 190 r 191 r 192 r 223 r
print : TEXT SERVICE 314 r 320 r 322 r 352 d 356 d
printer : COMPONENT 216 d 220 r 223 r

request S TYPE SERVICE 170 r 171 r 222 r 223 r 226 r
 311 r 312 r 318 r 323 r
run : INTEGER VARIABLE 335 d 337 w 339 p 340 r
run_time : STREAM EVENT 14 dr 47 w 457 r

s : INTEGER VARIABLE 365 d 368 w 374 r*
schedule : SIMULA SIMULA 295 r
sdequal S PROCEDURE 296 p
search : TYPE SERVICE 140 d 198 d 220 r 225 r 226 r
 231 r 313 r 452 r
sem : INTEGER VARIABLE 119 d 123 rw* 128 rw*
sem : COMPONENT 300 d 309 r 316 r 317 r 424 r
 444 r 445 r
sem : EVAOBJECT 424 d 474 r 484 r
sem_init : INTEGER VARIABLE 114 d 119 r
sema_bat : HIERARCHY 444 d 474 r
sema_bat_p : HIERARCHY 445 d 474 r
semaphor : TYPE COMPONENT 114 d 300 r
server S TYPE COMPONENT 164 r 165 r 215 r 216 r 294 r
 296 r
shared S PROCEDURE 215 p

- 354 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

Identifier S/: Type or Constant Line Access Pairs * XREF * 1996-03-25
13:18 PAGE 12 University of Dortmund

started_at : REAL VARIABLE 23 d 35 w 47 r 50 r
stop_evaluat S PROCEDURE 270 r
submitted_at : REAL VARIABLE 22 d 42 r 44 r
syst : EVAOBJECT 421 d 457 r
system : TYPE MODEL 9 d 418 r

t : TEXT VARIABLE 389 d 393 r 395 r 398 r
t1 : TEXT VARIABLE 28 d
t1 : TEXT VARIABLE 60 d
t1 : TEXT VARIABLE 92 d
t1 : TEXT VARIABLE 352 d 356 d 369 r 375 r
t2 : TEXT VARIABLE 28 d
t2 : TEXT VARIABLE 60 d
t2 : TEXT VARIABLE 92 d
t2 : TEXT VARIABLE 352 d 356 d 371 rw* 375 r
terminal_num : INTEGER VARIABLE 56 d 70 r 77 p
terminals : COMPONENT ARRAY(1) 294 d 309 r 311 r 323 r
terminated : BOOLEAN VARIABLE 24 d 52 w 101 r
think : TYPE SERVICE 63 d 70 r 311 r
time : REAL VARIABLE 63 d
time : REAL VARIABLE 94 d
time : REAL VARIABLE 154 d
time : REAL VARIABLE 179 d 187 r
time : REAL VARIABLE 202 d
time S REAL PROCEDURE 22 r 35 r 42 r 44 r 47 r
 50 r 108 r 250 r 360 r 361 r
 362 r
to_text : TEXT PROCEDURE 42 r 50 r 77 r 387 d
trace_off S PROCEDURE 109 r
tracefile S OUTFILE CONSTANT 328 r
transfer : TYPE SERVICE 147 d 151 d 168 r 170 r 171 r
 225 r
transfer_res S PROCEDURE 248 r
transmit : TYPE SERVICE 29 d 45 r 318 r
transmit : TYPE SERVICE 59 d 71 r 81 r 312 r

upper_bounds S INTEGER ARRAY(1) 329 r

v : TYPE SERVICE 27 d 53 r 317 r
v : TYPE SERVICE 116 d 126 d 317 r

wait_time : STREAM EVENT 13 dr 44 w 457 r
watch_batch : TYPE SERVICE 87 d 308 r 322 r 323 r 331 r
watch_interv : REAL VARIABLE 240 d 247 p 271 w 276 w 277 r
watcher : TYPE SERVICE 240 d 289 r

> 139 different Objects, 110 different Identifiers.

Number Line : Description of Errors or Warnings detected by PASS 2
-------------+---
W.0526 42 : 'to_text' is a non-local access in 'system'.
 53a in LINK=CONTROL
W.0526 50 : 'to_text' is a non-local access in 'system'.
 61a in LINK=CONTROL
W.0526 77 : 'to_text' is a non-local access in 'system'.
 88a in LINK=CONTROL
W.0526 108 : 'hour' is a non-local access in 'system'.
 119a in LINK=CONTROL
W.0526 360 : 'hour' is a non-local access in 'hms'.
 194a in LINK=CONTROL
W.0526 361 : 'hour' is a non-local access in 'hms'.

I. An Example - 355 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 COMPILER MESSAGES 1996-03-25
13:18 PAGE 13 University of Dortmund

 195a in LINK=CONTROL

> PASS 2 : Only 6 Warnings. Cpu Time used : 0.470 Seconds.

> PASS 3 : Okay. Cpu Time used : 0.100 Seconds.

> SCG : Okay. Cpu Time used : 0.910 Seconds.

> T O T A L : Only 6 Warnings. Cpu Time used : 2.770 Seconds.

 Compile Rate : 203.968 Lines/Sec.

The warnings are caused by non-local access of the prodedure ´to_text´ and the constant
´hour´.

- 356 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.3.2. Analyzer Listing

The analyzer listing starts with a control file listing. Then for every evaluation per-
formed some identifying data, called header information is given, followed by the sol-
ver information generated. When the evaluation is finished, a completion message and a
footer is generated.

HIT Version 3.6.000 File RefMan.hit 1996-03-25
13:19 PAGE 1 University of Dortmund

 1 1a: %COMMON
 2 2a: %PARM=LINES=60
 3 7a:
 4 8a: %ANALYZER
 5 9a: %PARM=UPDATES,MINMAX
 6 10a: %END

> FAN : Okay. Cpu Time used : 0.010 Seconds.

Control File RefMan.hit

Experiment Name analysis

Model Type system
Model Name edv

Model Parameters Name Type Actual Value
 ==
 number_of_te INTEGER 5
 batch_parall INTEGER 3
 seed INTEGER 13

Used Method SIMULATIVE

Date of Compile 1996-03-25 Time of Compile 13:18
Start Date of Run 1996-03-25 Start Time of Run 13:20

REASONS FOR SELECTION:

SIMUL requested.

EVALUATION TRACE:

EVENTS 2 DUE TO HIERARCHY cent_bat: Start condition reached in MEASURE statement:
EVALUATIONOBJECT cent, STREAM POPULATION, DUE TO HIERARCHY cent_bat, MODELTIME
98.884071

...

Start condition reached in MEASURE statement:
EVALUATIONOBJECT cpu, STREAM POPULATION, DUE TO HIERARCHY ALL, MODELTIME 300.000000

I. An Example - 357 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

INFORMATION ABOUT ESTIMATORS:

Autocorrelation values for STATE stream OCCUPATION at cpu due to ALL :

 1: 8.959583E-001 2: 8.231860E-001 3: 7.919517E-001
 4: 7.694346E-001 5: 7.483061E-001
 6: 7.307758E-001 7: 7.149036E-001 8: 6.990188E-001
 9: 6.897857E-001 10: 6.849659E-001

Autocorrelation values for STATE stream POPULATION at cpu due to ALL :

 1: 8.959583E-001 2: 8.231860E-001 3: 7.919517E-001
 4: 7.694346E-001 5: 7.483061E-001
 6: 7.307758E-001 7: 7.149036E-001 8: 6.990188E-001
 9: 6.897857E-001 10: 6.849659E-001

...

Autocorrelation values for STATE stream POPULATION at cpu due to cpu2_own :

 1: 2.409507E-001 2: -1.889751E-002 3: -1.415398E-002
 4: -1.953010E-002 5: 2.375447E-002
 6: 1.035470E-001 7: -1.226179E-002 8: -7.633794E-003
 9: -9.042022E-003 10: 3.196087E-002

Number Line : Description of Errors or Warnings detected by SIMULATIVE
-------------+--
W.0485 : Names have been truncated in the trace file.

> SIMULATIVE : Only 1 Warning . Cpu Time used : 7.070 Seconds.

Stop Date of Run 1996-03-25 Stop Time of Run 13:21

Reached Model Time 2000.00000

> T O T A L : Only 1 Warning . Cpu Time used : 7.230 Seconds.

- 358 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.4. Terminal Output
On the terminal the HI-SLANG compiler start messages for each pass are given.
Outputs of the Simula compiler and linker follow (not listed here). When the analyzer
starts, additional all WRITE statement outputs occur on the terminal, and if OUTPUT
TABLE "SYSOUT" was used, intermediate results may occur here as well.

HIT Our Own Licence Uni Dortmund, Inf.IV ends 96-11-30
HIT Version 3.6.000 HI-SLANG Compiler of 96-03-18 14:58

Please enter name of Compiler SOURCE or CONTROL file:
RefMan.hit

> FAN : Okay. Cpu Time used : 0.010 Seconds.

> PASS 1 : Okay. Cpu Time used : 1.060 Seconds.

Number Line : Description of Errors or Warnings
-------------+---
W.0526 42 : 'to_text' is a non-local access in 'system'.
 53a in LINK=CONTROL
W.0526 50 : 'to_text' is a non-local access in 'system'.
 61a in LINK=CONTROL
W.0526 77 : 'to_text' is a non-local access in 'system'.
 88a in LINK=CONTROL
W.0526 108 : 'hour' is a non-local access in 'system'.
 119a in LINK=CONTROL
W.0526 360 : 'hour' is a non-local access in 'hms'.
 194a in LINK=CONTROL
W.0526 361 : 'hour' is a non-local access in 'hms'.
 195a in LINK=CONTROL

> PASS 2 : Only 6 Warnings. Cpu Time used : 0.470 Seconds.

> PASS 3 : Okay. Cpu Time used : 0.100 Seconds.

> SCG : Okay. Cpu Time used : 0.910 Seconds.

> T O T A L : Only 6 Warnings. Cpu Time used : 2.770 Seconds.

 Compile Rate : 203.968 Lines/Sec.

I. An Example - 359 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Our Own Licence Uni Dortmund, Inf.IV ends 96-11-30
HIT Version 3.6.000 HIT-Analyzer of 96-03-18 14:58

Please enter name of Analyzer CONTROL file:
RefMan.hit

> FAN : Okay. Cpu Time used : 0.010 Seconds.

Please enter cpu time and #terminals
>> 100.000 5

Number Line : Description of Errors or Warnings
-------------+---
W.0485 : Names have been truncated in the trace file.
 TIME NO / OWNER STATE OF BATCH
---------+------------+-----------------------
 0:00:00 | 1/INIT | starting after O sec.
 0:00:00 | 2/INIT | starting after O sec.
 0:00:00 | 3/INIT | starting after O sec.
 0:00:18 | 1/INIT | terminated after 18 sec.
 0:00:18 | 4/INIT | starting after 18 sec.
 0:01:39 | 2/INIT | terminated after 99 sec.
 0:01:39 | 5/INIT | starting after 99 sec.
 0:03:27 | 3/INIT | terminated after 207 sec.
 0:03:27 | 6/INIT | starting after 207 sec.
 0:04:25 | 4/INIT | terminated after 248 sec.
 0:04:25 | 7/LOAD | starting after 265 sec.
 0:04:44 | 5/INIT | terminated after 185 sec.
 0:05:11 | 6/INIT | terminated after 104 sec.
 0:06:06 | 7/LOAD | terminated after 101 sec.
 0:06:41 |DIALOG2 | submitted
 0:06:44 | 8/DIALOG2 | starting after 3 sec.
 0:06:48 |DIALOG4 | submitted
 0:06:48 | 9/DIALOG4 | starting after O sec.
 0:06:52 | 8/DIALOG2 | terminated after 8 sec.
 0:08:03 | 9/DIALOG4 | terminated after 75 sec.
 0:10:00 |SYSTEM | submitted
 0:10:00 | 10/SYSTEM | starting after O sec.
 0:10:20 | 10/SYSTEM | terminated after 20 sec.
 0:12:24 |DIALOG2 | submitted
 0:12:25 | 11/DIALOG2 | starting after 1 sec.
 0:12:42 | 11/DIALOG2 | terminated after 17 sec.
 0:15:00 |SYSTEM | submitted
 0:15:00 | 12/SYSTEM | starting after O sec.
 0:16:32 | 12/SYSTEM | terminated after 92 sec.
 0:18:58 |DIALOG1 | submitted
 0:18:59 | 13/DIALOG1 | starting after 1 sec.
 0:19:25 | 13/DIALOG1 | terminated after 26 sec.
 0:20:00 |SYSTEM | submitted
 0:20:00 | 14/SYSTEM | starting after O sec.
 0:20:40 | 14/SYSTEM | terminated after 40 sec.
 0:24:00 |DIALOG2 | submitted
 0:24:01 | 15/DIALOG2 | starting after 1 sec.
 0:27:48 | 15/DIALOG2 | terminated after 228 sec.
 0:30:00 |SYSTEM | submitted
 0:30:00 | 16/SYSTEM | starting after O sec.
 0:31:30 | 16/SYSTEM | terminated after 90 sec.

{now the observer becomes active, and writes those tables which were
bound to SYSOUT}

- 360 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 1 University of Dortmund

Control File RefMan.hit

Experiment Name analysis

Model Type system
Model Name edv

Model Parameters Name Type Actual Value
 ==
 number_of_te INTEGER 5
 batch_parall INTEGER 3
 seed INTEGER 13

Used Method SIMULATIVE

Date of Compile 1996-03-25 Time of Compile 13:18
Start Date of Run 1996-03-25 Start Time of Run 13:20

Stop Date of Run Stop Time of Run
Used CPU Time 6.78000

Reached Model Time 2000.00000

I. An Example - 361 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 2 University of Dortmund

Evaluationobjectname : cent

Hierarchy |Esti | POPULATION | TURNAROUNDTIME |
============+=====+===========================+===========================+
ALL |Mean | 4.740834 680| 28.351454 346|
 | | 0.000000 22.000000| 0.020875 246.215286|
 +-----+---------------------------+---------------------------+
 |Stdev| 6.347350 | 56.485613 |
 +-----+---------------------------+---------------------------+
cent_bat |Mean | 0.654784 28| 101.523782 14|
 | | 0.000000 3.000000| 6.992692 246.215286|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.912515 | 79.348869 |
 +-----+---------------------------+---------------------------+
cent_dia |Mean | 1.582061 395| 15.973440 199|
 | | 0.000000 5.000000| 0.023110 232.187229|
 +-----+---------------------------+---------------------------+
 |Stdev| 1.920860 | 45.714139 |
 +-----+---------------------------+---------------------------+

Current model time : 2.000000E+003
Cpu time used [sec.] : 6.970000E+000

Please enter one of:
q : quit simulation
s : stop observing, continue simulation
c : keep current model time interval and continue observing
n : as c, but switch to non-interactive mode
<real value n.nnEnn> : set new interval, continue observing
>>
YOU didn't want to continue!

...

> SIMULATIVE : Only 1 Warning . Cpu Time used : 7.070 Seconds.

Another experiment ? (y,n)
>>
> T O T A L : Only 1 Warning . Cpu Time used : 7.230 Seconds.

- 362 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.5. Table Output
For every evaluation performed header information of about a half page size and the
corresponding tables are given.

In contrast to the format presented here the tables generated use '=', '-', '+' and '|'-
characters to draw the table borders. For the example the following tables are generated:

Note that the results may differ on your installation even vastly, since the model does
not reach a steady state.

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 1 University of Dortmund

Control File RefMan.hit

Experiment Name analysis

Model Type system
Model Name edv

Model Parameters Name Type Actual Value
 ==
 number_of_te INTEGER 5
 batch_parall INTEGER 3
 seed INTEGER 13

Used Method SIMULATIVE

Date of Compile 1996-03-25 Time of Compile 13:18
Start Date of Run 1996-03-25 Start Time of Run 13:20

Stop Date of Run Stop Time of Run
Used CPU Time 6.79000

Reached Model Time 2000.00000

I. An Example - 363 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 2 University of Dortmund

Evaluationobjectname : cent

Hierarchy |Esti | POPULATION | TURNAROUNDTIME |
============+=====+===========================+===========================+
ALL |Mean | 4.740834 680| 28.351454 346|
 | | 0.000000 22.000000| 0.020875 246.215286|
 +-----+---------------------------+---------------------------+
 |Stdev| 6.347350 | 56.485613 |
 +-----+---------------------------+---------------------------+
cent_bat |Mean | 0.654784 28| 101.523782 14|
 | | 0.000000 3.000000| 6.992692 246.215286|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.912515 | 79.348869 |
 +-----+---------------------------+---------------------------+
cent_dia |Mean | 1.582061 395| 15.973440 199|
 | | 0.000000 5.000000| 0.023110 232.187229|
 +-----+---------------------------+---------------------------+
 |Stdev| 1.920860 | 45.714139 |
 +-----+---------------------------+---------------------------+

Evaluationobjectname : cpu

Hierarchy |Esti | OCCUPATION | POPULATION |
============+=====+===========================+===========================+
ALL |Mean | 0.417139 6948| 0.417139 6948|
 | | 0.000000 1.000000| 0.000000 1.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.493086 | 0.493086 |
 +-----+---------------------------+---------------------------+
 |Con | 0.417139 +- 29.74%| 0.417139 +- 29.74%|
 | 90% | 10 10| 10 10|
 +-----+---------------------------+---------------------------+
cpu1_own |Mean | 0.017912 1223| 0.017912 1223|
 | | 0.000000 1.000000| 0.000000 1.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.132633 | 0.132633 |
 +-----+---------------------------+---------------------------+
 |Con | 0.017912 +- 35.89%| 0.017912 +- 35.89%|
 | 90% | 10 6| 10 6|
 +-----+---------------------------+---------------------------+
cpu2_own |Mean | 0.007283 1223| 0.007283 1223|
 | | 0.000000 1.000000| 0.000000 1.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.085028 | 0.085028 |
 +-----+---------------------------+---------------------------+
 |Con | 0.007283 +- 33.36%| 0.007283 +- 33.36%|
 | 90% | 10 6| 10 6|
 +-----+---------------------------+---------------------------+

- 364 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 3 University of Dortmund

Evaluationobjectname : link

Hierarchy |Esti | OCCUPATION | UTILIZATION |
============+=====+===========================+===========================+
link_bat |Mean | 0.010128 29| 0.016000 50|
 | | 0.000000 1.000000| 0.000000 3.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.100128 | 0.165987 |
 +-----+---------------------------+---------------------------+
link_dia |Mean | 0.351626 448| 0.700764 1393|
 | | 0.000000 1.000000| 0.000000 4.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.477478 | 1.044163 |
 +-----+---------------------------+---------------------------+
link_merge |Mean | 0.357259 460| 0.716764 1442|
 | | 0.000000 1.000000| 0.000000 4.000000|
 +-----+---------------------------+---------------------------+
 |Stdev| 0.479192 | 1.056000 |
 +-----+---------------------------+---------------------------+

Evaluationobjectname : sem

Hierarchy |Esti | THROUGHPUT |
============+=====+===========================+
sema_bat |Mean | 0.016500 32|
 | | 0.000000 227.737979|
 +-----+---------------------------+
 |Stdev| 61.185248 |
 +-----+---------------------------+
sema_bat_p |Mean | 0.008500 16|
 | | 0.000000 359.460463|
 +-----+---------------------------+
 |Stdev| 101.680547 |
 +-----+---------------------------+

I. An Example - 365 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

HIT Version 3.6.000 TABLE 1996-03-25
13:20 PAGE 4 University of Dortmund

Evaluationobjectname : syst

Hierarchy |Esti | run_time | wait_time |
============+=====+===========================+===========================+
ALL |Mean | 97.399720 16| 37.207069 16|
 | | 8.326025 247.548619| 0.000000 265.470695|
 +-----+---------------------------+---------------------------+
 |Stdev| 77.045182 | 79.606540 |
 +-----+---------------------------+---------------------------+
 |Freq | 0 | 11 |
 | | 0.000000 1.000000| 0.000000 1.000000|
 +-----+---------------------------+---------------------------+
 |Freq | 0 | 0 |
 | | 1.000000 2.000000| 1.000000 2.000000|
 +-----+---------------------------+---------------------------+
 |Freq | 0 | 1 |
 | | 2.000000 5.000000| 2.000000 5.000000|
 +-----+---------------------------+---------------------------+
 |Freq | 1 | 0 |
 | | 5.000000 10.000000| 5.000000 10.000000|
 +-----+---------------------------+---------------------------+
 |Freq | 5 | 1 |
 | | 10.000000 50.000000| 10.000000 50.000000|
 +-----+---------------------------+---------------------------+
 |Freq | 10 | 3 |
 | | 50.000000 1000.000000| 50.000000 1000.000000|
 +-----+---------------------------+---------------------------+

...

- 366 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.6. Dump File Output
The header information of a dumpfile is similar to that of a table, but commented out
and split into header and footer by the dump file records for each evaluation performed.
Since the dump output has a record length of 132 it is displayed in a compressed format
here.

% Control File RefMan.hit
%
% Experiment Name analysis
%
% Model Type system
% Model Name edv
% Model Parameters Name Type Actual Value
% number_of_te INTEGER 5
% batch_parall INTEGER 3
% seed INTEGER 13
%
% Used Method SIMULATIVE
%
% Date of Compile 1996-03-25 Time of Compile 13:18
% Start Date of Run 1996-03-25 Start Time of Run 13:20
% Header is DUMP
%
%
% Ev. Object Measure Hierarchy Estimator Result #/Degree
%
syst wait_time ALL FREQUENCY 6
 0.000000E+000 1.000000E+000 11
 1.000000E+000 2.000000E+000 0
 2.000000E+000 5.000000E+000 1
 5.000000E+000 1.000000E+001 0
 1.000000E+001 5.000000E+001 1
 5.000000E+001 1.000000E+003 3
syst wait_time ALL MEAN 3.720707E+001
syst wait_time STANDARDDEVIATION 7.960654E+001
syst run_time ALL FREQUENCY 6
 0.000000E+000 1.000000E+000 0
 1.000000E+000 2.000000E+000 0
 2.000000E+000 5.000000E+000 0
 5.000000E+000 1.000000E+001 1
 1.000000E+001 5.000000E+001 5
 5.000000E+001 1.000000E+003 10
syst run_time ALL MEAN 9.739972E+001
syst run_time ALL STANDARDDEVIATION 7.704518E+001
link OCCUPATION link_bat MEAN 1.012821E-002
link OCCUPATION link_bat STANDARDDEVIATION 1.001280E-001
link UTILIZATION link_bat MEAN 1.600000E-002
link UTILIZATION link_bat STANDARDDEVIATION 1.659870E-001
link OCCUPATION link_merge MEAN 3.572588E-001
link OCCUPATION link_merge STANDARDDEVIATION 4.791920E-001
link UTILIZATION link_merge MEAN 7.167639E-001
link UTILIZATION link_merge STANDARDDEVIATION 1.056000E+000
link OCCUPATION link_dia MEAN 3.516258E-001
link OCCUPATION link_dia STANDARDDEVIATION 4.774778E-001
link UTILIZATION link_dia MEAN 7.007639E-001
link UTILIZATION link_dia STANDARDDEVIATION 1.044163E+000
%
%
% Stop Date of Run Stop Time of Run
%
% Used CPU Time 6.86000
% Reached Model Time 2000.00000

...

I. An Example - 367 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.7. Trace Output
The simulative trace normally becomes very long and therefore it is shortened here,
indicated by "...".

% analysis / system / edv / 1996-03-25 / 13:18 / 1996-03-25 / 13:20
% number_of_te INTEGER 5
% batch_parall INTEGER 3
% seed INTEGER 13
initial batch load: 6
0.000000E+000 ASK batch p 3 system sem
0.000000E+000 >ENTRY batch p 3 system sem
0.000000E+000 ENTRY>SERVICE batch p 3 sem
0.000000E+000 SERVICE>EXIT batch p 3 sem
0.000000E+000 ASK batch print 3 sem console
0.000000E+000 >ENTRY batch print 3 sem console
0.000000E+000 ASK batch p 4 system sem
0.000000E+000 >ENTRY batch p 4 system sem
0.000000E+000 ENTRY>SERVICE batch p 4 sem
0.000000E+000 SERVICE>EXIT batch p 4 sem
0.000000E+000 ASK batch print 4 sem console
0.000000E+000 >ENTRY batch print 4 sem console
0.000000E+000 ASK batch p 5 system sem
0.000000E+000 >ENTRY batch p 5 system sem
0.000000E+000 ENTRY>SERVICE batch p 5 sem
0.000000E+000 SERVICE>EXIT batch p 5 sem
0.000000E+000 ASK batch print 5 sem console
0.000000E+000 >ENTRY batch print 5 sem console
0.000000E+000 ASK batch p 6 system sem
0.000000E+000 >ENTRY batch p 6 system sem
0.000000E+000 ASK batch p 7 system sem
0.000000E+000 >ENTRY batch p 7 system sem
0.000000E+000 ASK batch p 8 system sem
0.000000E+000 >ENTRY batch p 8 system sem
0.000000E+000 ASK batch p 10 system sem
0.000000E+000 >ENTRY batch p 10 system sem
1.792208E+001 ASK batch v 3 console sem
1.792208E+001 >ENTRY batch v 3 console sem
1.792208E+001 ENTRY>SERVICE batch v 3 sem
1.792208E+001 SERVICE>EXIT batch v 3 sem
1.792208E+001 ENTRY>SERVICE batch p 6 sem
1.792208E+001 SERVICE>EXIT batch p 6 sem
1.792208E+001 ASK batch print 6 sem console
1.792208E+001 >ENTRY batch print 6 sem console
9.888407E+001 ASK batch v 4 console sem
9.888407E+001 >ENTRY batch v 4 console sem
9.888407E+001 ENTRY>SERVICE batch v 4 sem
9.888407E+001 SERVICE>EXIT batch v 4 sem
9.888407E+001 ENTRY>SERVICE batch p 7 sem
9.888407E+001 SERVICE>EXIT batch p 7 sem
9.888407E+001 ASK batch print 7 sem console
9.888407E+001 >ENTRY batch print 7 sem console
2.072674E+002 ASK batch v 5 console sem
2.072674E+002 >ENTRY batch v 5 console sem
2.072674E+002 ENTRY>SERVICE batch v 5 sem
2.072674E+002 SERVICE>EXIT batch v 5 sem
2.072674E+002 ENTRY>SERVICE batch p 8 sem
2.072674E+002 SERVICE>EXIT batch p 8 sem
2.072674E+002 ASK batch print 8 sem console
2.072674E+002 >ENTRY batch print 8 sem console
2.654707E+002 ASK batch v 6 console sem
2.654707E+002 >ENTRY batch v 6 console sem
2.654707E+002 ENTRY>SERVICE batch v 6 sem
2.654707E+002 SERVICE>EXIT batch v 6 sem
2.654707E+002 ENTRY>SERVICE batch p 10 sem
2.654707E+002 SERVICE>EXIT batch p 10 sem
2.654707E+002 ASK batch print 10 sem console
2.654707E+002 >ENTRY batch print 10 sem console

- 368 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

. . .

7.619930E+002 SERVICE>EXIT batch v 64 sem
9.000000E+002 ASK batch p 79 system sem
9.000000E+002 >ENTRY batch p 79 system sem
9.000000E+002 ENTRY>SERVICE batch p 79 sem
9.000000E+002 SERVICE>EXIT batch p 79 sem
9.000000E+002 ASK batch print 79 sem console
9.000000E+002 >ENTRY batch print 79 sem console
9.918273E+002 ASK batch v 79 console sem
9.918273E+002 >ENTRY batch v 79 console sem
9.918273E+002 ENTRY>SERVICE batch v 79 sem
9.918273E+002 SERVICE>EXIT batch v 79 sem
1.139011E+003 ASK batch p 102 system sem
1.139011E+003 >ENTRY batch p 102 system sem
1.139011E+003 ENTRY>SERVICE batch p 102 sem
1.139011E+003 SERVICE>EXIT batch p 102 sem
1.139011E+003 ASK batch print 102 sem console
1.139011E+003 >ENTRY batch print 102 sem console
1.165310E+003 ASK batch v 102 console sem
1.165310E+003 >ENTRY batch v 102 console sem
1.165310E+003 ENTRY>SERVICE batch v 102 sem
1.165310E+003 SERVICE>EXIT batch v 102 sem
1.200000E+003 ASK batch p 104 system sem
1.200000E+003 >ENTRY batch p 104 system sem
1.200000E+003 ENTRY>SERVICE batch p 104 sem
1.200000E+003 SERVICE>EXIT batch p 104 sem
1.200000E+003 ASK batch print 104 sem console
1.200000E+003 >ENTRY batch print 104 sem console
1.240414E+003 ASK batch v 104 console sem
1.240414E+003 >ENTRY batch v 104 console sem
1.240414E+003 ENTRY>SERVICE batch v 104 sem
1.240414E+003 SERVICE>EXIT batch v 104 sem
1.440540E+003 ASK batch p 124 system sem
1.440540E+003 >ENTRY batch p 124 system sem
1.440540E+003 ENTRY>SERVICE batch p 124 sem
1.440540E+003 SERVICE>EXIT batch p 124 sem
1.440540E+003 ASK batch print 124 sem console
1.440540E+003 >ENTRY batch print 124 sem console
1.668278E+003 ASK batch v 124 console sem
1.668278E+003 >ENTRY batch v 124 console sem
1.668278E+003 ENTRY>SERVICE batch v 124 sem
1.668278E+003 SERVICE>EXIT batch v 124 sem
1.800000E+003 ASK batch p 145 system sem
1.800000E+003 >ENTRY batch p 145 system sem
1.800000E+003 ENTRY>SERVICE batch p 145 sem
1.800000E+003 SERVICE>EXIT batch p 145 sem
1.800000E+003 ASK batch print 145 sem console
1.800000E+003 >ENTRY batch print 145 sem console
1.890130E+003 ASK batch v 145 console sem
1.890130E+003 >ENTRY batch v 145 console sem
1.890130E+003 ENTRY>SERVICE batch v 145 sem
1.890130E+003 SERVICE>EXIT batch v 145 sem
% 6.84000 / 2000.00000 / 1996-03-25 / 13:21

I. An Example - 369 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

I.8. Histogram Output
As an example of the simple builtin graphical facilities the histogram generated for the
example will be displayed:

HIT Version 3.6.000 WELCOME TO HIT 1996-03-25
13:21 PAGE 1 University of Dortmund

Histogram
=========

Evaluation Object syst
Measure wait_time
Hierarchy all
Estimator FREQUENCY

HIT Version 3.6.000 WELCOME TO HIT 1996-03-25
13:21 PAGE 2 University of Dortmund

ORDINATE

 |
 0.000000E+000 |%%%
 |%%% 1.100E+001 %%
 1.000000 |%%%
 | /
 1.000000 |___/
 | 0.000E+000
 2.000000 |
 |
 2.000000 |%%%%%%%%%%%
 |%%%%%%%%%%% 1.000E+000
 5.000000 |%%%%%%%%%%%
 | /
 5.000000 |_________/
 | 0.000E+000
 10.000000 |
 |
 10.000000 |%%%%%%%%%%%
 |%%%%%%%%%%% 1.000E+000
 50.000000 |%%%%%%%%%%%
 | /
 50.000000 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 |%%%%%%%%%%%%%%%%%% 3.000E+000 %%
 1000.000000 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | /
 |______________________________/
 |

 ABSCISSA

J. Index - 371 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

J. Index

% 19
% comment 192
%ANALYZER 173
%BIND 178
%CMD 184
%COMMON 173
%COMPILER 173
%COPY 11; 191
%DEFAULT 179; 185
%ELSE 191
%END 173
%EOF 191
%FI 191
%IF 191
%INCLUDE 191
%MOBASE 183
%NOSOURCE 189; 303
%PAGE 189; 303
%PARM 174
%RESET 191
%SET 191
%SOURCE 189
%SPEEDS 191
%TITLE 301; 303
& 30
(* 15; 18
(. 15; 25
* 27
*) 15; 18
** 27
+ 27
- 27
.) 15; 25
/ 27
// 27
< 33
<= 33
<> 33
= 33
> 33
>= 33
? 187
[9; 15; 23; 27
] 9; 15; 27
{ 9; 15; 18
} 9; 15; 18

AA

abs 242
abscissa 132; 156
abstract data type 64
accept 100; 104; 260; 295
accuracy 139; 140
accuracy stop 140
ACG 13
actual parameter 55
actual_parameters 55
actual_parameters (Syntax) 212
adding_operator 27
adding_operator (Syntax) 205
AFTER 80; 184
AGGRDISP 297
AGGREGATE 6; 23
aggregate (Syntax) 204
AGGREGATE statement 161
aggregate_statement 161
aggregate_statement (Syntax) 207
algorithm selection 271
ALL 101; 151; 156; 295
ALWAYS 101; 295
analysis 160
ANALYTICAL 163
analyzer listing 306
AND 31; 135
and_or 135
and_or (Syntax) 212
and_then 31
and_then (Syntax) 204
announce queue 99
ANNOUNCE_QUEUE 107
any_comment (Syntax) 216
Approximate MVA 308
arccos 242
arcsin 242
arctan 242
area 99; 107; 145
area (Syntax) 210
arithmetic expression 27
ARRAY 23; 75; 78; 112
array attribute 24; 76; 113; 258
array constant 23
array element 23
ARRAY OF 52; 120
array variable 23
array_bounds 23
array_bounds (Syntax) 201
array_object_declaration 23
array_object_declaration (Syntax) 201

- 372 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

arrival 103; 259
arrival_announce 103; 258
arrival_entry 103; 258
arrival_exit 103; 258
arrival_service 103; 258
AS 96
ASCII Code 237
ascii_or_ebcdic_character 17
ascii_or_ebcdic_character (Syntax) 214
assignment 36
assignment_statement 37; 49
assignment_statement (Syntax) 206
AT 80; 156; 158
autocorrelation value 312
autoregressive model 123
AVERAGE 45

BB

basic loop 41
basic service 114
basic_condition 136; 137; 138; 139
basic_condition (Syntax) 212
basic_loop 41
basic_loop (Syntax) 209
BCMP 163
BEGIN 45; 47; 72; 92; 104; 118
behaviour pattern 72
binary operators 240
binding 75; 120
blank 15
blank (Syntax) 214
block 166
block concept 21
BLOCK statement 45
block_statement 45
block_statement (Syntax) 207
body of the procedure 47
BOOLEAN 22
boolean expression 31
boolean_expression 31
boolean_expression (Syntax) 204
bottom up 120
BOUNDS 141
BRANCH statement 40
branch_statement 40
branch_statement (Syntax) 208
building block 114

CC

call by name 53
call by reference 54
call by value 53
calling environment 52

CASE statement 39
case_statement 39
case_statement (Syntax) 208
CHAIN Statements 89
chain_statement (Syntax) 209
char 244
character 17; 22
character (Syntax) 214
character delimiter 17
CHARACTER expression 30
character string 18
CHECK 174
CIM 175
CLOSE 58
CLOSED_CHAIN 89
closed_chain_statement 89
closed_chain_statement (Syntax) 209
CODE 179
CODE (link name) 172
COLLECT block 96
collect_block 96
collect_block (Syntax) 203
COM 174
comment 18; 19
comment (Syntax) 214
comment delimiter 18
common_assignment 37
common_assignment (Syntax) 206
common_declaration 21; 47; 64; 165
common_declaration (Syntax) 200
communication 116
compiler directive 189
compiler directives 19
compiler_directive (Syntax) 215
COMPONENT 92; 112
Component Areas 99
component array 112
component control procedure 276; 294
component type 92
componenttype_declaration 92
componenttype_declaration (Syntax) 202
component_declaration (Syntax) 200
compound_statement 36; 69; 85; 107
compound_statement (Syntax) 206
concatenation operator 18; 30
CONCURRENT statement 85
concurrent_statement 85
concurrent_statement (Syntax) 207
condition trace 311
conditional statement 38
conditional_statement 38
conditional_statement (Syntax) 208
CONFIDENCE 138; 142
confidence interval 138
conjunction 31
conjunction (Syntax) 204
constant 21; 22; 25
CONTROL (link name) 172; 182

J. Index - 373 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

CONTROL block 104
control file 171
control procedure 104
CONTROL statement 158
control_declaration_part 104
control_declaration_part (Syntax) 203
control_file (Syntax) 215
control_procedure_declaration 104
control_procedure_declaration (Syntax)
203
control_procedure_statement 109
control_record 174; 178; 183; 184; 185
control_record (Syntax) 215
control_section (Syntax) 215
control_statement 158
control_statement (Syntax) 211
Convolution/MVA 308
cos 242
cosh 242
COUNT 126; 129
counter 114
cox 245
coxg 245
CPRIO 295
CPU time 136
CPUTIME 136
cpu_time 248
CRANDOM 295
CREATE statement 82
create_or_submit_statement 82; 83
create_or_submit_statement (Syntax) 208

DD

DEBUG 175; 334
dec 72
decision table 306
declaration 21; 163
declaration (Syntax) 199
DEFAULT 22; 23; 52; 145; 148; 179
default value 52; 55
default_or_merge 148
default_or_merge (Syntax) 210
DEGREE 138; 156
digit 15; 244
digit (Syntax) 214
dimension 24; 258
discrete 246
disjunction 31
disjunction (Syntax) 204
dispatch 100; 101; 104; 260; 297
DOQ3 163
DOQ4 14; 264; 308
dot notation 24; 258
draw 246
drawing procedure 245

DUE TO 137; 138; 156
DUMP 320
DUMP (link name) 172; 182
dump file 131; 132; 134; 320
DUMPFILE 141
dynamic array 24

EE

EBCDIC Code 238
ELSE 31; 38; 39; 40
empty string 18
empty_statement 36
empty_statement (Syntax) 206
ENCLOSE 120; 340
enclose_declaration 120
enclose_declaration (Syntax) 200
entier 242
entry area 99
ENTRY_AREA 107
environment 47
eof 58; 255
eoln 58; 255
EQUAL 101; 297
EQUATING 97
EQV 31
erlang 246
estimator 131; 141
estimator (Syntax) 211
estimator_part 141
estimator_part (Syntax) 211
EVALUATE 6
EVALUATE statement 160
evaluate_declaration 160
evaluate_declaration (Syntax) 210
evaluate_statement 160
evaluate_statement (Syntax) 207
evaluation program 163
evaluationobject 131; 134; 145
evaluationobject_declaration 145
evaluationobject_declaration (Syntax) 210
EVENT 125; 129; 137
EVENTS 137
EVERY 80
exit area 99
EXIT_AREA 107
exp 242
experiment 163
experiment block 5; 163
experiment_block 163
experiment_block (Syntax) 199
explicit state 103
exponentiation 29
expression 27
expression (Syntax) 204
expression_or_aggregate 23

- 374 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

expression_or_aggregate (Syntax) 204
EXTEND 142; 178
EXTERN 177

FF

factor 27
factor (Syntax) 205
FALSE 32
FAN 10; 171
FCFS 296
file 57; 59; 62
file identifier 58
file name generator 185
file object 171
file_name (Syntax) 216
file_object 179
file_object (Syntax) 216
FOR loop 43
FOR loop with a value list 44
formal_parameter 52
formal_parameters (Syntax) 212
for_loop 43
for_loop (Syntax) 209
FREQUENCY 134; 142
FREQUENCYFORMAT 178
ftserver 117; 272; 287; 288
functions 48

GG

Gauss-Seidel algorithm 271
Gauss-Seidel iteration 310
get_result 248
GLOBALSTOP 140; 141; 144
graph 131
GRAPH (link name) 172; 182
GRAPH statement 131
graph_statement 131
graph_statement (Syntax) 213
Grassmann algorithm 271; 310

HH

head of the procedure 47
Hexa-Decimal 238
HI-SLANG 4; 5
HI-SLANG component control procedure
104
HI-SLANG source 165; 166; 171
hierarchy 131; 134; 147; 148
hierarchy_declaration 148
hierarchy_declaration (Syntax) 210

hierarchy_part 148
hierarchy_part (Syntax) 210
histd 246
histogram 131; 134; 323
HISTOGRAM (link name) 172; 182
HISTOGRAM statement 134
histogram_statement 134
histogram_statement (Syntax) 213
HIT standard mobase 275
HIT-OMA 171
HITGRAPHIC 1; 337
hit_unit 165
hit_unit (Syntax) 199
hi_slang_source (Syntax) 215
hold 88; 259
horizontal structuring 4

II

identifier 27; 48
identifier (Syntax) 205
IF statement 38
if_statement 38
if_statement (Syntax) 208
IMMEDIATE 101; 296
implicit state of a process 103
implicite READLN 60
IN-SLANG 11
increment value 43
INDENT 176; 303
index 24
index bound 24
INFILE 57; 59; 171
infinite loop 41; 42; 43
infinite_loop 41
infinite_loop (Syntax) 209
initial value 43
INPUT 131; 134
input_list 59; 60
input_list (Syntax) 207
inscription 132
inscription (Syntax) 213
INSPECT statement 107
inspect_statement 107
inspect_statement (Syntax) 210
INTEGER 22
integer division 29
internal buffer 57
INTERVAL 2; 142
io_mode 178
io_mode (Syntax) 216
io_statement 57
io_statement (Syntax) 207

J. Index - 375 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

KK

keyword parameter 55
keywords 235

LL

lastitem 58; 255
last_seed 249
layer 120
LCFS 296
LCFSPR 296
LENGTH 58
length specification 63
LET 55
letter 15; 244
letter (Syntax) 214
letter_or_digit_or_underscore 16
letter_or_digit_or_underscore (Syntax) 214
LEVEL 138; 142
lexical element 15
Lexical symbol 15
LIMIT 82
LIMITED 295
LIN2 14; 163; 267; 309
line 15
line feed 60; 62
linear 247
linear equations 271
LINEARIZER 163
Linearizer and Asymptotic Expansion 309
Linearizer and PBH 309
LINES 176; 301
link name 171
link_name (Syntax) 216
listing 300
LISTING (link name) 172; 182
Little's law 327
ln 242
load 71; 84; 97; 120
load filtering hierarchy 137; 138; 147
load path 147
local process 71
log 243
LOOP 107
LOOP statement 41
loop variable 43
loop_statement 41
loop_statement (Syntax) 209
loop_value_list 43; 44
loop_value_list (Syntax) 209
lower bound 24
lower_bounds 24; 258
lowten 256

MM

machine 71; 97; 120
MARK 14
MARKOV 163; 269; 310
MARKOVIAN 163
MAXERROR 176
maxint 243
maxreal 243
MEAN 141
measure 131; 134; 138
MEASURE statement 156
measure_statement 156
measure_statement (Syntax) 211
MERGE 148; 151
message 301
MESSAGE (link name) 172
METHOD 163
method (Syntax) 199
minmax 125; 126; 177; 318
mobase 171
mobase_name (Syntax) 216
mobase_object 181
MOD 27
mode 52
mode (Syntax) 212
MODEL 118
model object 160
model time 136
modelling base 171
modelling_declaration 71; 124; 165
modelling_declaration (Syntax) 200
MODELTIME 136
modeltype_declaration 118
modeltype_declaration (Syntax) 202
module 181
module (Syntax) 216
modulo 29
multiple assignment 36
multiple usage 45
multiplying_operator 27
multiplying_operator (Syntax) 205
MVA 308

NN

name 16; 52; 83
name (Syntax) 214
name conflict 21; 45
NAME FOR 79
negexp 247
NEW statement 66
new_statement 66
new_statement (Syntax) 207
NONE 66
NONSEPARABLE-APPROXIMATE 163

- 376 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

normal 247
NOSOURCE 175; 303
NOT 31
nowaitsend 116; 285
number 17
number (Syntax) 214
NUMERICAL 163

OO

object 181
object specification 22
observer 117; 291
OCCUPATION 128
OF 27; 97; 145
OF operator 102
offer 100; 104; 260; 295
OMA 1
OPEN 58
OPEN_CHAIN 89
open_chain_statement 89
open_chain_statement (Syntax) 209
open_or_close_statement 58
open_or_close_statement (Syntax) 207
operating_system_command (Syntax) 216
operator 239
OR 31; 135
ordinate 132
or_else 31
or_else (Syntax) 204
OUTFILE 57; 62; 171
output 132; 141; 161
output_link 141
output_link (Syntax) 211
output_list 62
output_list (Syntax) 208

PP

parameter 52; 174
parameter (Syntax) 216
parameter_declaration 52
parameter_declaration (Syntax) 212
PASS 1 11
PASS 2 13
PASS 3 13
performance bounds 14; 141; 163; 267; 268
PLOT 131; 134
PLOT statement 131
plot_specification_graph 131
plot_specification_graph (Syntax) 213
plot_specification_histo 134
plot_specification_histo (Syntax) 213
plot_statement 131
plot_statement (Syntax) 213

pointer 65; 66
pointer assignment 67
pointer comparison 67
poisson 247
popul 101; 260
popul procedures 260
POPULATION 127
population change 101
popul_announce 101; 260
popul_entry 101; 260
popul_exit 101; 260
popul_service 101; 260
position pointer 57
positional parameter 55
pre-analysis 160
pre-analyze 161
PREANA 326
PREANA (link name) 182
precedence rule 35; 240
PRECOM (link name) 172; 182
predefined procedure 239
preempted 103; 259
preemption 88; 109
preemptive-resume 109
PREEMPT_RATE 128
primary 27
primary (Syntax) 205
PRINTDS 178
PRIONP 296
PRIOPREP 272; 296
PRIOPRES 296
priorities 35
prioserver 117; 272; 289
PROB 40; 89
probability of confidence 138
prob_part 89
prob_part (Syntax) 208
procedure 47; 75; 104
procedure call 47; 49
Procedure eoln 58
procedure_declaration 47
procedure_declaration (Syntax) 201
procedure_or_service 75
procedure_or_service (Syntax) 202
procedure_or_service_call 48
procedure_or_service_call (Syntax) 206
process 71; 78; 80; 82
process communication 116
process name 79
process_declaration 78
process_declaration (Syntax) 200
process_name_or_object_dec 78; 79
process_name_or_object_dec (Syntax) 200
PRODUCTFORM 163
protection 181
protection (Syntax) 216
PROVIDE declaration 94
provide_declaration 94

J. Index - 377 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

provide_declaration (Syntax) 202
provide_declaration_part 94
provide_declaration_part (Syntax) 202
put_footer 251
put_header 251
put_result 250

QQ

qnode 89
qnode (Syntax) 209

RR

randint 247
RANDOM 297
range of value 23
rank 244
rate 126
READ 59
read statement 59; 60
READLN 59
READLN statement 60
READONLY 178; 183
read_statement (Syntax) 207
REAL 22
receiver 116
RECORD 52; 64
record assignment 67
record object 65
record type 64
recordtype_declaration 64
recordtype_declaration (Syntax) 202
record_declaration 65
record_declaration (Syntax) 201
REFER 97
REFER part 97
REFERENCE 52
refer_part 97
refer_part (Syntax) 202
relation 31
relation (Syntax) 204
relational_operator 31
relational_operator (Syntax) 204
RELATIVE 176
relative line number 300
representation of results 123
reserved words 19
Response Time Preservation (RTP) 308
RESTRICT 272; 295
RESULT 14; 47; 49; 72; 75; 94
result assignment 48; 49
result statement 50; 56
result value assignment 47
result_assignment 49; 50

result_assignment (Syntax) 206
result_statement 56
result_statement (Syntax) 206
RESWD 176; 303
REVERSE 107

SS

SCG 13
schedule 100; 104; 260; 295
SCHEDULE_RATE 128
scope 21; 304
SDEQUAL 297
SDSHARED 298
seed 118; 245
SELECT statement 109
semaphor 114; 280
semaphore 115
SEMSCHED 297
sender 116
SEPARABLE 163
SEPARABLE-APPROXIMATE 163
separator 16
sequence of computation 29
sequence_of_statements 36
sequence_of_statements (Syntax) 199
series of evaluation 160
server 114; 277
service 71; 72; 75
service area 99
service call 84
service declaration 72
service speed 100; 110
service type 71
SERVICE_AREA 107
service_declaration 72
service_declaration (Syntax) 201
SETSPEED statement 110
set_seed 251
SHARED 298
sign 243
simple data type 22
simple statement 109
simple_expression 30; 66
simple_expression (Syntax) 204
simple_object_declaration 22
simple_object_declaration (Syntax) 201
simple_real_expression 27
simple_real_expression (Syntax) 205
simple_statement 36; 48; 56; 57; 66; 80;
129
simple_statement (Syntax) 206
simple_text 30
simple_text (Syntax) 205
simple_text_expression 30
simple_text_expression (Syntax) 205

- 378 - HI-SLANG Reference Manual

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

simple_type 22; 57; 66
simple_type (Syntax) 205
SIMUL 14; 311
SIMULA 10
SIMULATIVE 163
sin 242
sinh 242
solution algorithm 307
solver 163
solver information 306
SOLVERINFO 177; 306
solvers 13
SOR algorithm 271
SOR method 310
SOURCE 175; 179
SOURCE (link name) 172; 182
space consumption 114; 115
special character 15
special_character 15
special_character (Syntax) 214
speed 103; 259
spend 88; 100; 259
Spend Server 106
sqrt 243
standard component types 276
standard default 23
standard deviation 142
standard link name 182; 185
standard mobase 275
Standard SIMULA 4
standard speed 298
standard stream 127
STANDARDDEVIATION 142
START 141
start condition 135
start_or_stop_condition 135
start_or_stop_condition (Syntax) 211
STATE 125; 129
state of a component 101
State of a Process 103
state space 271
statement 36; 160
statement (Syntax) 206
STEP 43
STOP 141; 158
stop condition 135; 158
stop_evaluation 251
stop_expression 140; 141
stop_expression (Syntax) 212
stream 124; 138
stream (Syntax) 211
stream_declaration 124
stream_declaration (Syntax) 200
stream_type 124
stream_type (Syntax) 200
string 18
string (Syntax) 214
string delimiter 18

sub-aggregate 25
subcomponent array 97
SUBMIT statement 83
symbol 16; 236
synchronization mechanism 114
synchsend 116
sysin 59; 179; 256
SYSIN (link name) 172
SYSINIT (link name) 172
sysout 59; 179; 256
SYSOUT (link name) 172

TT

table 129; 131; 141; 315
TABLE (link name) 172; 182
tan 242
tanh 242
term 27
term (Syntax) 205
termination criterion 42
termination value 43
TEXT 18; 22; 57; 59; 62
TEXT expression 30
THEN 31; 38
THROUGHPUT 127
time 252
time consumption 114
time slicing discipline 110
TIMES 45
TIMES loop 45
TIMESLICE statement 110
times_loop 45
times_loop (Syntax) 209
time_specification 80
time_specification (Syntax) 208
timing_condition 80
timing_condition (Syntax) 208
tokenpool 114; 115; 281
TOKSCHED 297
top-down 120
trace 158; 159; 328
TRACEALL 159
tracefile 59; 256
TRACEFORMAT 178
trace_off 252
trace_on 252
trace_state 252
transfer_results 253
transient phase 135
triplet 148; 149; 150
TRUE 32
TURNAROUNDTIME 127
TYPE 72; 92; 118; 181
type (Syntax) 216
type conversion 37

J. Index - 379 -

Universität Dortmund, Informatik IV Version 3.6.00, July 1999

type_declaration 64; 71
type_declaration (Syntax) 201

UU

unary operators 240
unary_operator 17
unary_operator (Syntax) 214
undefined 129; 243; 318
uniform 247
UNTIL 43
UNTIL loop 42
until_loop 42
until_loop (Syntax) 209
UPDATE statement 129; 273
updates 129; 130; 140; 141; 177; 313; 318
update_statement 129
update_statement (Syntax) 206
upper bound 24
upper_bounds 24; 258
USE declaration 47; 75; 77
USEFAA 14
user-defined stream 124
use_declaration 75
use_declaration (Syntax) 202
use_declaration_part 75
use_declaration_part (Syntax) 202
UTILIZATION 128

VV

VALUE 52
VALUE parameter 53
variable 21; 22; 52
variable_or_constant 22
variable_or_constant (Syntax) 201
variable_or_constant_declaration 22; 23
variable_or_constant_declaration (Syntax)
201
vertical model structuring 4
VIA 145

WW

WARN 176
WARNACCESS 176
was_message 253
watcher 293
WHEN 39; 107
when_or_sequence 107
when_or_sequence (Syntax) 210
WHILE 107
WHILE loop 42

while_loop 42
while_loop (Syntax) 209
WIDTH 138; 140; 141
WITH 97
WITH statement 69
with_statement 69
with_statement (Syntax) 207
WRITE 62
write statement 62
WRITELN 62
WRITELN statement 62
write_statement (Syntax) 208

XX

XREF 13; 175; 304; 305

